Metabolomic Study of Aging in fa/fa Rats: Multiplatform Urine and Serum Analysis
Abstract
:1. Introduction
2. Experimental Design
2.1. Experimental Animals
2.2. Study Design and Sample Collection
2.3. Biochemical Parameters
2.4. NMR Sample Preparation and Experiments
2.5. MS Sample Preparation and Experiments
2.6. Statistical Analysis
3. Results
3.1. Morphometric and Biochemical Parameters
3.2. NMR-Based fa/fa Model Characterization Using Urinary Metabolic Profiles
3.3. NMR- and MS-Based fa/fa Model Characterization Using Serum Metabolic Profiles
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hruby, A.; Hu, F.B. The Epidemiology of Obesity: A Big Picture. Pharmacoeconomics 2015, 33, 673–689. [Google Scholar] [CrossRef] [PubMed]
- Kanasaki, K.; Koya, D. Biology of Obesity: Lessons from Animal Models of Obesity. J. Biomed. Biotechnol. 2011, 2011, 197636. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kava, R.; Greenwood, M.R.C.; Johnson, P.R. Zucker (fa/fa) Rat. ILAR J. 1990, 32, 4–8. [Google Scholar] [CrossRef]
- Fiehn, O. Metabolomics—The Link between Genotypes and Phenotypes. Plant. Mol. Biol. 2002, 48, 155–171. [Google Scholar] [CrossRef]
- Nicholson, J.K.; Lindon, J.C.; Holmes, E. ‘Metabonomics’: Understanding the metabolic responses of living systems to pathophysiological stimuli via multivariate statistical analysis of biological NMR spectroscopic data. Xenobiotica 1999, 29, 1181–1189. [Google Scholar] [CrossRef] [PubMed]
- Salek, R.M.; Maguire, M.L.; Bentley, E.; Rubtsov, D.V.; Hough, T.; Cheeseman, M.; Nunez, D.; Sweatman, B.C.; Haselden, J.N.; Cox, R.D.; et al. A metabolomic comparison of urinary changes in type 2 diabetes in mouse, rat, and human. Physiol. Genom. 2007, 29, 99–108. [Google Scholar] [CrossRef] [Green Version]
- Zhao, L.-C.; Zhang, X.-D.; Liao, S.-X.; Gao, H.-C.; Wang, H.-Y.; Lin, D.-H. A Metabonomic Comparison of Urinary Changes in Zucker and GK Rats. J. Biomed. Biotechnol. 2010, 2010, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Williams, R.E.; Lenz, E.M.; Evans, J.A.; Wilson, I.D.; Granger, J.H.; Plumb, R.S.; Stumpf, C.L. A combined 1H NMR and HPLC–MS-based metabonomic study of urine from obese (fa/fa) Zucker and normal Wistar-derived rats. J. Pharm. Biomed. Anal. 2005, 38, 465–471. [Google Scholar] [CrossRef]
- Williams, R.E.; Lenz, E.M.; Rantalainen, M.; Wilson, I.D. The comparative metabonomics of age-related changes in the urinary composition of male Wistar-derived and Zucker (fa/fa) obese rats. Mol. Biosyst. 2006, 2, 193–202. [Google Scholar] [CrossRef]
- Granger, J.H.; Williams, R.; Lenz, E.M.; Plumb, R.S.; Stumpf, C.L.; Wilson, I.D. A metabonomic study of strain- and age-related differences in the Zucker rat. Rapid Commun. Mass Spectrom. 2007, 21, 2039–2045. [Google Scholar] [CrossRef]
- Serkova, N.J.; Jackman, M.; Brown, J.L.; Liu, T.; Hirose, R.; Roberts, J.P.; Maher, J.J.; Niemann, C.U. Metabolic profiling of livers and blood from obese Zucker rats. J. Hepatol. 2006, 44, 956–962. [Google Scholar] [CrossRef] [PubMed]
- Major, H.J.; Williams, R.; Wilson, A.J.; Wilson, I.D. A metabonomic analysis of plasma from Zucker rat strains using gas chromatography/mass spectrometry and pattern recognition. Rapid Commun. Mass Spectrom. 2006, 20, 3295–3302. [Google Scholar] [CrossRef] [PubMed]
- Plumb, R.S.; Johnson, K.A.; Rainville, P.; Shockcor, J.P.; Williams, R.; Granger, J.H.; Wilson, I.D. The detection of phenotypic differences in the metabolic plasma profile of three strains of Zucker rats at 20 weeks of age using ultra-performance liquid chromatography/orthogonal acceleration time-of-flight mass spectrometry. Rapid Commun. Mass Spectrom. 2006, 20, 2800–2806. [Google Scholar] [CrossRef] [PubMed]
- Williams, R.; Lenz, E.M.; Wilson, A.J.; Granger, J.; Wilson, I.D.; Major, H.; Stumpf, C.; Plumb, R. A multi-analytical platform approach to the metabonomic analysis of plasma from normal and zucker (fa/fa) obese rats. Mol. Biosyst. 2006, 2, 174–183. [Google Scholar] [CrossRef]
