Data Science and Plant Metabolomics
Abstract
:1. Introduction
2. Plant Metabolites
2.1. Characteristics of Plant Metabolites and Its Applications
2.2. Methods of Testing Plant Metabolites
3. Does Data Science Can Help in Studying Plant Metabolites?
3.1. Data Science Methods
3.2. Data Science Techniques
- 1.
- Clustering analysis:
- 2.
- Dimension reduction techniques:
- 3.
- Artificial Neural Networks (ANNs):
- 4.
- Decision Tree analysis:
- 5.
- Bayesian networks:
4. The Advantages and Applications of Data Science in Plant Metabolism Studies
5. Challenges and Considerations for Data Science in Plant Metabolic Studies
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Crozier, A.; Clifford, M.N.; Ashihara, H. Plant Secoundary Metabolites: Occurence, Strucure and Role in the Human Diet; John Wiley & Sons: New York, NY, USA, 2008. [Google Scholar]
- Li, S.; Tian, Y.; Wu, K.; Ye, Y.; Yu, J.; Zhang, J.; Liu, Q.; Hu, M.; Li, H.; Tong, Y.; et al. Modulating Plant Growth–Metabolism Coordination for Sustainable Agriculture. Nature 2018, 560, 595–600. [Google Scholar] [CrossRef]
- Taiz, L.; Zeiger, E.; Møller, I.; Murphy, A. Plant Physiology and Development; Sinauer Associates Incorporated: Sunderland, MA, USA, 2015. [Google Scholar]
- Kroymann, J. Natural Diversity and Adaptation in Plant Secondary Metabolism. Curr. Opin. Plant Biol. 2011, 14, 246–251. [Google Scholar] [CrossRef] [PubMed]
- Fernie, A.R.; Pichersky, E. Focus Issue on Metabolism: Metabolites, Metabolites Everywhere. Plant Physiol. 2015, 169, 1421–1423. [Google Scholar] [CrossRef] [Green Version]
- Hartmann, T. From Waste Products to Ecochemicals: Fifty Years Research of Plant Secondary Metabolism. Phytochemistry 2007, 68, 2831–2846. [Google Scholar] [CrossRef]
- Geigenberger, P. Response of Plant Metabolism to Too Little Oxygen. Curr. Opin. Plant Biol. 2003, 6, 247–256. [Google Scholar] [CrossRef] [PubMed]
- Pagare, S.; Bhatia, M.; Tripathi, N.; Pagare, S.; Bansal, Y.K.; Pagare, S.; Kasote, D.M.; Acquadro, A.; Rubiolo, P.; Bicchi, C.; et al. Secondary Metabolites of Plants and Their Role: Overview. Curr. Trends Biotechnol. Pharm. 2015, 9, 293–304. [Google Scholar]
- Neilson, E.H.; Goodger, J.Q.D.; Woodrow, I.E.; Møller, B.L. Plant Chemical Defense: At What Cost? Trends Plant Sci. 2013, 18, 250–258. [Google Scholar] [CrossRef]
- Zhou, S.; Richter, A.; Jander, G. Beyond Defense: Multiple Functions of Benzoxazinoids in Maize Metabolism. Plant Cell Physiol. 2018, 59, 1528–1537. [Google Scholar] [CrossRef]
- Erb, M.; Kliebenstein, D.J. Plant Secondary Metabolites as Defenses, Regulators, and Primary Metabolites: The Blurred Functional Trichotomy. Plant Physiol. 2020, 184, 39–52. [Google Scholar] [CrossRef]
- Fernie, A.R.; Tohge, T. The Genetics of Plant Metabolism. Annu. Rev. Genet. 2017, 51, 287–310. [Google Scholar] [CrossRef]
- Fang, C.; Fernie, A.R.; Luo, J. Exploring the Diversity of Plant Metabolism. Trends Plant Sci. 2019, 24, 83–98. [Google Scholar] [CrossRef] [PubMed]
- Wink, M. Modes of Action of Herbal Medicines and Plant Secondary Metabolites. Medicines 2015, 2, 251–286. [Google Scholar] [CrossRef] [PubMed]
- Agarwal, R.; Dhar, V. Editorial—Big Data, Data Science, and Analytics: The Opportunity and Challenge for IS Research. Inf. Syst. Res. 2014, 25, 443–448. [Google Scholar] [CrossRef] [Green Version]
- Chung, S.-H. Applications of Smart Technologies in Logistics and Transport: A Review. Transp. Res. E Logist. Transp. Rev. 2021, 153, 102455. [Google Scholar] [CrossRef]
- Raghupathi, W.; Raghupathi, V. Big Data Analytics in Healthcare: Promise and Potential. Health Inf. Sci. Syst. 2014, 2, 3. [Google Scholar] [CrossRef] [PubMed]
- Vogelsang, A.; Borg, M. Requirements engineering for machine learning: Perspectives from data scientists. In Proceedings of the 2019 IEEE 27th International Requirements Engineering Conference Workshops (REW), Jeju, Republic of Korea, 23–27 September 2019; pp. 245–251. [Google Scholar]
- Schoenherr, T.; Speier-Pero, C. Data Science, Predictive Analytics, and Big Data in Supply Chain Management: Current State and Future Potential. J. Bus. Logist. 2015, 36, 120–132. [Google Scholar] [CrossRef]
- Waller, M.A.; Fawcett, S.E. Data Science, Predictive Analytics, and Big Data: A Revolution That Will Transform Supply Chain Design and Management. J. Bus. Logist. 2013, 34, 77–84. [Google Scholar] [CrossRef]
- Ramírez-Gómez, X.S.; Jiménez-García, S.N.; Beltrán Campos, V.; Lourdes García Campos, M. Plant metabolites in plant defense against pathogens. In Plant Diseases—Current Threats and Management Trends; IntechOpen: Rijeka, Croatia, 2020. [Google Scholar]
- Anjitha, K.S.; Sameena, P.P.; Puthur, J.T. Functional Aspects of Plant Secondary Metabolites in Metal Stress Tolerance and Their Importance in Pharmacology. Plant Stress 2021, 2, 100038. [Google Scholar] [CrossRef]
- Aharoni, A.; Galili, G. Metabolic Engineering of the Plant Primary–Secondary Metabolism Interface. Curr. Opin. Biotechnol. 2011, 22, 239–244. [Google Scholar] [CrossRef] [PubMed]
- Teoh, E.S. Secondary Metabolites of Plants. In Medicinal Orchids of Asia; Springer International Publishing: Cham, Switzerland, 2016; pp. 59–73. [Google Scholar]
- Hussein, R.A.; El-Anssary, A.A. Plants secondary metabolites: The key drivers of the pharmacological actions of medicinal plants. In Herbal Medicine; IntechOpen: Rijeka, Croatia, 2019. [Google Scholar]
- Feng, L.; Chen, C.; Li, T.; Wang, M.; Tao, J.; Zhao, D.; Sheng, L. Flowery Odor Formation Revealed by Differential Expression of Monoterpene Biosynthetic Genes and Monoterpene Accumulation in Rose (Rosa rugosa Thunb.). Plant Physiol. Biochem. 2014, 75, 80–88. [Google Scholar] [CrossRef]
