Characterization of 3-Hydroxyeticyclidine (3-HO-PCE) Metabolism in Human Liver Microsomes and Biological Samples Using High-Resolution Mass Spectrometry
Abstract
1. Introduction
2. Materials and Methods
2.1. In Vitro Study Using Human Liver Microsomes (HLM)
2.1.1. Sample Pretreatment
2.1.2. Instrument Conditions
2.2. Analysis of Biological and Non-Biological Samples from a Drug User
2.2.1. Sample Collection
2.2.2. Urine Pretreatment
2.2.3. Hair Pretreatment
2.2.4. Recovered Material
2.2.5. Instrument Conditions
- Urine
- Hair
- Recovered 3-HO-PCE powder
2.3. Post-Processing of HRAM Data
3. Results
3.1. Identification of 3-HO-PCE by NMR
3.2. Metabolism of 3-HO-PCE
3.2.1. Metabolites Detected in Human Liver Microsomes (HLM)
3.2.2. Metabolites Detected in Biological Samples
- Urine
- Hair
4. Discussion
5. Conclusions
6. Limitations of the Study
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- European Drug Report 2021: Trends and Developments. Available online: https://www.emcdda.europa.eu/publications/edr/trends-developments/2021_en (accessed on 18 February 2023).
- World Drug Report 2019: Booklet 4: Stimulants. Available online: https://wdr.unodc.org/wdr2019/prelaunch/WDR19_Booklet_4_STIMULANTS.pdf (accessed on 18 February 2023).
- Zanos, P.; Moaddel, R.; Morris, P.J.; Riggs, L.M.; Highland, J.N.; Georgiou, P.; Pereira, E.F.R.; Albuquerque, E.X.; Thomas, C.J.; Zarate, C.A.; et al. Ketamine and Ketamine Metabolite Pharmacology: Insights into Therapeutic Mechanisms. Pharmacol. Rev. 2018, 70, 621–660. [Google Scholar] [CrossRef] [PubMed]
- Larabi, I.A.; Fabresse, N.; Etting, I.; Nadour, L.; Pfau, G.; Raphalen, J.H.; Philippe, P.; Edel, Y.; Alvarez, J.C. Prevalence of New Psychoactive Substances (NPS) and Conventional Drugs of Abuse (DOA) in High Risk Populations from Paris (France) and Its Suburbs. Drug Alcohol Depend. 2019, 204, 107508. [Google Scholar] [CrossRef] [PubMed]
- Wallach, J.; Brandt, S.D. Phencyclidine-Based New Psychoactive Substances. In New Psychoactive Substances; Maurer, H.H., Brandt, S.D., Eds.; Handbook of Experimental Pharmacology; Springer International Publishing: Cham, Switzerland, 2018; Volume 252, pp. 261–303. ISBN 978-3-030-10560-0. [Google Scholar]
- Theofel, N.; Möller, P.; Vejmelka, E.; Kastner, K.; Roscher, S.; Scholtis, S.; Tsokos, M. A Fatal Case Involving N-Ethyldeschloroketamine (2-Oxo-PCE) and Venlafaxine. J. Anal. Toxicol. 2019, 43, e2–e6. [Google Scholar] [CrossRef]
- Gicquel, T.; Richeval, C.; Mesli, V.; Gish, A.; Hakim, F.; Pelletier, R.; Cornez, R.; Balgairies, A.; Allorge, D.; Gaulier, J. Fatal Intoxication Related to Two New Arylcyclohexylamine Derivatives (2F-DCK and 3-MeO-PCE). Forensic Sci. Int. 2021, 324, 110852. [Google Scholar] [CrossRef] [PubMed]