- Waldram, A.; Holmes, E.; Wang, Y.; Rantalainen, M.; Wilson, I.D.; Tuohy, K.; McCartney, A.L.; Gibson, G.R.; Nicholson, J.K. Top-Down Systems Biology Modeling of Host Metabotype−Microbiome Associations in Obese Rodents. J. Proteome Res. 2009, 8, 2361–2375. [Google Scholar] [CrossRef]
- Phetcharaburanin, J.; Lees, H.; Marchesi, J.R.; Nicholson, J.K.; Holmes, E.; Seyfried, F.; Li, J.V. Systemic Characterization of an Obese Phenotype in the Zucker Rat Model Defining Metabolic Axes of Energy Metabolism and Host–Microbial Interactions. J. Proteome Res. 2016, 15, 1897–1906. [Google Scholar] [CrossRef]
- Lees, H.J.; Swann, J.; Poucher, S.; Holmes, E.; Wilson, I.; Nicholson, J. Obesity and Cage Environment Modulate Metabolism in the Zucker Rat: A Multiple Biological Matrix Approach to Characterizing Metabolic Phenomena. J. Proteome Res. 2019, 18, 2160–2174. [Google Scholar] [CrossRef] [PubMed]
- Melnyk, S.; Hakkak, R. Metabolic Status of Lean and Obese Zucker Rats Based on Untargeted and Targeted Metabolomics Analysis of Serum. Biomedicines 2022, 10, 153. [Google Scholar] [CrossRef]
- Špolcová, A.; Mikulášková, B.; Kršková, K.; Gajdošechová, L.; Zórad, Š.; Olszanecki, R.; Suski, M.; Bujak-Giżycka, B.; Železná, B.; Maletínská, L. Deficient hippocampal insulin signaling and augmented Tau phosphorylation is related to obesity- and age-induced peripheral insulin resistance: A study in Zucker rats. BMC Neurosci. 2014, 15, 111. [Google Scholar] [CrossRef] [Green Version]
- Mráziková, L.; Hojná, S.; Pačesová, A.; Hrubá, L.; Strnadová, V.; Neprašová, B.; Železná, B.; Kuneš, J.; Maletínská, L. Palmitoylated prolactin-releasing peptide treatment had neuroprotective but not anti-obesity effect in fa/fa rats with leptin signaling disturbances. Nutr. Diabetes 2022, 12, 26. [Google Scholar] [CrossRef]
- Kuneš, J.; Pražienková, V.; Popelová, A.; Mikulášková, B.; Zemenová, J.; Maletínská, L. Prolactin-releasing peptide: A new tool for obesity treatment. J. Endocrinol. 2016, 230, R51–R58. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pelantová, H.; Bugáňová, M.; Anýž, J.; Železná, B.; Maletínská, L.; Novák, D.; Haluzík, M.; Kuzma, M. Strategy for NMR metabolomic analysis of urine in mouse models of obesity—From sample collection to interpretation of acquired data. J. Pharm. Biomed. Anal. 2015, 115, 225–235. [Google Scholar] [CrossRef]
- Dieterle, F.; Ross, A.; Schlotterbeck, G.; Senn, H. Probabilistic Quotient Normalization as Robust Method to Account for Dilution of Complex Biological Mixtures. Application in 1H NMR Metabonomics. Anal. Chem. 2006, 78, 4281–4290. [Google Scholar] [CrossRef] [PubMed]
- Tomášová, P.; Bugáňová, M.; Pelantová, H.; Holubová, M.; Šedivá, B.; Železná, B.; Haluzík, M.; Maletínská, L.; Kuneš, J.; Kuzma, M. Metabolomics Based on MS in Mice with Diet-Induced Obesity and Type 2 Diabetes Mellitus: The Effect of Vildagliptin, Metformin, and Their Combination. Appl. Biochem. Biotechnol. 2019, 188, 165–184. [Google Scholar] [CrossRef]
- Tomášová, P.; Procházková, P.; Roubalová, R.; Dvořák, J.; Tlaskalová-Hogenová, H.; Čermáková, M.; Pelantová, H.; Šedivá, B.; Vecka, M.; Papežová, H.; et al. NMR- and MS-Based Untargeted Metabolomic Study of Stool and Serum Samples from Patients with Anorexia Nervosa. J. Proteome Res. 2022, 21, 778–787. [Google Scholar] [CrossRef] [PubMed]
- Leníŀek, M.; Vecka, M.; Žížalová, K.; Vítek, L. Comparison of simple extraction procedures in liquid chromatographymass spectrometry based determination of serum 7α-hydroxy-4-cholesten-3-one, a surrogate marker of bile acid synthesis. J. Chromatogr. B 2016, 1034, 317–320. [Google Scholar] [CrossRef]