- Banchio, E.; Bogino, P.C.; Santoro, M.; Torres, L.; Zygadlo, J.; Giordano, W. Systemic Induction of Monoterpene Biosynthesis in Origanum × Majoricum by Soil Bacteria. J. Agric. Food Chem. 2010, 58, 650–654. [Google Scholar] [CrossRef] [PubMed]
- Riedlmeier, M.; Ghirardo, A.; Wenig, M.; Knappe, C.; Koch, K.; Georgii, E.; Dey, S.; Parker, J.E.; Schnitzler, J.-P.; Vlot, A.C. Monoterpenes Support Systemic Acquired Resistance within and between Plants. Plant Cell 2017, 29, 1440–1459. [Google Scholar] [CrossRef] [Green Version]
- Algarra Alarcon, A.; Lazazzara, V.; Cappellin, L.; Bianchedi, P.L.; Schuhmacher, R.; Wohlfahrt, G.; Pertot, I.; Biasioli, F.; Perazzolli, M. Emission of Volatile Sesquiterpenes and Monoterpenes in Grapevine Genotypes Following Plasmopara viticola Inoculation In Vitro. J. Mass Spectrom. 2015, 50, 1013–1022. [Google Scholar] [CrossRef]
- Padilla-Gonzalez, G.F.; dos Santos, F.A.; da Costa, F.B. Sesquiterpene Lactones: More Than Protective Plant Compounds with High Toxicity. CRC Crit. Rev. Plant Sci. 2016, 35, 18–37. [Google Scholar] [CrossRef]
- Amann, R.; Peskar, B.A. Anti-Inflammatory Effects of Aspirin and Sodium Salicylate. Eur. J. Pharmacol. 2002, 447, 1–9. [Google Scholar] [CrossRef]
- Chen, Q.; Li, J.; Ma, Y.; Yuan, W.; Zhang, P.; Wang, G. Occurrence and Biosynthesis of Plant Sesterterpenes (C25), a New Addition to Terpene Diversity. Plant Commun. 2021, 2, 100184. [Google Scholar] [CrossRef]
- Faizal, A.; Geelen, D. Saponins and Their Role in Biological Processes in Plants. Phytochem. Rev. 2013, 12, 877–893. [Google Scholar] [CrossRef]
- Thimmappa, R.; Geisler, K.; Louveau, T.; O’Maille, P.; Osbourn, A. Triterpene Biosynthesis in Plants. Annu. Rev. Plant Biol. 2014, 65, 225–257. [Google Scholar] [CrossRef] [PubMed]
- Jan, R.; Asaf, S.; Numan, M.L.; Lubna, L.; Kim, K.-M. Plant Secondary Metabolite Biosynthesis and Transcriptional Regulation in Response to Biotic and Abiotic Stress Conditions. Agronomy 2021, 11, 968. [Google Scholar] [CrossRef]
- Zhaobang, S. Production and Standards for Chemical Non-Wood Forest Products in China; CIFOR: Bogor, Indonesia, 1995. [Google Scholar]
- Del Río, J.A.; Díaz, L.; García-Bernal, D.; Blanquer, M.; Ortuño, A.; Correal, E.; Moraleda, J.M. Furanocoumarins: Biomolecules of therapeutic interest. Stud. Nat. Prod. Chem. 2014, 43, 145–195. [Google Scholar]
- Weng, J.; Chapple, C. The Origin and Evolution of Lignin Biosynthesis. New Phytol. 2010, 187, 273–285. [Google Scholar] [CrossRef]
- Miadoková, E. Isoflavonoids—An Overview of Their Biological Activities and Potential Health Benefits. Interdiscip. Toxicol. 2009, 2, 211–218. [Google Scholar] [CrossRef] [Green Version]
- Shahin, H.; Naser, M.-S.; Behrad, E.; Farad, B.M. Plants and Secondary Metabolites (Tannins): A Review. Int. J. For. Soil Eros. 2011, 1, 47–53. [Google Scholar]
- Dewick, P.M. Medicinal Natural Products: A Biosynthetic Approach; John Wiley & Sons: New York, NY, USA, 2002. [Google Scholar]
- Zhu, Z.H.; Chao, C.J.; Lu, X.Y.; Xiong, Y.G. Paulownia in China: Cultivation and Utilization; International Development Research Centre: Ottawa, ON, Canada, 1986. [Google Scholar]
- Yi, Z.; Wang, Z.; Li, H.; Liu, M. Inhibitory Effect of Tellimagrandin I on Chemically Induced Differentiation of Human Leukemia K562 Cells. Toxicol. Lett. 2004, 147, 109–119. [Google Scholar] [CrossRef]
- Bagci, E.; Yazgın, A.; Hayta, S.; Cakılcıoglu, U. Composition of the Essential Oil of Teucrium chamaedrys L. (Lamiaceae) from Turkey. J. Med. Plants Res. 2010, 4, 2588–2590. [Google Scholar]
- Zerbe, P.; Bohlmann, J. Plant Diterpene Synthases: Exploring Modularity and Metabolic Diversity for Bioengineering. Trends Biotechnol. 2015, 33, 419–428. [Google Scholar] [CrossRef]
- Ishikura, H.; Mochizuki, T.; Izumi, Y.; Usui, T.; Sawada, H.; Uchino, H. Differentiation of Mouse Leukemic M1 Cells Induced by Polyprenoids. Leuk. Res. 1984, 8, 843–852. [Google Scholar] [CrossRef] [PubMed]
- Culioli, G. A Lupane Triterpene from Frankincense (Boswellia Sp., Burseraceae). Phytochemistry 2003, 62, 537–541. [Google Scholar] [CrossRef]
- Pelczar, M.J.; Chan, E.C.S.; Krieg, N.R. Control of Microorganisms, the Control of Microorganisms by Physical Agents. Microbiology 1988, 469, 509. [Google Scholar]
- Robe, K.; Izquierdo, E.; Vignols, F.; Rouached, H.; Dubos, C. The Coumarins: Secondary Metabolites Playing a Primary Role in Plant Nutrition and Health. Trends Plant Sci. 2021, 26, 248–259. [Google Scholar] [CrossRef] [PubMed]
- Sharma, P.R.; Shanmugavel, M.; Saxena, A.K.; Qazi, G.N. Induction of Apoptosis by a Synergistic Lignan Composition from Cedrus Deodara in Human Cancer Cells. Phytother. Res. 2008, 22, 1587–1594. [Google Scholar] [CrossRef]
- Gehm, B.D.; McAndrews, J.M.; Chien, P.-Y.; Jameson, J.L. Resveratrol, a Polyphenolic Compound Found in Grapes and Wine, Is an Agonist for the Estrogen Receptor. Proc. Natl. Acad. Sci. USA 1997, 94, 14138–14143. [Google Scholar] [CrossRef] [Green Version]
- Montanher, A.B.; Zucolotto, S.M.; Schenkel, E.P.; Fröde, T.S. Evidence of Anti-Inflammatory Effects of Passiflora edulis in an Inflammation Model. J. Ethnopharmacol. 2007, 109, 281–288. [Google Scholar] [CrossRef]
- Serafini, M.; Peluso, I.; Raguzzini, A. Flavonoids as Anti-Inflammatory Agents. Proc. Nutr. Soc. 2010, 69, 273–278. [Google Scholar] [CrossRef] [Green Version]
- Goławska, S.; Sprawka, I.; Łukasik, I.; Goławski, A. Are Naringenin and Quercetin Useful Chemicals in Pest-Management Strategies? J. Pest Sci. 2014, 87, 173–180. [Google Scholar] [CrossRef] [Green Version]
