Quorum Sensing-Mediated Lipid Oxidation Further Regulating the Environmental Adaptability of Aspergillus ochraceus
Abstract
:1. Introduction
2. Materials and Methods
2.1. Fungal Strain and Culture Conditions
2.2. Oxylipins Extraction and Detection
2.3. Oxidized Lipidomics Analysis
2.4. Transcriptome Analysis
2.5. Statistical Analysis
3. Results
3.1. Qualitative and Quantitative Analysis of Oxylipins with Different Population Density
3.2. Density-Mediated Environmental Stress Causes Differences in Lipid Metabolism
3.3. Analysis of Differentially Expressed Genes Enriched in Various KEGG Pathways
3.4. Function Annotation of Differentially Oxidized Lipid Metabolites
3.5. Inference of Oxylipins as Density-Mediated QSM in Aspergillus ochraceus
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
References
- Hareeri, R.H.; Aldurdunji, M.M.; Abdallah, H.M.; Alqarni, A.A.; Mohamed, S.G.; Mohamed, G.A.; Ibrahim, S.R. Aspergillus ochraceus: Metabolites, Bioactivities, Biosynthesis, and Biotechnological Potential. Molecules 2022, 27, 6759. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.; Lu, J.; Zhang, G.; Liu, S.; Zhou, J.; Du, G.; Chen, J. Recent advances in the development of Aspergillus for protein production. Bioresour. Technol. 2022, 348, 126768. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Li, E.; Wu, W.; Wang, G.; Zhang, J.; Guo, X.; Xing, F. The Secondary Metabolites and Biosynthetic Diversity from Aspergillus ochraceus. Front. Chem. 2022, 10, 938626. [Google Scholar] [CrossRef] [PubMed]
- Majeed, M.; Khaneghah, A.M.; Kadmi, Y.; Khan, M.U.; Shariati, M.A. Assessment of Ochratoxin A in Commercial Corn and Wheat Products. Curr. Nutr. Food Sci. 2017, 14, 116–120. [Google Scholar] [CrossRef]
- Xu, X.; Naseri, A.; Houbraken, J.; Akbari, F.; Wang, X.; Zhao, R.; Zhang, H.; Najafzadeh, M.J.; Deng, S. Identification and in vitro antifungal susceptibility of causative agents of onychomycosis due to Aspergillus species in Mashhad, Iran. Sci. Rep. 2021, 11, 6808. [Google Scholar] [CrossRef]
- Hassanzad, M.; Mortezaee, V.; Bongomin, F.; Poorabdollah, M.; Sharifynia, S.; Maleki, M.; Hedayati, N.; Velayati, A.; Hedayati, M. Successful control of exacerbation of Allergic Bronchopulmonary Aspergillosis due to Aspergillus terreus in a cystic fibrosis patient with short-term adjunctive therapy with voriconazole: A case report. J. Med. Mycol. 2019, 29, 189–192. [Google Scholar] [CrossRef]
- Hakamifard, A.; Hashemi, M.; Fakhim, H.; Aboutalebian, S.; Hajiahmadi, S.; Mohammadi, R. Fatal disseminated aspergillosis in an immunocompetent patient with COVID-19 due to Aspergillus ochraceus. J. Med. Mycol. 2021, 31, 101124. [Google Scholar] [CrossRef]
- Ghibaudo, G.; Peano, A. Chronic monolateral otomycosis in a dog caused by Aspergillus ochraceus. Veter Dermatol. 2010, 21, 522–526. [Google Scholar] [CrossRef]
- Roy, S.; Saha, B.; Bhattacharya, S.G. Identifying novel allergens from a common indoor mould Aspergillus ochraceus. J. Proteom. 2021, 238, 104156. [Google Scholar] [CrossRef]
- Van Der Merwe, K.J.; Steyn, P.S.; Fourie, L.; Scott, D.B.; Theron, J.J. Ochratoxin A, a Toxic Metabolite produced by Aspergillus ochraceus Wilh. Nature 1965, 205, 1112–1113. [Google Scholar] [CrossRef]