- Prochazkova, P.; Roubalova, R.; Dvorak, J.; Tlaskalova-Hogenova, H.; Cermakova, M.; Tomasova, P.; Sediva, B.; Kuzma, M.; Bulant, J.; Bilej, M.; et al. Microbiota, Microbial Metabolites, and Barrier Function in A Patient with Anorexia Nervosa after Fecal Microbiota Transplantation. Microorganisms 2019, 7, 338. [Google Scholar] [CrossRef] [Green Version]
- Chong, J.; Soufan, O.; Li, C.; Caraus, I.; Li, S.; Bourque, G.; Wishart, D.S.; Xia, J. MetaboAnalyst 4.0: Towards more transparent and integrative metabolomics analysis. Nucleic Acids Res. 2018, 46, W486–W494. [Google Scholar] [CrossRef] [Green Version]
- Wishart, D.S.; Feunang, Y.D.; Marcu, A.; Guo, A.C.; Liang, K.; Vázquez-Fresno, R.; Sajed, T.; Johnson, D.; Li, C.; Karu, N.; et al. HMDB 4.0: The human metabolome database for 2018. Nucleic Acids Res. 2018, 46, D608–D617. [Google Scholar] [CrossRef]
- Ulrich, E.L.; Akutsu, H.; Doreleijers, J.F.; Harano, Y.; Ioannidis, Y.E.; Lin, J.; Livny, M.; Mading, S.; Maziuk, D.; Miller, Z.; et al. BioMagResBank. Nucleic Acids Res. 2007, 36, D402–D408. [Google Scholar] [CrossRef] [Green Version]
- Ruttkies, C.; Schymanski, E.L.; Wolf, S.; Hollender, J.; Neumann, S. MetFrag relaunched: Incorporating strategies beyond in silico fragmentation. J. Cheminform. 2016, 8, 3. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Čermáková, M.; Pelantová, H.; Neprašová, B.; Šedivá, B.; Maletínská, L.; Kuneš, J.; Tomášová, P.; Železná, B.; Kuzma, M. Metabolomic Study of Obesity and Its Treatment with Palmitoylated Prolactin-Releasing Peptide Analog in Spontaneously Hypertensive and Normotensive Rats. J. Proteome Res. 2019, 18, 1735–1750. [Google Scholar] [CrossRef] [PubMed]
- Shearer, J.; Duggan, G.; Weljie, A.; Hittel, D.S.; Wasserman, D.H.; Vogel, H.J. Metabolomic profiling of dietary-induced insulin resistance in the high fat-fed C57BL/6J mouse. Diabetes Obes. Metab. 2008, 10, 950–958. [Google Scholar] [CrossRef] [PubMed]
- Calvani, R.; Miccheli, A.; Capuani, G.; Miccheli, A.T.; Puccetti, C.; Delfini, M.; Iaconelli, A.; Nanni, G.; Mingrone, G. Gut microbiome-derived metabolites characterize a peculiar obese urinary metabotype. Int. J. Obes. 2010, 34, 1095–1098. [Google Scholar] [CrossRef] [Green Version]
- Brial, F.; Chilloux, J.; Nielsen, T.; Vieira-Silva, S.; Falony, G.; Andrikopoulos, P.; Olanipekun, M.; Hoyles, L.; Djouadi, F.; Neves, A.L.; et al. Human and preclinical studies of the host–gut microbiome co-metabolite hippurate as a marker and mediator of metabolic health. Gut 2021, 70, 2105–2114. [Google Scholar] [CrossRef]
- Hertel, J.; Fässler, D.; Heinken, A.; Weiß, F.U.; Rühlemann, M.; Bang, C.; Franke, A.; Budde, K.; Henning, A.-K.; Petersmann, A.; et al. NMR Metabolomics Reveal Urine Markers of Microbiome Diversity and Identify Benzoate Metabolism as a Mediator between High Microbial Alpha Diversity and Metabolic Health. Metabolites 2022, 12, 308. [Google Scholar] [CrossRef]
- Elliott, P.; Posma, J.M.; Chan, Q.; Garcia-Perez, I.; Wijeyesekera, A.; Bictash, M.; Ebbels, T.M.D.; Ueshima, H.; Zhao, L.; van Horn, L.; et al. Urinary metabolic signatures of human adiposity. Sci. Transl. Med. 2015, 7, 285ra62. [Google Scholar] [CrossRef] [Green Version]
- Jhanwar-Uniyal, M.; Chua, S.C. Critical effects of aging and nutritional state on hypothalamic neuropeptide Y and galanin gene expression in lean and genetically obese Zucker rats. Mol. Brain Res. 1993, 19, 195–202. [Google Scholar] [CrossRef]
- Korpela, K.; Kallio, S.; Salonen, A.; Hero, M.; Kukkonen, A.K.; Miettinen, P.J.; Savilahti, E.; Kohva, E.; Kariola, L.; Suutela, M.; et al. Gut microbiota develop towards an adult profile in a sex-specific manner during puberty. Sci. Rep. 2021, 11, 23297. [Google Scholar] [CrossRef]
- Yuan, X.; Chen, R.; Zhang, Y.; Lin, X.; Yang, X. Gut microbiota: Effect of pubertal status. BMC Microbiol. 2020, 20, 1–9. [Google Scholar] [CrossRef]