- Hagerman, A.E.; Butler, L.G. The Specificity of Proanthocyanidin-Protein Interactions. J. Biol. Chem. 1981, 256, 4494–4497. [Google Scholar] [CrossRef] [PubMed]
- Benowitz, N.L. Farmacología de La Nicotina: Adicción, Enfermedad Inducida Por El Tabaquismo y Terapéutica. Revisión Anu. De Farmacol. Y Toxicol. 2009, 49, 57–71. [Google Scholar]
- Nepi, M. Beyond Nectar Sweetness: The Hidden Ecological Role of Non-Protein Amino Acids in Nectar. J. Ecol. 2014, 102, 108–115. [Google Scholar] [CrossRef]
- Khan, M.I.R.; Asgher, M.; Iqbal, N.; Khan, N.A. Potentiality of Sulphur-Containing Compounds in Salt Stress Tolerance. In Ecophysiology and Responses of Plants under Salt Stress; Springer: New York, NY, USA, 2013; pp. 443–472. [Google Scholar]
- Kim, S.; Kubec, R.; Musah, R.A. Antibacterial and Antifungal Activity of Sulfur-Containing Compounds from Petiveria alliacea L. J. Ethnopharmacol. 2006, 104, 188–192. [Google Scholar] [CrossRef]
- Liu, J.; Willför, S.; Xu, C. A Review of Bioactive Plant Polysaccharides: Biological Activities, Functionalization, and Biomedical Applications. Bioact. Carbohydr. Diet. Fibre 2015, 5, 31–61. [Google Scholar] [CrossRef]
- Bourgaud, F.; Gravot, A.; Milesi, S.; Gontier, E. Production of Plant Secondary Metabolites: A Historical Perspective. Plant Sci. 2001, 161, 839–851. [Google Scholar] [CrossRef]
- Danova, K.; Pistelli, L. Plant Tissue Culture and Secondary Metabolites Production. Plants 2022, 11, 3312. [Google Scholar] [CrossRef]
- Twaij, B.M.; Hasan, M.N. Bioactive Secondary Metabolites from Plant Sources: Types, Synthesis, and Their Therapeutic Uses. Int. J. Plant Biol. 2022, 13, 4–14. [Google Scholar] [CrossRef]
- Atanasov, A.G.; Waltenberger, B.; Pferschy-Wenzig, E.-M.; Linder, T.; Wawrosch, C.; Uhrin, P.; Temml, V.; Wang, L.; Schwaiger, S.; Heiss, E.H. Discovery and Resupply of Pharmacologically Active Plant-Derived Natural Products: A Review. Biotechnol. Adv. 2015, 33, 1582–1614. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ullrich, C.I.; Aloni, R.; Saeed, M.E.M.; Ullrich, W.; Efferth, T. Comparison between Tumors in Plants and Human Beings: Mechanisms of Tumor Development and Therapy with Secondary Plant Metabolites. Phytomedicine 2019, 64, 153081. [Google Scholar] [CrossRef] [PubMed]
- Freeman, B.; Beattie, G. An Overview of Plant Defenses against Pathogens and Herbivores. Plant Health Instr. 2008. [Google Scholar] [CrossRef] [Green Version]
- Yue, Z.; Singh, V.; Argenta, J.; Segbefia, W.; Miller, A.; Ming Tseng, T. Use of Plant Secondary Metabolites to Reduce Crop Biotic and Abiotic Stresses: A Review. In Secondary Metabolites—Trends and Reviews; IntechOpen: Rijeka, Croatia, 2022. [Google Scholar]
- Kallscheuer, N.; Classen, T.; Drepper, T.; Marienhagen, J. Production of Plant Metabolites with Applications in the Food Industry Using Engineered Microorganisms. Curr. Opin. Biotechnol. 2019, 56, 7–17. [Google Scholar] [CrossRef] [PubMed]
- Heitefuss, R. Functions and Biotechnology of Plant Secondary Metabolites, 2nd edn, Annual Plant Reviews, Vol 39. J. Phytopathol. 2010, 1, 72. [Google Scholar] [CrossRef]
- Zhou, S.; Ma, Y.; Shang, Y.; Qi, X.; Huang, S.; Li, J. Functional Diversity and Metabolic Engineering of Plant Specialized Metabolites. Life Metab. 2022, loac019. [Google Scholar] [CrossRef]
- Boeriu, C.G. Plants4Cosmetics: Perspectives for Plant Ingredients in Cosmetics; Wageningen UR-Food & Biobased Research: Wageningen, The Netherlands, 2015. [Google Scholar]
- Brudzyńska, P.; Sionkowska, A.; Grisel, M. Plant-Derived Colorants for Food, Cosmetic and Textile Industries: A Review. Materials 2021, 14, 3484. [Google Scholar] [CrossRef]
- Razzaq, A.; Sadia, B.; Raza, A.; Khalid Hameed, M.; Saleem, F. Metabolomics: A Way Forward for Crop Improvement. Metabolites 2019, 9, 303. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peters, K.; Worrich, A.; Weinhold, A.; Alka, O.; Balcke, G.; Birkemeyer, C.; Bruelheide, H.; Calf, O.; Dietz, S.; Dührkop, K.; et al. Current Challenges in Plant Eco-Metabolomics. Int. J. Mol. Sci. 2018, 19, 1385. [Google Scholar] [CrossRef] [Green Version]
- Hong, J.; Yang, L.; Zhang, D.; Shi, J. Plant Metabolomics: An Indispensable System Biology Tool for Plant Science. Int. J. Mol. Sci. 2016, 17, 767. [Google Scholar] [CrossRef] [PubMed]
- Piasecka, A.; Kachlicki, P.; Stobiecki, M. Analytical Methods for Detection of Plant Metabolomes Changes in Response to Biotic and Abiotic Stresses. Int. J. Mol. Sci. 2019, 20, 379. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Parida, A.K.; Panda, A.; Rangani, J. Metabolomics-Guided Elucidation of Abiotic Stress Tolerance Mechanisms in Plants. In Plant Metabolites and Regulation under Environmental Stress; Elsevier: Amsterdam, The Netherlands, 2018; pp. 89–131. [Google Scholar]
- Gong, Z.-G.; Hu, J.; Wu, X.; Xu, Y.-J. The Recent Developments in Sample Preparation for Mass Spectrometry-Based Metabolomics. Crit. Rev. Anal. Chem. 2017, 47, 325–331. [Google Scholar] [CrossRef] [PubMed]
- Corrales, A.; Carrillo, L.; Lasierra, P.; Nebauer, S.G.; Dominguez-Figueroa, J.; Renau-Morata, B.; Pollmann, S.; Granell, A.; Molina, R.; Vicente-Carbajosa, J.; et al. Multifaceted Role of Cycling DOF Factor 3 (CDF3) in the Regulation of Flowering Time and Abiotic Stress Responses in Arabidopsis. Plant Cell Environ. 2017, 40, 748–764. [Google Scholar] [CrossRef]
- T’Kindt, R.; Morreel, K.; Deforce, D.; Boerjan, W.; van Bocxlaer, J. Joint GC–MS and LC–MS Platforms for Comprehensive Plant Metabolomics: Repeatability and Sample Pre-Treatment. J. Chromatogr. B 2009, 877, 3572–3580. [Google Scholar] [CrossRef]