- Chain EPoCitF; Schrenk, D.; Bignami, M.; Bodin, L.; Chipman, J.K.; del Mazo, J.; Wallace, H. Risk assessment of aflatoxins in food. EFSA J. 2020, 18, e06040. [Google Scholar]
- el Khoury, A.; Atoui, A. Ochratoxin a: General overview and actual molecular status. Toxins 2010, 2, 461–493. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fuqua, W.C.; Winans, S.C.; Greenberg, E.P. Quorum sensing in bacteria: The LuxR-LuxI family of cell density-responsive transcriptional regulators. J. Bacteriol. 1994, 176, 269–275. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Amache, R. Quorum Sensing for Improved Production of Industrially Useful Products from Filamentous Fungi. Ph.D. Thesis, University of Westminster, Sydne, NSW, Australia, 2014. [Google Scholar]
- Hornby, J.M.; Jacobitz-Kizzier, S.M.; McNeel, D.J.; Jensen, E.C.; Treves, D.S.; Nickerson, K.W. Inoculum Size Effect in Dimorphic Fungi: Extracellular Control of Yeast-Mycelium Dimorphism in Ceratocystis ulmi. Appl. Environ. Microbiol. 2004, 70, 1321–1327. [Google Scholar] [CrossRef] [Green Version]
- Padder, S.A.; Prasad, R.; Shah, A.H. Quorum sensing: A less known mode of communication among fungi. Microbiol. Res. 2018, 210, 51–58. [Google Scholar] [CrossRef]
- Reverberi, M.; Beccaccioli, M.; Scala, V. Fungal lipids biosynthesis and signalling during plant-pathogen interaction. Front. Biosci. 2019, 24, 172–185. [Google Scholar] [CrossRef]
- Fabbri, A.A.; Fanelli, C.; Panfili, G.; Passi, S.; Fasella, P. Lipoperoxidation and Aflatoxin Biosynthesis by Aspergillus parasiticus and A. flavus. Microbiology 1983, 129, 3447–3452. [Google Scholar] [CrossRef] [Green Version]
- Champe, S.P.; Rao, P.; Chang, A. An Endogenous Inducer of Sexual Development in Aspergillus Nidulans. Microbiology 1987, 133, 1383–1387. [Google Scholar] [CrossRef] [Green Version]
- Gabbs, M.; Leng, S.; Devassy, J.G.; Monirujjaman, M.; Aukema, H.M. Advances in our understanding of oxylipins derived from dietary pufas 1,2. Adv. Nutr. 2015, 6, 513–540. [Google Scholar] [CrossRef] [Green Version]
- Oliw, E.H. Fatty acid dioxygenase-cytochrome P450 fusion enzymes of filamentous fungal pathogens. Fungal Genet. Biol. 2021, 157, 103623. [Google Scholar] [CrossRef]
- An, J.-U.; Kim, S.-E.; Oh, D.-K. Molecular insights into lipoxygenases for biocatalytic synthesis of diverse lipid mediators. Prog. Lipid Res. 2021, 83, 101110. [Google Scholar] [CrossRef] [PubMed]
- Barquissau, V.; Ghandour, R.A.; Ailhaud, G.; Klingenspor, M.; Langin, D.; Amri, E.-Z.; Pisani, D.F. Control of adipogenesis by oxylipins, GPCRs and PPARs. Biochimie 2017, 136, 3–11. [Google Scholar] [CrossRef] [PubMed]
- Gao, J.; Xu, X.G.; Huang, K.L.; Liang, Z.H. Fungal G-Protein-Coupled Receptors: A Promising Mediator of the Impact of Extracellular Signals on Biosynthesis of Ochratoxin, A. Front. Microbiol. 2021, 12, 631392. [Google Scholar] [CrossRef] [PubMed]
- Burow, G.B.; Nesbitt, T.C.; Dunlap, J.; Keller, N.P. Seed Lipoxygenase Products Modulate Aspergillus Mycotoxin Biosynthesis. Mol. Plant-Microbe Interact. 1997, 10, 380–387. [Google Scholar] [CrossRef] [Green Version]