- Kumar, M.; Babaei, P.; Ji, B.; Nielsen, J. Human gut microbiota and healthy aging: Recent developments and future prospective. Nutr. Healthy Aging 2016, 4, 3–16. [Google Scholar] [CrossRef] [Green Version]
- Meng, C.; Feng, S.; Hao, Z.; Dong, C.; Liu, H. Changes in gut microbiota composition with age and correlations with gut inflammation in rats. PLoS ONE 2022, 17, e0265430. [Google Scholar] [CrossRef] [PubMed]
- Lees, H.; Swann, J.; Poucher, S.M.; Nicholson, J.; Holmes, E.; Wilson, I.; Marchesi, J.R. Age and Microenvironment Outweigh Genetic Influence on the Zucker Rat Microbiome. PLoS ONE 2014, 9, e100916. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Boulangé, C.L.; Claus, S.P.; Chou, C.J.; Collino, S.; Montoliu, I.; Kochhar, S.; Holmes, E.; Rezzi, S.; Nicholson, J.K.; Dumas, M.E.; et al. Early Metabolic Adaptation in C57BL/6 Mice Resistant to High Fat Diet Induced Weight Gain Involves an Activation of Mitochondrial Oxidative Pathways. J. Proteome Res. 2013, 12, 1956–1968. [Google Scholar] [CrossRef] [PubMed]
- Pelantová, H.; Bugáňová, M.; Holubová, M.; Šedivá, B.; Zemenová, J.; Sýkora, D.; Kaválková, P.; Haluzík, M.; Železná, B.; Maletínská, L.; et al. Urinary metabolomic profiling in mice with diet-induced obesity and type 2 diabetes mellitus after treatment with metformin, vildagliptin and their combination. Mol. Cell. Endocrinol. 2016, 431, 88–100. [Google Scholar] [CrossRef]
- Pelantová, H.; Bártová, S.; Anýž, J.; Holubová, M.; Železná, B.; Maletínská, L.; Novák, D.; Lacinová, Z.; Šulc, M.; Haluzík, M.; et al. Metabolomic profiling of urinary changes in mice with monosodium glutamate-induced obesity. Anal. Bioanal. Chem. 2016, 408, 567–578. [Google Scholar] [CrossRef] [PubMed]
- Mráziková, L.; Hojná, S.; Vaculová, P.; Strnad, Š.; Vrkoslav, V.; Pelantová, H.; Kuzma, M.; Železná, B.; Kuneš, J.; Maletínská, L. Lipidized PrRP Analog Exhibits Strong Anti-Obesity and Antidiabetic Properties in Old WKY Rats with Obesity and Glucose Intolerance. Nutrients 2023, 15, 280. [Google Scholar] [CrossRef]
- Duggan, G.E.; Hittel, D.S.; Hughey, C.C.; Weljie, A.; Vogel, H.J.; Shearer, J. Differentiating short- and long-term effects of diet in the obese mouse using 1H-nuclear magnetic resonance metabolomics. Diabetes Obes. Metab. 2011, 13, 859–862. [Google Scholar] [CrossRef]
- Kim, S.-H.; Yang, S.-O.; Kim, H.-S.; Kim, Y.; Park, T.; Choi, H.-K. 1H-nuclear magnetic resonance spectroscopy-based metabolic assessment in a rat model of obesity induced by a high-fat diet. Anal. Bioanal. Chem. 2009, 395, 1117–1124. [Google Scholar] [CrossRef] [PubMed]
- Park, S.; Oh, S.; Kim, E.-K. Glucagon-like peptide-1 analog liraglutide leads to multiple metabolic alterations in diet-induced obese mice. J. Biol. Chem. 2022, 298, 102682. [Google Scholar] [CrossRef]
- Newgard, C.B.; An, J.; Bain, J.R.; Muehlbauer, M.J.; Stevens, R.D.; Lien, L.F.; Haqq, A.M.; Shah, S.H.; Arlotto, M.; Slentz, C.A.; et al. A Branched-Chain Amino Acid-Related Metabolic Signature that Differentiates Obese and Lean Humans and Contributes to Insulin Resistance. Cell Metab. 2009, 9, 311–326. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- She, P.; Olson, K.C.; Kadota, Y.; Inukai, A.; Shimomura, Y.; Hoppel, C.L.; Adams, S.H.; Kawamata, Y.; Matsumoto, H.; Sakai, R.; et al. Leucine and Protein Metabolism in Obese Zucker Rats. PLoS ONE 2013, 8, e59443. [Google Scholar] [CrossRef] [Green Version]
- Dunn, M.A.; Hartsook, E.W. Comparative Amino Acid and Protein Metabolism in Obese and Non-Obese Zucker Rats. J. Nutr. 1980, 110, 1865–1879. [Google Scholar] [CrossRef] [PubMed]
- Baxmann, A.C.A.A.; Ahmed, M.S.; Marques, N.A.A.C.; Menon, V.B.; Pereira, A.B.; Kirsztajn, G.M.; Heilberg, I.P. Influence of Muscle Mass and Physical Activity on Serum and Urinary Creatinine and Serum Cystatin C. Clin. J. Am. Soc. Nephrol. 2008, 3, 348–354. [Google Scholar] [CrossRef] [Green Version]