- Lehmann, T.; Janowitz, T.; Sánchez-Parra, B.; Alonso, M.-M.P.; Trompetter, I.; Piotrowski, M.; Pollmann, S. Arabidopsis NITRILASE 1 Contributes to the Regulation of Root Growth and Development through Modulation of Auxin Biosynthesis in Seedlings. Front. Plant Sci. 2017, 8, 36. [Google Scholar] [CrossRef] [Green Version]
- Bojko, B.; Reyes-Garcés, N.; Bessonneau, V.; Goryński, K.; Mousavi, F.; Souza Silva, E.A.; Pawliszyn, J. Solid-Phase Microextraction in Metabolomics. TrAC Trends Anal. Chem. 2014, 61, 168–180. [Google Scholar] [CrossRef]
- Patel, M.K.; Mishra, A.; Jha, B. Untargeted Metabolomics of Halophytes. In Marine OMICS; CRC Press: Boca Raton, FL, USA, 2016; pp. 329–346. ISBN 1315372304. [Google Scholar]
- Bianchi, F.; Ilag, L.; Termopoli, V.; Mendez, L. Advances in MS-Based Analytical Methods: Innovations and Future Trends. J. Anal. Methods Chem. 2018, 2018, 1–2. [Google Scholar] [CrossRef]
- Patel, M.; Pandey, S.; Kumar, M.; Haque, M.; Pal, S.; Yadav, N. Plants Metabolome Study: Emerging Tools and Techniques. Plants 2021, 10, 2409. [Google Scholar] [CrossRef] [PubMed]
- Nakabayashi, R.; Saito, K. Metabolomics for Unknown Plant Metabolites. Anal. Bioanal. Chem. 2013, 405, 5005–5011. [Google Scholar] [CrossRef]
- Tautenhahn, R.; Patti, G.J.; Rinehart, D.; Siuzdak, G. XCMS Online: A Web-Based Platform to Process Untargeted Metabolomic Data. Anal. Chem. 2012, 84, 5035–5039. [Google Scholar] [CrossRef] [Green Version]
- Smith, C.A.; Maille, G.O.; Want, E.J.; Qin, C.; Trauger, S.A.; Brandon, T.R.; Custodio, D.E.; Abagyan, R.; Siuzdak, G. METLIN. Ther. Drug Monit. 2005, 27, 747–751. [Google Scholar] [CrossRef]
- Behrends, V.; Tredwell, G.D.; Bundy, J.G. A Software Complement to AMDIS for Processing GC-MS Metabolomic Data. Anal. Biochem. 2011, 415, 206–208. [Google Scholar] [CrossRef]
- Xia, J.; Psychogios, N.; Young, N.; Wishart, D.S. MetaboAnalyst: A Web Server for Metabolomic Data Analysis and Interpretation. Nucleic Acids Res. 2009, 37, W652–W660. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sakurai, T.; Yamada, Y.; Sawada, Y.; Matsuda, F.; Akiyama, K.; Shinozaki, K.; Hirai, M.Y.; Saito, K. PRIMe Update: Innovative Content for Plant Metabolomics and Integration of Gene Expression and Metabolite Accumulation. Plant Cell Physiol. 2013, 54, e5. [Google Scholar] [CrossRef] [PubMed]
- Sampaio, M.; Rocha, M.; Dias, O. Exploring Synergies between Plant Metabolic Modelling and Machine Learning. Comput. Struct. Biotechnol. J. 2022, 20, 1885–1900. [Google Scholar] [CrossRef]
- Johnson, S.R.; Lange, B.M. Open-access metabolomics databases for natural product research: Present capabilities and future potential. Front. Bioeng. Biotechnol. 2015, 3–22. [Google Scholar] [CrossRef] [Green Version]
- Fan, J.; Zheng, J.; Wu, L.; Zhang, F. Estimation of Daily Maize Transpiration Using Support Vector Machines, Extreme Gradient Boosting, Artificial and Deep Neural Networks Models. Agric. Water Manag. 2021, 245, 106547. [Google Scholar] [CrossRef]
- Lenart, C.; Burai, P.; Smailbegovic, A.; Biro, T.; Katona, Z.; Andricevic, R. Multi-Sensor Integration and Mapping Strategies for the Detection and Remediation of the Red Mud Spill in Kolontar, Hungary: Estimating the Thickness of the Spill Layer Using Hyperspectral Imaging and Lidar. In Proceedings of the 2011 3rd Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing (WHISPERS), Lisbon, Portugal, 6–9 June 2011; pp. 1–4. [Google Scholar]
- Dalponte, M.; Bruzzone, L.; Gianelle, D. Tree Species Classification in the Southern Alps Based on the Fusion of Very High Geometrical Resolution Multispectral/Hyperspectral Images and LiDAR Data. Remote Sens. Environ. 2012, 123, 258–270. [Google Scholar] [CrossRef]
- Porfirio, L.L.; Harris, R.M.B.; Lefroy, E.C.; Hugh, S.; Gould, S.F.; Lee, G.; Bindoff, N.L.; Mackey, B. Improving the Use of Species Distribution Models in Conservation Planning and Management under Climate Change. PLoS ONE 2014, 9, e113749. [Google Scholar] [CrossRef] [Green Version]
- Mulder, H.A.; Rönnegård, L.; Fikse, W.F.; Veerkamp, R.F.; Strandberg, E. Estimation of Genetic Variance for Macro- and Micro-Environmental Sensitivity Using Double Hierarchical Generalized Linear Models. Genet. Sel. Evol. 2013, 45, 23. [Google Scholar] [CrossRef] [Green Version]
- Wen, J.; Yang, J.; Jiang, B.; Song, H.; Wang, H. Big Data Driven Marine Environment Information Forecasting: A Time Series Prediction Network. IEEE Trans. Fuzzy Syst. 2021, 29, 4–18. [Google Scholar] [CrossRef]
- Beckage, B.; Gross, L.J.; Lacasse, K.; Carr, E.; Metcalf, S.S.; Winter, J.M.; Howe, P.D.; Fefferman, N.; Franck, T.; Zia, A.; et al. Linking Models of Human Behaviour and Climate Alters Projected Climate Change. Nat. Clim. Change 2018, 8, 79–84. [Google Scholar] [CrossRef]
- Shit, P.K.; Bhunia, G.S.; Maiti, R. Spatial Analysis of Soil Properties Using GIS Based Geostatistics Models. Model Earth Syst. Environ. 2016, 2, 107. [Google Scholar] [CrossRef] [Green Version]
- Ihl, T.; Bautista, F.; Cejudo Ruíz, F.R.; Delgado, M.d.C.; Quintana Owen, P.; Aguilar, D.; Goguitchaichvili, A. Concentration of Toxic Elements in Topsoils of the Metropolitan Area of Mexico City: A Spatial Analysis Using Ordinary Kriging and Indicator Kriging. Rev. Int. Contam. Ambient. 2015, 31, 47–62. [Google Scholar]
- Spencer, P.S.; Lagrange, E.; Camu, W. ALS and Environment: Clues from Spatial Clustering? Rev. Neurol. 2019, 175, 652–663. [Google Scholar] [CrossRef] [PubMed]
- Pleil, J.D.; Stiegel, M.A.; Madden, M.C.; Sobus, J.R. Heat Map Visualization of Complex Environmental and Biomarker Measurements. Chemosphere 2011, 84, 716–723. [Google Scholar] [CrossRef] [PubMed]
- Neset, T.-S.; Opach, T.; Lion, P.; Lilja, A.; Johansson, J. Map-Based Web Tools Supporting Climate Change Adaptation. Prof. Geogr. 2016, 68, 103–114. [Google Scholar] [CrossRef]