- Ameline, A.; Greney, H.; Monassier, L.; Raul, J.-S.; Kintz, P. Metabolites to Parent 3-MeO-PCP Ratio in Human Urine Collected in Two Fatal Cases. J. Anal. Toxicol. 2019, 43, 321–324. [Google Scholar] [CrossRef]
- Dimitrov, I.V.; Harvey, M.G.; Voss, L.J.; Sleigh, J.W.; Bickerdike, M.J.; Denny, W.A. Structure-Activity Relationships for the Anaesthetic and Analgaesic Properties of Aromatic Ring-Substituted Ketamine Esters. Molecules 2020, 25, 2950. [Google Scholar] [CrossRef]
- Hájková, K.; Jurásek, B.; Čejka, J.; Štefková, K.; Páleníček, T.; Sýkora, D.; Kuchař, M. Synthesis and Identification of Deschloroketamine Metabolites in Rats’ Urine and a Quantification Method for Deschloroketamine and Metabolites in Rats’ Serum and Brain Tissue Using Liquid Chromatography Tandem Mass Spectrometry. Drug Test. Anal. 2020, 12, 343–360. [Google Scholar] [CrossRef]
- Pelletier, R.; Le Daré, B.; Le Bouëdec, D.; Kernalléguen, A.; Ferron, P.-J.; Morel, I.; Gicquel, T. Arylcyclohexylamine Derivatives: Pharmacokinetic, Pharmacodynamic, Clinical and Forensic Aspects. Int. J. Mol. Sci. 2022, 23, 15574. [Google Scholar] [CrossRef]
- Cheng, W.-C.; Dao, K.-L. The Emergence of Deschloro-N-Ethyl-Ketamine, a Ketamine Analog, in Drug Seizures and Drug Driving Cases in Hong Kong. J. Anal. Toxicol. 2020, 44, 886–895. [Google Scholar] [CrossRef]
- 3-HO-PCE. Psychonaut Wiki. Available online: https://psychonautwiki.org/wiki/3-HO-PCE (accessed on 18 February 2023).
- Madry, M.M.; Rust, K.Y.; Guglielmello, R.; Baumgartner, M.R.; Kraemer, T. Metabolite to Parent Drug Concentration Ratios in Hair for the Differentiation of Tramadol Intake from External Contamination and Passive Exposure. Forensic Sci. Int. 2012, 223, 330–334. [Google Scholar] [CrossRef]
- Franz, F.; Angerer, V.; Hermanns-Clausen, M.; Auwärter, V.; Moosmann, B. Metabolites of Synthetic Cannabinoids in Hair--Proof of Consumption or False Friends for Interpretation? Anal. Bioanal. Chem. 2016, 408, 3445–3452. [Google Scholar] [CrossRef]
- Larabi, I.A.; Zerizer, F.; Ameline, A.; Etting, I.; Joseph, D.; Kintz, P.; Alvarez, J.C. Metabolic Profiling of Deschloro-N-Ethyl-Ketamine and Identification of New Target Metabolites in Urine and Hair Using Human Liver Microsomes and High-Resolution Accurate Mass Spectrometry. Drug Test. Anal. 2021, 13, 1108–1117. [Google Scholar] [CrossRef]
- Peters, F.T.; Meyer, M.R. In Vitro Approaches to Studying the Metabolism of New Psychoactive Compounds. Drug Test. Anal. 2011, 3, 483–495. [Google Scholar] [CrossRef]
- Meyer, M.R.; Bach, M.; Welter, J.; Bovens, M.; Turcant, A.; Maurer, H.H. Ketamine-Derived Designer Drug Methoxetamine: Metabolism Including Isoenzyme Kinetics and Toxicological Detectability Using GC-MS and LC-(HR-)MSn. Anal. Bioanal. Chem. 2013, 405, 6307–6321. [Google Scholar] [CrossRef]