- Rikimaru, T.; Oozeki, T.; Ichikawa, M.; Ebisawa, H.; Fujita, Y. Comparisons of urinary creatinine, skeletal muscle mass, and indices of muscle protein catabolism in rats fed ad libitum, with restricted food intake, and deprived of food. J. Nutr. Sci. Vitaminol. 1989, 35, 199–209. [Google Scholar] [CrossRef]
- Bao, L.; Zhang, Y.; Yan, S.; Yan, D.; Jiang, D. Lysophosphatidylcholine (17:0) Improves HFD-Induced Hyperglycemia & Insulin Resistance: A Mechanistic Mice Model Study. Diabetes Metab. Syndr. Obes. Targets Ther. 2022, ume 15, 3511–3517. [Google Scholar] [CrossRef]
- Zhong, H.; Fang, C.; Fan, Y.; Lu, Y.; Wen, B.; Ren, H.; Hou, G.; Yang, F.; Xie, H.; Jie, Z.; et al. Lipidomic profiling reveals distinct differences in plasma lipid composition in healthy, prediabetic, and type 2 diabetic individuals. Gigascience 2017, 6, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Wang-Sattler, R.; Yu, Z.; Herder, C.; Messias, A.; Floegel, A.; He, Y.; Heim, K.; Campillos, M.; Holzapfel, C.; Thorand, B.; et al. Novel biomarkers for pre-diabetes identified by metabolomics. Mol. Syst. Biol. 2012, 8, 615. [Google Scholar] [CrossRef]
- Suvitaival, T.; Bondia-Pons, I.; Yetukuri, L.; Pöhö, P.; Nolan, J.J.; Hyötyläinen, T.; Kuusisto, J.; Orešič, M. Lipidome as a predictive tool in progression to type 2 diabetes in Finnish men. Metabolism 2018, 78, 1–12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lone, A.M.; Taskén, K. Proinflammatory and Immunoregulatory Roles of Eicosanoids in T Cells. Front. Immunol. 2013, 4, 130. [Google Scholar] [CrossRef] [Green Version]
- Kim, J.Y.; Park, J.Y.; Kim, O.Y.; Ham, B.M.; Kim, H.-J.; Kwon, D.Y.; Jang, Y.; Lee, J.H. Metabolic Profiling of Plasma in Overweight/Obese and Lean Men using Ultra Performance Liquid Chromatography and Q-TOF Mass Spectrometry (UPLC−Q-TOF MS). J. Proteome Res. 2010, 9, 4368–4375. [Google Scholar] [CrossRef]
- Eisinger, K.; Liebisch, G.; Schmitz, G.; Aslanidis, C.; Krautbauer, S.; Buechler, C. Lipidomic Analysis of Serum from High Fat Diet Induced Obese Mice. Int. J. Mol. Sci. 2014, 15, 2991–3002. [Google Scholar] [CrossRef] [Green Version]
- Gowda, S.G.B.; Gao, Z.-J.; Chen, Z.; Abe, T.; Hori, S.; Fukiya, S.; Ishizuka, S.; Yokota, A.; Chiba, H.; Hui, S.-P. Untargeted Lipidomic Analysis of Plasma from High-fat Diet-induced Obese Rats Using UHPLC–Linear Trap Quadrupole–Orbitrap MS. Anal. Sci. 2020, 36, 821–828. [Google Scholar] [CrossRef] [Green Version]
- Talenezhad, N.; Mohammadi, M.; Ramezani-Jolfaie, N.; Mozaffari-Khosravi, H.; Salehi-Abargouei, A. Effects of l-carnitine supplementation on weight loss and body composition: A systematic review and meta-analysis of 37 randomized controlled clinical trials with dose-response analysis. Clin. Nutr. ESPEN 2020, 37, 9–23. [Google Scholar] [CrossRef]
- Mai, M.; Tönjes, A.; Kovacs, P.; Stumvoll, M.; Fiedler, G.M.; Leichtle, A.B. Serum Levels of Acylcarnitines Are Altered in Prediabetic Conditions. PLoS ONE 2013, 8, e82459. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chávez-Talavera, O.; Tailleux, A.; Lefebvre, P.; Staels, B. Bile Acid Control of Metabolism and Inflammation in Obesity, Type 2 Diabetes, Dyslipidemia, and Nonalcoholic Fatty Liver Disease. Gastroenterology 2017, 152, 1679–1694.e3. [Google Scholar] [CrossRef]
- Perino, A.; Demagny, H.; Velazquez-Villegas, L.A.; Schoonjans, K. Molecular physiology of bile acid signaling in health, disease, and aging. Physiol. Rev. 2021, 101, 683–731. [Google Scholar] [CrossRef]
- Fu, Z.D.; Csanaky, I.L.; Klaassen, C.D. Gender-Divergent Profile of Bile Acid Homeostasis during Aging of Mice. PLoS ONE 2012, 7, e32551. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Frommherz, L.; Bub, A.; Hummel, E.; Rist, M.J.; Roth, A.; Watzl, B.; Kulling, S.E. Age-Related Changes of Plasma Bile Acid Concentrations in Healthy Adults—Results from the Cross-Sectional KarMeN Study. PLoS ONE 2016, 11, e0153959. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kiriyama, Y.; Nochi, H. Physiological Role of Bile Acids Modified by the Gut Microbiome. Microorganisms 2021, 10, 68. [Google Scholar] [CrossRef]