- Calvo, A.M.; Hinze, L.L.; Gardner, H.W.; Keller, N.P. Sporogenic Effect of Polyunsaturated Fatty Acids on Development of Aspergillus spp. Appl. Environ. Microbiol. 1999, 65, 3668–3673. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Affeldt, K.J.; Brodhagen, M.; Keller, N.P. Aspergillus Oxylipin Signaling and Quorum Sensing Pathways Depend on G Protein-Coupled Receptors. Toxins 2012, 4, 695–717. [Google Scholar] [CrossRef] [Green Version]
- Gao, J.; Li, C.Y.; Li KXPeng, M.X.; Liang, Z.H. Effects of oxylipins on spore production, ochratoxin A synthesis and grain in-fection degree of A. Ochratoxin. Food Sci. 2019, 40, 126–131. (In Chinese) [Google Scholar]
- Obinata, H.; Izumi, T. G2A as a receptor for oxidized free fatty acids. Prostaglandins Other Lipid Mediat. 2009, 89, 66–72. [Google Scholar] [CrossRef]
- Young, M.D.; Wakefield, M.J.; Smyth, G.K.; Oshlack, A. Gene ontology analysis for RNA-seq: Accounting for selection bias. Genome Biol. 2010, 11, R14-12. [Google Scholar] [CrossRef] [Green Version]
- Kanehisa, M.; Araki, M.; Goto, S.; Hattori, M.; Hirakawa, M.; Itoh, M.; Katayama, T.; Kawashima, S.; Okuda, S.; Tokimatsu, T.; et al. KEGG for linking genomes to life and the environment. Nucleic Acids Res. 2007, 36, D480–D484. [Google Scholar] [CrossRef]
- Mao, X.; Cai, T.; Olyarchuk, J.G.; Wei, L. Automated genome annotation and pathway identification using the KEGG Orthology (KO) as a controlled vocabulary. Bioinformatics 2005, 21, 3787–3793. [Google Scholar] [CrossRef] [PubMed]
- Gao, J.; Liang, Z.H. Effect of oxylipin on ochratoxin A synthesis by Aspergillus ochraceus in soybean culture substrate. Microbiol. China 2020, 47, 76–84. (In Chinese) [Google Scholar]
- Niu, M.; Keller, N.P. Coopting oxylipin signals in microbial disease. Cell. Microbiol. 2019, 21, e13025. [Google Scholar] [CrossRef] [Green Version]
- Niu, M.; Steffan, B.N.; Fischer, G.J.; Venkatesh, N.; Raffa, N.L.; Wettstein, M.A.; Bok, J.W.; Greco, C.; Zhao, C.; Berthier, E.; et al. Fungal oxylipins direct programmed developmental switches in filamentous fungi. Nat. Commun. 2020, 11, 5158. [Google Scholar] [CrossRef] [PubMed]
- Tsitsigiannis, D.I.; Bok, J.-W.; Andes, D.; Nielsen, K.F.; Frisvad, J.C.; Keller, N.P. Aspergillus Cyclooxygenase-Like Enzymes Are Associated with Prostaglandin Production and Virulence. Infect. Immun. 2005, 73, 4548–4559. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Champe, S.P.; A El-Zayat, A. Isolation of a sexual sporulation hormone from Aspergillus nidulans. J. Bacteriol. 1989, 171, 3982–3988. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mazur, P.; Meyers, H.V.; Nakanishi, K.; Elzayat, A.A.E.; Champe, S.P. Structural elucidation of sporogenic fatty acid metabolites from Aspergillus nidulans. Tetrahedron Lett. 1990, 31, 3837–3840. [Google Scholar] [CrossRef]
- Mazur, P.; Nakanishi, K.; El-Zayat, A.A.E.; Champe, S.P. Structure and synthesis of sporogenic psi factors from Aspergillus nidulans. J. Chem. Soc. Chem. Commun. 1991, 1486–1487. [Google Scholar] [CrossRef]
- Tsitsigiannis, D.I.; Keller, N.P. Oxylipins as developmental and host–fungal communication signals. Trends Microbiol. 2007, 15, 109–118. [Google Scholar] [CrossRef]