- Iturbide, M.; Gutiérrez, J.M.; Alves, L.M.; Bedia, J.; Cerezo-Mota, R.; Cimadevilla, E.; Cofiño, A.S.; di Luca, A.; Faria, S.H.; Gorodetskaya, I.V. An Update of IPCC Climate Reference Regions for Subcontinental Analysis of Climate Model Data: Definition and Aggregated Datasets. Earth Syst. Sci. Data 2020, 12, 2959–2970. [Google Scholar] [CrossRef]
- Mudelsee, M. Trend Analysis of Climate Time Series: A Review of Methods. Earth Sci. Rev. 2019, 190, 310–322. [Google Scholar] [CrossRef]
- Wei, R.; Wang, J.; Su, M.; Jia, E.; Chen, S.; Chen, T.; Ni, Y. Missing Value Imputation Approach for Mass Spectrometry-Based Metabolomics Data. Sci. Rep. 2018, 8, 663. [Google Scholar] [CrossRef] [Green Version]
- Hamamoto, A.H.; Carvalho, L.F.; Sampaio, L.D.H.; Abrão, T.; Proença, M.L., Jr. Network Anomaly Detection System Using Genetic Algorithm and Fuzzy Logic. Expert Syst. Appl. 2018, 92, 390–402. [Google Scholar] [CrossRef]
- Bermingham, M.L.; Pong-Wong, R.; Spiliopoulou, A.; Hayward, C.; Rudan, I.; Campbell, H.; Wright, A.F.; Wilson, J.F.; Agakov, F.; Navarro, P. Application of High-Dimensional Feature Selection: Evaluation for Genomic Prediction in Man. Sci. Rep. 2015, 5, 10312. [Google Scholar] [CrossRef] [Green Version]
- Manor, O.; Borenstein, E. MUSiCC: A Marker Genes Based Framework for Metagenomic Normalization and Accurate Profiling of Gene Abundances in the Microbiome. Genome Biol. 2015, 16, 53. [Google Scholar] [CrossRef] [Green Version]
- Gong, A.-D.; Lian, S.-B.; Wu, N.-N.; Zhou, Y.-J.; Zhao, S.-Q.; Zhang, L.-M.; Cheng, L.; Yuan, H.-Y. Integrated Transcriptomics and Metabolomics Analysis of Catechins, Caffeine and Theanine Biosynthesis in Tea Plant (Camellia sinensis) over the Course of Seasons. BMC Plant Biol. 2020, 20, 294. [Google Scholar] [CrossRef]
- Li, Y.; Fang, J.; Qi, X.; Lin, M.; Zhong, Y.; Sun, L.; Cui, W. Combined Analysis of the Fruit Metabolome and Transcriptome Reveals Candidate Genes Involved in Flavonoid Biosynthesis in Actinidia arguta. Int. J. Mol. Sci. 2018, 19, 1471. [Google Scholar] [CrossRef] [Green Version]
- Unamba, C.I.N.; Nag, A.; Sharma, R.K. Next Generation Sequencing Technologies: The Doorway to the Unexplored Genomics of Non-Model Plants. Front. Plant Sci. 2015, 6, 1074. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Todaka, D.; Zhao, Y.; Yoshida, T.; Kudo, M.; Kidokoro, S.; Mizoi, J.; Kodaira, K.-S.; Takebayashi, Y.; Kojima, M.; Sakakibara, H.; et al. Temporal and Spatial Changes in Gene Expression, Metabolite Accumulation and Phytohormone Content in Rice Seedlings Grown under Drought Stress Conditions. Plant J. 2017, 90, 61–78. [Google Scholar] [CrossRef] [Green Version]
- Walsh, K.J.E.; McBride, J.L.; Klotzbach, P.J.; Balachandran, S.; Camargo, S.J.; Holland, G.; Knutson, T.R.; Kossin, J.P.; Lee, T.; Sobel, A. Tropical Cyclones and Climate Change. Wiley Interdiscip. Rev. Clim. Change 2016, 7, 65–89. [Google Scholar] [CrossRef]
- Anderson, T.R.; Hawkins, E.; Jones, P.D. CO2, the Greenhouse Effect and Global Warming: From the Pioneering Work of Arrhenius and Callendar to Today’s Earth System Models. Endeavour 2016, 40, 178–187. [Google Scholar] [CrossRef] [Green Version]
- Demaria, E.M.C.; Palmer, R.N.; Roundy, J.K. Regional Climate Change Projections of Streamflow Characteristics in the Northeast and Midwest US. J. Hydrol. Reg. Stud. 2016, 5, 309–323. [Google Scholar] [CrossRef] [Green Version]
- Cucurachi, S.; Scherer, L.; Guinée, J.; Tukker, A. Life Cycle Assessment of Food Systems. One Earth 2019, 1, 292–297. [Google Scholar] [CrossRef] [Green Version]
- Ivanova, D.; Stadler, K.; Steen-Olsen, K.; Wood, R.; Vita, G.; Tukker, A.; Hertwich, E.G. Environmental Impact Assessment of Household Consumption. J. Ind. Ecol. 2016, 20, 526–536. [Google Scholar] [CrossRef] [Green Version]
- Ahmad, M.; Jiang, P.; Majeed, A.; Umar, M.; Khan, Z.; Muhammad, S. The Dynamic Impact of Natural Resources, Technological Innovations and Economic Growth on Ecological Footprint: An Advanced Panel Data Estimation. Resour. Policy 2020, 69, 101817. [Google Scholar] [CrossRef]
- Schleder, G.R.; Padilha, A.C.M.; Acosta, C.M.; Costa, M.; Fazzio, A. From DFT to Machine Learning: Recent Approaches to Materials Science—A Review. J. Phys. Mater. 2019, 2, 032001. [Google Scholar] [CrossRef]
- Rolnick, D.; Donti, P.L.; Kaack, L.H.; Kochanski, K.; Lacoste, A.; Sankaran, K.; Ross, A.S.; Milojevic-Dupont, N.; Jaques, N.; Waldman-Brown, A.; et al. Tackling Climate Change with Machine Learning. ACM Comput. Surv. 2023, 55, 1–96. [Google Scholar] [CrossRef]
- Cai, Y.; Guan, K.; Lobell, D.; Potgieter, A.B.; Wang, S.; Peng, J.; Xu, T.; Asseng, S.; Zhang, Y.; You, L. Integrating Satellite and Climate Data to Predict Wheat Yield in Australia Using Machine Learning Approaches. Agric. For. Meteorol. 2019, 274, 144–159. [Google Scholar] [CrossRef]
- Hudson, I.L. Data Integration Using Advances in Machine Learning in Drug Discovery and Molecular Biology. Artif. Neural Netw. 2021, 2190, 167–184. [Google Scholar]
- Moore, B.M.; Wang, P.; Fan, P.; Leong, B.; Schenck, C.A.; Lloyd, J.P.; Lehti-Shiu, M.D.; Last, R.L.; Pichersky, E.; Shiu, S.-H. Robust Predictions of Specialized Metabolism Genes through Machine Learning. Proc. Natl. Acad. Sci. USA 2019, 116, 2344–2353. [Google Scholar] [CrossRef] [Green Version]
- Hernández-Alvarado, R.B.; Madariaga-Mazón, A.; Martinez-Mayorga, K. Prediction of Toxicity of Secondary Metabolites. Phys. Sci. Rev. 2019, 4. [Google Scholar] [CrossRef]