- Sayin, S.I.; Wahlström, A.; Felin, J.; Jäntti, S.; Marschall, H.-U.; Bamberg, K.; Angelin, B.; Hyötyläinen, T.; Orešič, M.; Bäckhed, F. Gut Microbiota Regulates Bile Acid Metabolism by Reducing the Levels of Tauro-beta-muricholic Acid, a Naturally Occurring FXR Antagonist. Cell Metab. 2013, 17, 225–235. [Google Scholar] [CrossRef] [Green Version]
- Hakkak, R.; Korourian, S.; Foley, S.L.; Erickson, B.D. Assessment of gut microbiota populations in lean and obese Zucker rats. PLoS ONE 2017, 12, e0181451. [Google Scholar] [CrossRef] [Green Version]
- Kesić, M.; Baković, P.; Horvatiček, M.; Proust, B.L.J.; Štefulj, J.; Čičin-Šain, L. Constitutionally High Serotonin Tone Favors Obesity: Study on Rat Sublines with Altered Serotonin Homeostasis. Front. Neurosci. 2020, 14, 219. [Google Scholar] [CrossRef] [Green Version]
- Kesić, M.; Baković, P.; Stojković, R.; Štefulj, J.; Čičin-Šain, L. Metabolic Disturbances in Rat Sublines with Constitutionally Altered Serotonin Homeostasis. Int. J. Mol. Sci. 2021, 22, 5400. [Google Scholar] [CrossRef]
- Kim, H.-J.; Kim, J.H.; Noh, S.; Hur, H.J.; Sung, M.J.; Hwang, J.-T.; Park, J.H.; Yang, H.J.; Kim, M.-S.; Kwon, D.Y.; et al. Metabolomic Analysis of Livers and Serum from High-Fat Diet Induced Obese Mice. J. Proteome Res. 2011, 10, 722–731. [Google Scholar] [CrossRef] [PubMed]
- Yabut, J.M.; Crane, J.D.; Green, A.E.; Keating, D.J.; Khan, W.I.; Steinberg, G.R. Emerging Roles for Serotonin in Regulating Metabolism: New Implications for an Ancient Molecule. Endocr. Rev. 2019, 40, 1092–1107. [Google Scholar] [CrossRef]
- Liu, N.; Sun, S.; Wang, P.; Sun, Y.; Hu, Q.; Wang, X. The Mechanism of Secretion and Metabolism of Gut-Derived 5-Hydroxytryptamine. Int. J. Mol. Sci. 2021, 22, 7931. [Google Scholar] [CrossRef] [PubMed]
- Bertrand, R.L.; Senadheera, S.; Markus, I.; Liu, L.; Howitt, L.; Chen, H.; Murphy, T.V.; Sandow, S.; Bertrand, P. A Western Diet Increases Serotonin Availability in Rat Small Intestine. Endocrinology 2011, 152, 36–47. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Crane, J.D.; Palanivel, R.; Mottillo, E.P.; Bujak, A.L.; Wang, H.; Ford, R.J.; Collins, A.; Blümer, R.M.; Fullerton, M.D.; Yabut, J.M.; et al. Inhibiting peripheral serotonin synthesis reduces obesity and metabolic dysfunction by promoting brown adipose tissue thermogenesis. Nat. Med. 2015, 21, 166–172. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Watanabe, H.; Nakano, T.; Saito, R.; Akasaka, D.; Saito, K.; Ogasawara, H.; Minashima, T.; Miyazawa, K.; Kanaya, T.; Takakura, I.; et al. Serotonin Improves High Fat Diet Induced Obesity in Mice. PLoS ONE 2016, 11, e0147143. [Google Scholar] [CrossRef] [Green Version]
- Liu, M.; Li, L.; Chu, J.; Zhu, B.; Zhang, Q.; Yin, X.; Jiang, W.; Dai, G.; Ju, W.; Wang, Z.; et al. Serum N1-Methylnicotinamide Is Associated with Obesity and Diabetes in Chinese. J. Clin. Endocrinol. Metab. 2015, 100, 3112–3117. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kannt, A.; Pfenninger, A.; Teichert, L.; Tönjes, A.; Dietrich, A.; Schön, M.R.; Klöting, N.; Blüher, M. Association of nicotinamide-N-methyltransferase mRNA expression in human adipose tissue and the plasma concentration of its product, 1-methylnicotinamide, with insulin resistance. Diabetologia 2015, 58, 799–808. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, J.-R.; Deng, Z.-H.; Zhu, X.-J.; Zeng, Y.-R.; Guan, X.-X.; Li, J.-H. Roles of Nicotinamide N-Methyltransferase in Obesity and Type 2 Diabetes. BioMed Res. Int. 2021, 2021, 9924314. [Google Scholar] [CrossRef] [PubMed]
12 w | 21 w | |||
---|---|---|---|---|
Control | fa/fa | Control | fa/fa | |
Body weight (g) | 292 ± 8 | 366 ± 8 *** | 390 ± 6 | 514 ± 14 **** |