- Reverberi, M.; Punelli, F.; Scarpari, M.; Camera, E.; Zjalic, S.; Ricelli, A.; Fanelli, C.; Fabbri, A.A. Lipoperoxidation affects ochratoxin A biosynthesis in Aspergillus ochraceus and its interaction with wheat seeds. Appl. Microbiol. Biotechnol. 2010, 85, 1935–1946. [Google Scholar] [CrossRef]
- de Souza, W.R.; Morais, E.R.; Krohn, N.G.; Savoldi, M.; Goldman MH, S.; Rodrigues, F.; Goldman, G.H. Identification of metabolic pathways influenced by the G-protein coupled receptors GprB and GprD in Aspergillus nidulans. PLoS ONE 2013, 8, e62088. [Google Scholar] [CrossRef] [Green Version]
- Affeldt, K.J.; Carrig, J.; Amare, M.; Keller, N.P. Global Survey of Canonical Aspergillus flavus G Protein-Coupled Receptors. Mbio 2014, 5, e01501-14. [Google Scholar] [CrossRef] [Green Version]
- Qiu, M.; Wang, Y.; Sun, L.; Deng, Q.; Zhao, J. Fatty Acids and Oxylipins as Antifungal and Anti-Mycotoxin Agents in Food: A Review. Toxins 2021, 13, 852. [Google Scholar] [CrossRef] [PubMed]
- Khalid, S.; Keller, N.P. Chemical signals driving bacterial–fungal interactions. Environ. Microbiol. 2021, 23, 1334–1347. [Google Scholar] [CrossRef] [PubMed]
- Gao, J.; Liang, Z.H. Identification and bioinformatics analysis of G-protein coupled receptors of Aspergillus ochraceus. Chin. J. Microbiol. 2022, 62, 4414–4430. (In Chinese) [Google Scholar]
- Trivedi, P.; Leach, J.E.; Tringe, S.G.; Sa, T.; Singh, B.K. Plant–microbiome interactions: From community assembly to plant health. Nat. Rev. Microbiol. 2020, 18, 607–621. [Google Scholar] [CrossRef]
- Pan, J.; Hu, C.; Yu, J.-H. Lipid Biosynthesis as an Antifungal Target. J. Fungi 2018, 4, 50. [Google Scholar] [CrossRef] [Green Version]
- Ogunola, O.F.; Hawkins, L.K.; Mylroie, E.; Kolomiets, M.V.; Borrego, E.; Tang, J.D.; Williams, W.P.; Warburton, M.L. Characterization of the maize lipoxygenase gene family in relation to aflatoxin accumulation resistance. PLoS ONE 2017, 12, e0181265. [Google Scholar] [CrossRef] [Green Version]
- Tsitsigiannis, D.I.; Kunze, S.; Willis, D.K.; Feussner, I.; Keller, N.P. Aspergillus Infection Inhibits the Expression of Peanut 13S-HPODE-Forming Seed Lipoxygenases. Mol. Plant-Microbe Interact. 2005, 18, 1081–1089. [Google Scholar] [CrossRef] [Green Version]
- Deboever, E.; Deleu, M.; Mongrand, S.; Lins, L.; Fauconnier, M.-L. Plant–Pathogen Interactions: Underestimated Roles of Phyto-oxylipins. Trends Plant Sci. 2020, 25, 22–34. [Google Scholar] [CrossRef] [Green Version]
- Oenel, A.; Fekete, A.; Krischke, M.; Faul, S.C.; Gresser, G.; Havaux, M.; Mueller, M.J.; Berger, S. Enzymatic and Non-Enzymatic Mechanisms Contribute to Lipid Oxidation during Seed Aging. Plant Cell Physiol. 2017, 58, 925–933. [Google Scholar] [CrossRef] [PubMed]
- Gao, X.; Brodhagen, M.; Isakeit, T.; Brown, S.H.; Göbel, C.; Betran, J.; Feussner, I.; Keller, N.P.; Kolomiets, M.V. Inactivation of the Lipoxygenase ZmLOX3 Increases Susceptibility of Maize to Aspergillus spp. Mol. Plant-Microbe Interact. 2009, 22, 222–231. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gao, X.; Kolomiets, M.V. Host-derived lipids and oxylipins are crucial signals in modulating mycotoxin production by fungi. Toxin Rev. 2009, 28, 79–88. [Google Scholar] [CrossRef]