- Jia, X.; Zhu, Y.; Zhang, R.; Zhu, Z.; Zhao, T.; Cheng, L.; Gao, L.; Liu, B.; Zhang, X.; Wang, Y. Ionomic and Metabolomic Analyses Reveal the Resistance Response Mechanism to Saline-Alkali Stress in Malus halliana Seedlings. Plant Physiol. Biochem. 2020, 147, 77–90. [Google Scholar] [CrossRef]
- Thanmalagan, R.R.; Roy, A.; Jayaprakash, A.; Lakshmi, P.T.V. Comprehensive Meta-Analysis and Machine Learning Approaches Identified the Role of Novel Drought Specific Genes in Oryza Sativa. Plant Gene 2022, 32, 100382. [Google Scholar] [CrossRef]
- Teles, F.F.F. Chronic Poisoning by Hydrogen Cyanide in Cassava and Its Prevention in Africa and Latin America. Food Nutr. Bull. 2002, 23, 407–412. [Google Scholar] [CrossRef]
- Craig, D.B.; Guimond, M.S. Analysis of Cyanide Using Fluorogenic Derivatization and Capillary Electrophoresis. Food Chem. 2022, 370, 131377. [Google Scholar] [CrossRef]
- Sahin, S. Cyanide Poisoning in Children Caused by Apricot Seeds. J. Health Med. Inform. 2011, 2, 1. [Google Scholar]
- Thodberg, S.; del Cueto, J.; Mazzeo, R.; Pavan, S.; Lotti, C.; Dicenta, F.; Jakobsen Neilson, E.H.; Møller, B.L.; Sánchez-Pérez, R. Elucidation of the Amygdalin Pathway Reveals the Metabolic Basis of Bitter and Sweet Almonds (Prunus Dulcis). Plant Physiol. 2018, 178, 1096–1111. [Google Scholar] [CrossRef] [Green Version]
- Pelentir, N.; Block, J.M.; Monteiro Fritz, A.R.; Reginatto, V.; Amante, E.R. Production and chemical characterization of peach (Prunus persica) kernel flour. J. Food Process Eng. 2011, 34, 1253–1265. [Google Scholar] [CrossRef]
- Touré, A.; Xueming, X. Flaxseed Lignans: Source, Biosynthesis, Metabolism, Antioxidant Activity, Bio-Active Components, and Health Benefits. Compr. Rev. Food Sci. Food Saf. 2010, 9, 261–269. [Google Scholar] [CrossRef]
- Pramitha, A.R.; Harijono, H.; Wulan, S.N. Comparison of Cyanide Content in Arbila Beans (Phaseolus Lunatus L.) of East Nusa Tenggara Using Picrate and Acid Hydrolysis Methods. IOP Conf. Ser. Earth Environ. Sci. 2021, 924, 012031. [Google Scholar] [CrossRef]
- Keeler, R.F.; van Kampen, K.R.; James, L.F. Effects of Poisonous Plants on Livestock; Elsevier: Amsterdam, The Netherlands, 2013; ISBN 1483270181. [Google Scholar]
- Liu, Q.; Zhuo, L.; Liu, L.; Zhu, S.; Sunnassee, A.; Liang, M.; Zhou, L.; Liu, Y. Seven Cases of Fatal Aconite Poisoning: Forensic Experience in China. Forensic Sci. Int. 2011, 212, e5–e9. [Google Scholar] [CrossRef] [PubMed]
- Disel, N.R.; Yilmaz, M.; Kekec, Z.; Karanlik, M. Poisoned after Dinner: Dolma with Datura Stramonium. Turk. J. Emerg. Med. 2015, 15, 51–55. [Google Scholar] [CrossRef] [Green Version]
- Thornton, S.L.; Darracq, M.; Lo, J.; Cantrell, F.L. Castor Bean Seed Ingestions: A State-Wide Poison Control System’s Experience. Clin. Toxicol. 2014, 52, 265–268. [Google Scholar] [CrossRef]
- Cortinovis, C.; Caloni, F. Alkaloid-Containing Plants Poisonous to Cattle and Horses in Europe. Toxins 2015, 7, 5301–5307. [Google Scholar] [CrossRef] [Green Version]
- Kerchner, A.; Farkas, Á. Worldwide Poisoning Potential of Brugmansia and Datura. Forensic Toxicol. 2020, 38, 30–41. [Google Scholar] [CrossRef] [Green Version]
- Lee, M.R.; Dukan, E.; Milne, I. Three Poisonous Plants (Oenanthe, Cicuta and Anamirta) That Antagonise the Effect of Γ-Aminobutyric Acid in Human Brain. J. R. Coll. Physicians Edinb. 2020, 50, 80–86. [Google Scholar] [CrossRef] [PubMed]
- Orlygsson, J.; Scully, S.M. Influence of Inhibitory Compounds on Biofuel Production from Oxalate-Rich Rhubarb Leaf Hydrolysates Using Thermoanaerobacter Thermohydrosulfuricus Strain AK91. Fuels 2021, 2, 71–86. [Google Scholar] [CrossRef]
- Kingma, J.S.; Frenay, I.M.; Meinders, A.J.; van Dijk, V.F.; Harmsze, A.M. A Poisonous Spring Smoothie with Wild Herbs: Accidental Intoxication with Foxglove (Digitalis Purpurea). Ned. Tijdschr. Geneeskd. 2020, 164, D5306. [Google Scholar]
- Bai, X.; Wang, G.; Ren, Y.; Han, J. Detection of Highly Poisonous Nerium oleander Using Quantitative Real-Time PCR with Specific Primers. Toxins 2022, 14, 776. [Google Scholar] [CrossRef]
- Woolery, S.; Willner, J.; Prahlow, J.A.; Douglas, E. Death After Poison Ivy Smoke Inhalation. Am. J. Forensic Med. Pathol. 2022, 43, 359–362. [Google Scholar] [CrossRef]
- Wang, P.; Schumacher, A.M.; Shiu, S.-H. Computational Prediction of Plant Metabolic Pathways. Curr. Opin. Plant Biol. 2022, 66, 102171. [Google Scholar] [CrossRef]
- Toubiana, D.; Fernie, A.R.; Nikoloski, Z.; Fait, A. Network Analysis: Tackling Complex Data to Study Plant Metabolism. Trends Biotechnol. 2013, 31, 29–36. [Google Scholar] [CrossRef] [PubMed]
- Hino, M.; Benami, E.; Brooks, N. Machine Learning for Environmental Monitoring. Nat. Sustain. 2018, 1, 583–588. [Google Scholar] [CrossRef]
- Schläpfer, P.; Zhang, P.; Wang, C.; Kim, T.; Banf, M.; Chae, L.; Dreher, K.; Chavali, A.K.; Nilo-Poyanco, R.; Bernard, T.; et al. Genome-Wide Prediction of Metabolic Enzymes, Pathways, and Gene Clusters in Plants. Plant Physiol. 2017, 173, 2041–2059. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sarabi, B.; Ghashghaie, J. Evaluating the Physiological and Biochemical Responses of Melon Plants to NaCl Salinity Stress Using Supervised and Unsupervised Statistical Analysis. Plant Stress 2022, 4, 100067. [Google Scholar] [CrossRef]
- Akbar, A.; Kuanar, A.; Patnaik, J.; Mishra, A.; Nayak, S. Application of Artificial Neural Network Modeling for Optimization and Prediction of Essential Oil Yield in Turmeric (Curcuma longa L.). Comput. Electron. Agric. 2018, 148, 160–178. [Google Scholar] [CrossRef]
- Almeida, B.K.; Garg, M.; Kubat, M.; Afkhami, M.E. Not That Kind of Tree: Assessing the Potential for Decision Tree–Based Plant Identification Using Trait Databases. Appl. Plant Sci. 2020, 8. [Google Scholar] [CrossRef] [PubMed]