Insulin (ng/mL) | 0.27 ± 0.05 | 1.80 ± 0.45 * | 0.46 ± 0.08 | 2.23 ± 0.28 *** |
Leptin (ng/mL) | 0.96 ± 0.11 | 45.12 ± 4.83 **** | 2.42 ± 0.30 | 52.28 ± 9.93 ** |
Cholesterol (mmol/L) | 1.37 ± 0.04 | 2.18 ± 0.07 **** | 2.13 ± 0.04 | 8.20 ± 1.00 *** |
Triglycerides (mmol/L) | 0.86 ± 0.15 | 7.98 ± 1.26 *** | 1.15 ± 0.16 | 7.85 ± 1.13 *** |
31 w a | 40 w a | |||
Control | fa/fa | Control | fa/fa | |
Body weight (g) | 441 ± 9 | 572 ± 11 **** | 456 ± 9 | 592 ± 18 **** |
Insulin (ng/mL) | 0.49 ± 0.06 | 1.24 ± 0.02 **** | 0.27 ± 0.06 | 1.04 ± 0.11 *** |
Leptin (ng/mL) | 4.02 ± 0.61 | 46.55 ± 1.61 **** | 3.74 ± 0.51 | 46.80 ± 1.90 **** |
Cholesterol (mmol/L) | 3.37 ± 0.27 | 7.83 ± 0.51 **** | 2.08 ± 0.15 | 3.77 ± 0.22 **** |
Triglycerides (mmol/L) | 1.11 ± 0.08 | 4.30 ± 0.28 **** | 1.24 ± 0.15 | 6.78 ± 1.15 ** |
Metabolite | 12 w ∆ [%] | 21 w ∆ [%] | 32 w ∆ [%] | 40 w ∆ [%] |
---|---|---|---|---|
1-Methylnicotinamide | 41.96 ** | 56.08 *** | 47.30 ** | 26.47 * |
Trigonelline | 34.25 **** | 37.59 *** | 22.51 * | 29.94 * |
4-PY | 9.30 | −25.82 *** | −31.56 *** | −30.72 *** |
Hippurate | 26.40 ** | 0.71 | −47.86 **** | −56.30 **** |
3-Indoxylsulfate | −35.72 ** | −87.46 **** | −97.33 **** | −97.48 *** |
p-Cresylglucuronide | 20.38 x | −12.62 * | −21.27 * | −26.16 *** |
Putrescine | −42.39 *** | −43.73 *** | −40.00 * | −52.51 **** |
Phenylacetylglycine | −53.02 *** | −43.67 ** | −51.24 *** | −47.64 ** |
2-Oxoglutarate | 48.84 ** | 59.37 **** | 79.96 **** | 66.64 **** |
Fumarate | 27.35 | 154.72 ** | 258.00 *** | 186.05 **** |
Citrate | 34.38 ** | 72.34 **** | 97.68 **** | 95.19 **** |
Malate | 29.31 ** | 96.21 *** | 122.81 **** | 94.75 **** |
Creatinine | −37.25 **** | −42.05 **** | −41.42 **** | −41.74 **** |
Lactate | 33.19 * | 21.23 x | 30.57 x | 23.32 * |
Taurine | 13.64 | −38.73 x | −56.61 * | −53.14 x |
Formate | 40.32 | 78.53 | −58.75 * | −74.19 * |
Choline | 20.40 x | 33.06 ** | 57.38 ** | 47.17 * |
Glycine | −11.95 | 21.76 x | 52.26 ** | 31.43 ** |
Alanine | −15.36 * | −3.63 | 23.06 x | 29.16 * |
Orotate | 1.34 | −8.60 | −42.82 ** | −41.92 *** |
Allantoin | −5.78 | −8.25 ** | −2.41 | −5.14 |
Benzoate | −68.01 ** | −68.62 ** | −79.76 ** | −74.31 **** |
Dimethylsulfone | 11.96 | 1.73 | −18.18 * | −18.96 x |
Pseudouridine | −18.08 **** | −14.64 *** | −6.20 * | −12.92 *** |
Methanol | 42.37 ** | 45.58 *** | 25.82 x | 24.47 x |
Methylsuccinate | −25.86 ** | −13.50 * | −29.33 ** | −42.39 *** |
Doublet (1.25 ppm) | −29.25 **** | −30.21 **** | −29.31 **** | −32.52 **** |
Lipids + keto-acids | −22.04 *** | −14.47 * | −24.10 ** | −30.11 **** |
Lipids | −73.66 **** | −71.75 **** | −65.34 **** | −64.21 **** |
21 w/12 w ∆ [%] | 32 w/21 w ∆ [%] | 40 w/32 w ∆ [%] | ||||
---|---|---|---|---|---|---|
Metabolite | fa/fa | Controls | fa/fa | Controls | fa/fa | Controls |
1-Methylnicotinamide | −9.82 | −23.37 * | −22.82 ** | −16.69 * | −13.90 | 2.46 |
Trigonelline | −18.13 ** | −19.68 ** | −23.99 *** | −14.50 * | −1.72 | −7.23 |
4-PY | −45.59 *** | −20.94 ** | −23.98 ** | −19.21 **** | −4.18 | −2.42 |
Hippurate | −23.97 * | −8.04 | −56.46 **** | −17.28 * | −18.47 * | −0.10 |
3-Indoxylsulfate | −89.25 *** | −37.52 ** | −84.69 | −33.49 ** | −27.46 | −22.61 * |
p-Cresylglucuronide | −33.23 * | −11.96 * | −22.26 * | −15.19 * | −5.27 | 1.66 |
Phenylacetylglycine | −32.89 * | −36.96 * | −4.61 | 0.98 | 15.53 | 4.47 |
Putrescine | −18.22 | −19.97 * | −10.52 | −13.89 * | −12.58 | 9.69 * |
2-Oxoglutarate | 31.80 * | 23.37 | 11.10 | −1.09 | −3.18 | 4.06 |
Fumarate | 97.82 * | −4.55 | 21.30 * | −8.83 | −0.49 | 22.85 |
Citrate | 31.59 * | 1.02 | 16.79 ** | 1.24 | 7.98 | 6.54 |
Malate | 32.37 ** | −14.05 | 5.32 * | −5.03 | −1.84 | 10.91 |
Creatinine | −1.69 | 7.61 ** | 0.49 | −0.19 | 8.30 ** | 8.17 ** |
Lactate | 2.45 | 4.87 | −5.98 | −7.70 | −13.79 * | −6.54 |
Taurine | 18.24 | 90.47 * | −33.52 | −6.31 | −3.93 | −10.94 |