- Tsukamoto, H.; Hishinuma, T.; Mikkaichi, T.; Nakamura, H.; Yamazaki, T.; Tomioka, Y.; Mizugaki, M. Simultaneous quantification of prostaglandins, isoprostane and thromboxane in cell-cultured medium using gas chromatographymass spectrometry. J. Chromatogr. B-Anal. Technol. Biomed. Life Sci. 2002, 774, 205–214. [Google Scholar] [CrossRef]
Lipid Type | Full Name | Abbreviation | Substrate | Enzyme | High-Density (nmol/g) | Low-Density (nmol/g) |
---|---|---|---|---|---|---|
PUFAs | Linoleic Acid | LA | - | - | 293.39 | 222.72 |
α-Linolenic Acid | ALA | - | - | 28.10 | 30.12 | |
γ-Linolenic Acid | GLA | - | - | / | / | |
Dihomo-γ-Linolenic Acid | DGLA | - | - | 0.50 | 0.13 | |
Arachidonic Acid | ARA | - | - | 0.38 | / | |
Docosahexaenoic Acid | DHA | - | - | 0.12 | 0.15 | |
Eicosapentaenoic Acid | EPA | - | - | 0.01 | 0.04 | |
Oxylipins | (±)-9-hydroxy-10E,12Z-octadecadienoic acid | (±)9-HODE | LA | LOX | 3.79 | 3.38 |
13S-hydroxy-9Z,11E-octadecadienoic acid | 13(S)-HODE | LA | LOX | 2.76 | 1.54 | |
9S,12S,13S-Trihydroxy-10E-Octadecenoic Acid | 9(S),12(S),13(S)-TriHOM | LA | LOX | 6.12 | 1.40 | |
(±)9,10-epoxy-12Z-octadecenoic acid | 9,10-EpOME | LA | CYP | 0.23 | 0.54 | |
(±)12(13)epoxy-9Z-octadecenoic acid | 12,13-EpOME | LA | CYP | 0.15 | 0.48 | |
9(S),10(S),13(S)-Trihydroxy-11-Octadecenoic Acid | 9(S),10(S),13(S)-TriHOME | LA | LOX | 1.19 | 0.12 | |
12,13-dihydroxy-9Z-octadecenoic acid | (±)12(13)-DiHOME | LA | CYP | 0.05 | 0.10 | |
(±)9,10-dihydroxy-12Z-octadecenoic acid | 9,10-DiHOME | LA | CYP | 0.03 | 0.08 | |
13S-hydroxy-9Z,11E,15Z-octadecatrienoic acid | 13-HOTrE | ALA | LOX | 0.26 | 0.50 | |
8-iso 9α,11α,15S-trihydroxy-prosta-5Z,13E-dien-1-oic acid | 8-iso-PGF2α | ARA | COX | 0.97 | 0.24 | |
9α,11α,15S,19R-tetrahydroxy-prosta-5Z,13E-dien-1-oic acid | 19(R)-hydroxy PGF2α | ARA | COX | 0.15 | 0.13 | |
9α,11,15S-trihydroxythromba-5Z,13E-dien-1-oic acid | TxB2 | ARA | COX | 0.10 | 0.09 | |
5S,12R-dihydroxy-6Z,8E,10E,14Z-eicosatetraene-1,20-dioic acid | 20-COOH-LtB4 | ARA | LOX | 0.03 | 0.05 | |
9α,15S-dihydroxy-11-oxo-prosta-5Z,13E-dien-1-oic acid | PGD2 | ARA | COX | 0.02 | 0.05 | |
5S,6R,15S-trihydroxy-7E,9E,11Z,13E,17Z-eicosapentaenoic acid | LxA5 | EPA | LOX | / | 0.10 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gao, J.; Liu, H.; Zhang, Z.; Liang, Z. Quorum Sensing-Mediated Lipid Oxidation Further Regulating the Environmental Adaptability of Aspergillus ochraceus. Metabolites 2023, 13, 491. https://doi.org/10.3390/metabo13040491
Gao J, Liu H, Zhang Z, Liang Z. Quorum Sensing-Mediated Lipid Oxidation Further Regulating the Environmental Adaptability of Aspergillus ochraceus. Metabolites. 2023; 13(4):491. https://doi.org/10.3390/metabo13040491
Chicago/Turabian StyleGao, Jing, Huiqing Liu, Zhenzhen Zhang, and Zhihong Liang. 2023. "Quorum Sensing-Mediated Lipid Oxidation Further Regulating the Environmental Adaptability of Aspergillus ochraceus" Metabolites 13, no. 4: 491. https://doi.org/10.3390/metabo13040491
APA StyleGao, J., Liu, H., Zhang, Z., & Liang, Z. (2023). Quorum Sensing-Mediated Lipid Oxidation Further Regulating the Environmental Adaptability of Aspergillus ochraceus. Metabolites, 13(4), 491. https://doi.org/10.3390/metabo13040491