- Menzies, E.L.; Hudson, S.C.; Dargan, P.I.; Parkin, M.C.; Wood, D.M.; Kicman, A.T. Characterizing Metabolites and Potential Metabolic Pathways for the Novel Psychoactive Substance Methoxetamine. Drug Test. Anal. 2014, 6, 506–515. [Google Scholar] [CrossRef]
- Michely, J.A.A.; Manier, S.K.; Caspar, A.T.; Brandt, S.D.; Wallach, J.; Maurer, H.H. New Psychoactive Substances 3-Methoxyphencyclidine (3-MeO-PCP) and 3-Methoxyrolicyclidine (3-MeO-PCPy): Metabolic Fate Elucidated with Rat Urine and Human Liver Preparations and Their Detectability in Urine by GC-MS, “LC-(High Resolution)-MSn” and “LC-(High Resolution)-MS/MS”. Curr. Neuropharmacol. 2017, 15, 692–712. [Google Scholar] [CrossRef]
- Carlier, J.; Diao, X.; Scheidweiler, K.B.; Huestis, M.A. Distinguishing Intake of New Synthetic Cannabinoids ADB-PINACA and 5F-ADB-PINACA with Human Hepatocyte Metabolites and High-Resolution Mass Spectrometry. Clin. Chem. 2017, 63, 1008–1021. [Google Scholar] [CrossRef]
- Kintz, P.; Richeval, C.; Jamey, C.; Ameline, A.; Allorge, D.; Gaulier, J.-M.; Raul, J.-S. Detection of the Designer Benzodiazepine Metizolam in Urine and Preliminary Data on Its Metabolism: Metizolam Identification in Urine. Drug Test. Anal. 2017, 9, 1026–1033. [Google Scholar] [CrossRef]
- Richeval, C.; Gicquel, T.; Hugbart, C.; Le Dare, B.; Allorge, D.; Morel, I.; Gaulier, J.-M. In Vitro Characterization of NPS Metabolites Produced by Human Liver Microsomes and the HepaRG Cell Line Using Liquid Chromatographyhigh Resolution Mass Spectrometry (LC-HRMS) Analysis: Application to Furanyl Fentanyl. Curr. Pharm. Biotechnol. 2017, 18, 806–814. [Google Scholar] [CrossRef]
- Ameline, A.; Richeval, C.; Gaulier, J.-M.; Raul, J.-S.; Kintz, P. Detection of the Designer Benzodiazepine Flunitrazolam in Urine and Preliminary Data on Its Metabolism. Drug Test. Anal. 2019, 11, 223–229. [Google Scholar] [CrossRef]
- In Vitro Drug Interaction Studies—Cytochrome P450 Enzyme- and Transporter-Mediated Drug Interactions Guidance for Industry. Available online: https://www.fda.gov/regulatory-information/search-fda-guidance-documents/in-vitro-drug-interaction-studies-cytochrome-p450-enzyme-and-transporter-mediated-drug-interactions (accessed on 18 February 2023).
- Portalier, F.; Bourdreux, F.; Marrot, J.; Moreau, X.; Coeffard, V.; Greck, C. Merging Oxidative Dearomatization and Aminocatalysis: One-Pot Enantioselective Synthesis of Tricyclic Architectures. Org. Lett. 2013, 15, 5642–5645. [Google Scholar] [CrossRef] [PubMed]
- Fabresse, N.; Larabi, I.A.; Stratton, T.; Mistrik, R.; Pfau, G.; Lorin de la Grandmaison, G.; Etting, I.; Grassin Delyle, S.; Alvarez, J.-C. Development of a Sensitive Untargeted Liquid Chromatography-High Resolution Mass Spectrometry Screening Devoted to Hair Analysis through a Shared MS2 Spectra Database: A Step toward Early Detection of New Psychoactive Substances. Drug Test. Anal. 2019, 11, 697–708. [Google Scholar] [CrossRef] [PubMed]