Formate | 147.56 | 64.11 | −85.67 * | −40.20 | −59.84 | −38.95 |
Choline | −2.20 | −10.84 ** | 15.28 | 3.11 | −7.26 | −0.83 |
Glycine | 13.10 | −16.52 ** | 17.24 | −4.18 | −6.33 | 9.99 |
Orotate | −30.49 ** | −14.56 | −25.25 * | 2.00 | −7.47 | −4.88 |
Allantoin | −22.28 ** | −19.38 **** | −0.65 | −7.65 ** | 9.15 ** | 10.49 ** |
Dimethylsulfone | −18.39 ** | −10.06 * | −19.04 * | 3.63 | −7.58 | −2.63 |
Pseudouridine | −22.01 *** | −22.73 **** | 4.13 | −6.21 * | 9.30 ** | 16.33 ** |
Methylsuccinate | 7.74 | −10.80 | −25.91 ** | −8.89 | −6.90 | 16.99 |
NMR Analysis | MS Analysis | ||
---|---|---|---|
Metabolite | ∆ [%] | Metabolite | ∆ [%] |
Citrate | 95.42 *** | Valine | −38.96 *** |
Fumarate | 62.64 ** | Leucine | −24.15 *** |
Pyruvate | 51.53 * | Glutamine | −11.82 ** |
Glucose | −16.37 * | Lysine | −25.52 *** |
Arabinose | −23.20 ** | Histidine | −20.00 **** |
Lactate | 40.60 * | Methylhistidine | −25.98 ** |
Glycerol | 108.15 *** | Ornithine | −43.66 **** |
Alanine | 40.79 ** | Carnitine | −28.52 **** |
Asparagine | −34.16 *** | Acylcarnitine (C18:1) | 25.77 * |
Leucine | −14.94 ** | Creatine | −19.97 *** |
Valine | −22.18 *** | Deoxycytidine | −15.26 * |
Lysine | −23.67 ** | LysoPC (14:0) | 86.18 **** |
Histidine | −8.65 * | LysoPC (16:1) | 96.84 **** |
Creatine | −30.97 ** | LysoPC (17:0) | −47.47 **** |
Choline | −32.24 ** | LysoPC (18:2) | −36.41 *** |
Allantoin | 67.43 **** | LysoPC (20:4) | 43.79 ** |
3-Hydroxybutyrate | −32.40 ** | PC (32:1) | 206.98 **** |
3-Hydroxyisobutyrate | −36.46 ** | PC (35:4) | 129.90 *** |
Cytidine | −12.14 * | PC (36:2) | −44.20 **** |
Thymidine | −14.25 * | PC (36:4) | 20.61 * |
Dimethylsulfone | 26.97 * | PC (38:4) | 39.17 **** |
Ethanol | −17.75 * | PC (38:6) | 37.92 ** |
Isoleucine + lipids | 11.36 ** | PC (40:6) | 47.62 **** |
Lipids + ketoacids | 130.19 * | LysoPE (16:0) | 36.87 * |
Metabolite | ∆ [%] | Metabolite | ∆ [%] |
---|---|---|---|
Bile acids | |||
Cholic acid | 89.58 | Glycocholic acid | −71.20 *** |
Ursodeoxycholic acid | −4.16 | Tauroursodeoxycholic acid | −62.33 * |
Hyodeoxycholic acid | −64.01 x | Taurohyodeoxycholic acid | −67.55 ** |
Chenodeoxycholic acid | −1.97 | Taurochenodeoxycholic acid | −46.64 x |
Deoxycholic acid | −45.32 | Taurodeoxycholic acid | −50.49 x |
Glycoursodeoxycholic acid | −88.80 * | Taurocholic acid | −28.85 |
Glycohyodeoxycholic acid | −85.72 ** | Taurolithocholic acid sulfate | −57.57 x |
Glycochenodeoxycholic acid | −74.45 ** | β-muricholic acid | 6.22 |
Glycodeoxycholic acid | −84.87 * | ||
Neurotransmitters | |||
Serotonin | 48.36 *** | Kynurenine | −2.77 |
Tyramine | −13.03 | Hydroxytryptophan | 7.58 |
γ-Aminobutyric acid | 1.32 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pelantová, H.; Tomášová, P.; Šedivá, B.; Neprašová, B.; Mráziková, L.; Kuneš, J.; Železná, B.; Maletínská, L.; Kuzma, M. Metabolomic Study of Aging in fa/fa Rats: Multiplatform Urine and Serum Analysis. Metabolites 2023, 13, 552. https://doi.org/10.3390/metabo13040552
Pelantová H, Tomášová P, Šedivá B, Neprašová B, Mráziková L, Kuneš J, Železná B, Maletínská L, Kuzma M. Metabolomic Study of Aging in fa/fa Rats: Multiplatform Urine and Serum Analysis. Metabolites. 2023; 13(4):552. https://doi.org/10.3390/metabo13040552
Chicago/Turabian StylePelantová, Helena, Petra Tomášová, Blanka Šedivá, Barbora Neprašová, Lucia Mráziková, Jaroslav Kuneš, Blanka Železná, Lenka Maletínská, and Marek Kuzma. 2023. "Metabolomic Study of Aging in fa/fa Rats: Multiplatform Urine and Serum Analysis" Metabolites 13, no. 4: 552. https://doi.org/10.3390/metabo13040552
APA StylePelantová, H., Tomášová, P., Šedivá, B., Neprašová, B., Mráziková, L., Kuneš, J., Železná, B., Maletínská, L., & Kuzma, M. (2023). Metabolomic Study of Aging in fa/fa Rats: Multiplatform Urine and Serum Analysis. Metabolites, 13(4), 552. https://doi.org/10.3390/metabo13040552