- de Oliveira Almeida, R.; Valente, G.T. Predicting Metabolic Pathways of Plant Enzymes without Using Sequence Similarity: Models from Machine Learning. Plant Genome 2020, 13, e11379. [Google Scholar] [CrossRef] [PubMed]
- Ntatsi, G.; Aliferis, K.A.; Rouphael, Y.; Napolitano, F.; Makris, K.; Kalala, G.; Katopodis, G.; Savvas, D. Salinity Source Alters Mineral Composition and Metabolism of Cichorium Spinosum. Environ. Exp. Bot. 2017, 141, 113–123. [Google Scholar] [CrossRef]
- Rouphael, Y.; Raimondi, G.; Lucini, L.; Carillo, P.; Kyriacou, M.C.; Colla, G.; Cirillo, V.; Pannico, A.; El-Nakhel, C.; de Pascale, S. Physiological and Metabolic Responses Triggered by Omeprazole Improve Tomato Plant Tolerance to NaCl Stress. Front. Plant Sci. 2018, 9, 249. [Google Scholar] [CrossRef] [Green Version]
- Cui, J.; Davanture, M.; Zivy, M.; Lamade, E.; Tcherkez, G. Metabolic Responses to Potassium Availability and Waterlogging Reshape Respiration and Carbon Use Efficiency in Oil Palm. New Phytol. 2019, 223, 310–322. [Google Scholar] [CrossRef] [PubMed]
- Albacete, A.; Ghanem, M.E.; Dodd, I.C.; Pérez-Alfocea, F. Principal Component Analysis of Hormone Profiling Data Suggests an Important Role for Cytokinins in Regulating Leaf Growth and Senescence of Salinized Tomato. Plant Signal. Behav. 2010, 5, 45–48. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jurczyk, B.; Rapacz, M.; Pociecha, E.; Kościelniak, J. Changes in Carbohydrates Triggered by Low Temperature Waterlogging Modify Photosynthetic Acclimation to Cold in Festuca Pratensis. Environ. Exp. Bot. 2016, 122, 60–67. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, Y.; Ding, Z.; Wang, H.; Song, L.; Jia, S.; Ma, D. Zinc Stress Affects Ionome and Metabolome in Tea Plants. Plant Physiol. Biochem. 2017, 111, 318–328. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Y.-Y.; Kong, J.-L.; Jin, X.-B.; Wang, X.-Y.; Zuo, M. CropDeep: The Crop Vision Dataset for Deep-Learning-Based Classification and Detection in Precision Agriculture. Sensors 2019, 19, 1058. [Google Scholar] [CrossRef] [Green Version]
- Ma, C.; Zhang, H.H.; Wang, X. Machine Learning for Big Data Analytics in Plants. Trends Plant Sci. 2014, 19, 798–808. [Google Scholar] [CrossRef]
- Ayoub Shaikh, T.; Rasool, T.; Rasheed Lone, F. Towards Leveraging the Role of Machine Learning and Artificial Intelligence in Precision Agriculture and Smart Farming. Comput. Electron. Agric. 2022, 198, 107119. [Google Scholar] [CrossRef]
- Storm, H.; Baylis, K.; Heckelei, T. Machine Learning in Agricultural and Applied Economics. Eur. Rev. Agric. Econ. 2020, 47, 849–892. [Google Scholar] [CrossRef] [Green Version]
- Jane, J.B.; Ganeshi, E.N. A Review on Big Data with Machine Learning and Fuzzy Logic for Better Decision Making. Int. J. Sci. Technol. Res. 2019, 8, 1121–1125. [Google Scholar]
- Scalbert, A.; Brennan, L.; Fiehn, O.; Hankemeier, T.; Kristal, B.S.; van Ommen, B.; Pujos-Guillot, E.; Verheij, E.; Wishart, D.; Wopereis, S. Mass-Spectrometry-Based Metabolomics: Limitations and Recommendations for Future Progress with Particular Focus on Nutrition Research. Metabolomics 2009, 5, 435–458. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hogarth, R.M.; Soyer, E. Communicating Forecasts: The Simplicity of Simulated Experience. J. Bus. Res. 2015, 68, 1800–1809. [Google Scholar] [CrossRef]
- Westerhuis, J.A.; Hoefsloot, H.C.J.; Smit, S.; Vis, D.J.; Smilde, A.K.; van Velzen, E.J.J.; van Duijnhoven, J.P.M.; van Dorsten, F.A. Assessment of PLSDA Cross Validation. Metabolomics 2008, 4, 81–89. [Google Scholar] [CrossRef] [Green Version]
- Bacardit, J.; Widera, P.; Lazzarini, N.; Krasnogor, N. Hard Data Analytics Problems Make for Better Data Analysis Algorithms: Bioinformatics as an Example. Big Data 2014, 2, 164–176. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Najafabadi, M.M.; Villanustre, F.; Khoshgoftaar, T.M.; Seliya, N.; Wald, R.; Muharemagic, E. Deep Learning Applications and Challenges in Big Data Analytics. J. Big Data 2015, 2, 1. [Google Scholar] [CrossRef] [Green Version]
Classification | Types | Examples | Function in Plant | Ref. |
---|---|---|---|---|
Terpenes | Monoterpenes | geraniol, limonene, carvone, linalool, linalyl acetate, camphora | attract pollinating insects, deterring pests, antifungal and antibacterial activity, plant communication | [19,20,21,22] |
Sesquiterpenes | humulene, farnesol, bisabolol, caryophyllene, helenalin | plant communication, antibacterial, antifungal and antiprotozoal activity, healing | [19,23,24] | |
Diterpenes | cafestol, placytaksol, ginogolide, taxane, aconane | plant growth and development, defense from pathogens | [19,25] | |
Sesterterpenes | geranylfarneso, ophiobolin A, genepolide, gentianelloid A | defense fromst pathogens | [26] | |
Triterpenes | squalene, cucurbitacin, oleane, ursolic acid, chamaecydin | signaling molecules | [27,28] | |
Polyterpenes | gutta-percha | defense from herbivores | [29,30] | |
Phenolic | Simple phenolic | phenol, gallic acid, salicylic, ferulic and caffeic acids, hydroquinone | antimicrobial | [31] |
Coumarin | hydroxycoumarins, umbelliferone, esculetin, scopoletin | defense from insects, antifungical activity, role in plant nutrition, response in Fe stress | [19,30] | |
Furanocoumarins | psoralin, angelicin, bergapten, methoxsalen | defense mechanism against mammals and insects, antifungal activity | [32] | |
Lignin | resveratrol, wikstromal, matairesinol, dibenzyl, butyrolactol | antimicrobial, antifungal and cytotoxic effects | [19,33] | |
Flavonoids | quercetins, luteolin, apigenin, peonidin, delphinidin | UV protection, pigmentation, antimicrobial defense, antioxidant activity, signal transduction, allelopathy, defense against herbivory, regulating gene expression, mediating symbiotic interactions | [18] | |
Isoflavonoids | genistein, daidzein, ekwol, doumestrol, pueraryne | defense mechanism, mainly against fungi | [34] | |
Tannins | tannic acid, geranilin, tellmagrandin 1 and 2 | plant defense mechanisms against herbivorous, mammals, and insects | [19,35] | |
N containing compounds | Alkaloids | cocaine, nicotine, morphine, strychnine, codeine | role in germination, plants defense from predators | [18,34,36] |
Cyanogenic glucosides | linamarin, dhurrin, amygdalin, frunasin | ward off herbivores and pathogens | [37] | |
Non-protein amino acids | L-Mimosine, L-Canavanine, 5-Hydroxy-L-tryptophan, L-3,4-Dihydroxyphenylolanine | interactions with bacteria, fungi, herbivores and other plants | [38] | |
S containing compounds | glutathione, glucosinolates, phytoalexins, thionins, defensins, allinim | physiological od abiotic stress, antibacterial and antifungal activity | [39,40] | |
Polysaccharides | pectin, celulose, inuline, alginian, starch | antibacterial and antifungal activity, plant cell walls components and starch components | [41,42] | |
Hydrocarbons | ethylene, march gas, methane | plant hormone—plant development | [34] |
Used Methods | Method | Study |
---|---|---|
Evaluating the physiological and biochemical responses of melon plants to NaCl salinity stress using supervised and unsupervised statistical analysis | OPLS-DA | Use of OPS-DA and PCA to predict melon plant response to salinity [152]. |
Ionomic and metabolomic analyses reveal the resistance response mechanism to saline-alkali stress in Malus halliana seedlings | OPLS-DA | Use of OPLS-DA to determine the nature of metabolic changes in leaves of apple seedlings [128]. |
Predicting metabolic pathways of plant enzymes without using sequence similarity: models from machine learning | mApLe | Using mApLe to predict metabolic pathways of plant enzymes instead of Enzyme Commission (EC) numbers [155]. |
Salinity source alters mineral composition and metabolism of Cichorium spinosum | OPLS-DA | Use OPLS-DA for the visualization of the fluctuations in the plant’s metabolome in response to the various treatments [156]. |
Physiological and metabolic responses triggered by omeprazole improve tomato plant tolerance to NaCl stress | OPLS-DA | Use OPLS-DA to separate the variability between the groups of samples [157]. |
Metabolic responses to potassium availability and waterlogging reshape respiration and carbon use efficiency in oil palm | OPLS | Use of OPLS to determine the significance of metabolome and proteome data components in the organs of the studied plants [158]. |
Comprehensive meta-analysis and machine learning approaches identified the role of novel drought specific genes in Oryza sativa | * SVM, kNN, NB, DT, RF | These machine learning techniques were used to identify the distinguishing features between test samples and controls based on accuracy [129,149]. |
Evaluating the physiological and biochemical responses of melon plants to NaCl salinity stress using supervised and unsupervised statistical analysis | PCA | Use of PCA to predict melon plant response to salinity [152]. |
HCA | Use HCA to make a heat map to predict melon plant response of salinity [152]. | |
Ionomic and metabolomic analyses reveal the resistance response mechanism to saline-alkali stress in Malus halliana seedlings | PCA | Use of PCA to predict variability in two groups of metabolites in leaf samples [128]. |
Principal component analysis of hormone profiling data suggests an important role for cytokinins in regulating leaf growth and senescence of salinized tomato | PCA | Using PCA as a mathematical tool to evaluate the relationship between physiological and hormonal variables in tomato research [159]. |
Salinity source alters mineral composition and metabolism of Cichorium spinosum | HCA | Use HCA to support OPLS-DA in the visualization of the fluctuations in the plant’s metabolome in response to the various treatments [157]. |
Physiological and metabolic responses triggered by omeprazole improve tomato plant tolerance to NaCl stress | PCA | Use PCA for obtaining a broad overview of morphological and physiological changes in tomato plants in response to the use of omeprazole in salted and unsalted conditions [157]. |
Changes in carbohydrates triggered by low temperature waterlogging modify photosynthetic acclimation to cold in Festuca pratensis | PCA | Use of PCA to determine the variability between parameters and to highlight the most important ones from the research perspective [160]. |
Zinc stress affects ionome and metabolome in tea plants | PCA | Using PCA for tissue ionome variation [161]. |
HCA | Using HCA to visualize correlations between elements and metabolites in tea leaves [161]. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kisiel, A.; Krzemińska, A.; Cembrowska-Lech, D.; Miller, T. Data Science and Plant Metabolomics. Metabolites 2023, 13, 454. https://doi.org/10.3390/metabo13030454
Kisiel A, Krzemińska A, Cembrowska-Lech D, Miller T. Data Science and Plant Metabolomics. Metabolites. 2023; 13(3):454. https://doi.org/10.3390/metabo13030454
Chicago/Turabian StyleKisiel, Anna, Adrianna Krzemińska, Danuta Cembrowska-Lech, and Tymoteusz Miller. 2023. "Data Science and Plant Metabolomics" Metabolites 13, no. 3: 454. https://doi.org/10.3390/metabo13030454
APA StyleKisiel, A., Krzemińska, A., Cembrowska-Lech, D., & Miller, T. (2023). Data Science and Plant Metabolomics. Metabolites, 13(3), 454. https://doi.org/10.3390/metabo13030454