- Kintz, P. Hair Analysis in Clinical and Forensic Toxicology, 1st ed.; Elsevier: Boston, MA, USA, 2015; ISBN 978-0-12-801700-5. [Google Scholar]
- Dinis-Oliveira, R.J. Metabolism and Metabolomics of Ketamine: A Toxicological Approach. Forensic Sci. Res. 2017, 2, 2–10. [Google Scholar] [CrossRef] [PubMed]
- Raccor, B.S.; Teitelbaum, A.M.; Dinh, J.; Totah, R. Principles of Drug Metabolism 3: Enzymes and Tissues. In Reference Module in Chemistry, Molecular Sciences and Chemical Engineering; Elsevier: Boston, MA, USA, 2014; ISBN 978-0-12-409547-2. [Google Scholar]
ID | Name | Formula | Theoretical m/z | Observed m/z | Mass Error (ppm) | Isomers | Rt (min) | HLMPAR (%) | UrinePAR (%) | HairPAR (%) | Common Product Ions |
---|---|---|---|---|---|---|---|---|---|---|---|
3-HO-PCE | 3-HO-PCE | C14 H21 NO | 219.16286 | 219.16231 | −2.52 | NA | 7.11 | NA | ND | 1.6 | 81.06994; 107.04918; |
M1 | 3′,4′-dihydro-[1,1′-biphenyl]-3-ol | C12 H12 O | 172.08936 | 172.08881 | −3.21 | NA | 6.51 | ND | ND | 4.4 | 81.06995; 107.0492; 131.0494; |
M2 | 2′,3′,4′,5′-tetrahydro-[1,1′-biphenyl]-3-ol | C12 H14 O | 174.10501 | 174.10447 | −3.10 | M2a | 7.11 | 70.2 | ND | <1 | 79.05428; 81.06996; 107.0492; 133.06494; 175.11192 |
M2b | 7.84 | <1 | 78.8 | ND | |||||||
M3 | (3′-hydroxyphenyl) cyclohexenol | C12 H14 O2 | 190.09992 | 190.09938 | −2.84 | NA | 6.049 | 5 | ND | ND | 79.05424; 81.06996; 95.04906; 131.04919; 145.06494 |
M4 | 1-(3′-hydroxyphenyl) cyclohexanamine 3-HO-PCA | C12 H17 NO | 191.13156 | 191.13101 | −2.87 | NA | 11.68 | ND | ND | 8.9 | 67.0544; 94.0652; 119.04933 |
M5 | 1-(3′-hydroxyphenyl) cyclohexanol | C12 H16 O2 | 192.11557 | 192.11503 | −2.81 | NA | 13.15 | ND | ND | 26.3 | 67.0545; 79.05430; 81.06991; 121.0650 |
M6 | dihydroxy-[1,1′-bi(cyclohexan)]-1-en-3-one | C12 H18 O3 | 210.12614 | 210.12559 | −2.61 | M6a | 7.85 | ND | ND | 3.4 | 67.0544; 81.07001; 121.06490 |
M6b | 13.4 | ND | 3.7 | ND | |||||||
M7 | dehydro-3-HO-PCE | C14 H19 NO | 217.14721 | 217.14666 | −2.53 | NA | 6.97 | <1 | ND | 48 | 67.0544; 131.04941; 145.06480; 173.09644 |
M8 | 1′-(ethylamino)-[1,1′-bi(cyclohexan)]-3-ol | C14 H27 NO | 225.20981 | 225.20926 | −2.44 | NA | 15.72 | ND | ND | 4.2 | 68.04974; 70.0653; 110.09655 |
M9 | phenol- or hydroxy-3-HO-PCE = diHO-PCE | C14 H21 N O2 | 235.15777 | 235.15723 | −2.29 | M9a | 2.59 | ND | 4.8 | ND | 67.05441; 81.0698; 95.0492 |
M9b | 5.95 | 1.2 | ND | < 1 | |||||||
M10 | 1′-amino-trihydroxy-[1,1-bi(cyclohexan)]-3-one | C12H19NO4 | 241.13195 | 241.13141 | −2.23 | NA | 9.25 | ND | 11.2 | 2.62 | 79.05410; 81.06995; 136.07549 |
M11 | dehydro-triOH-PCE | C14 H19 NO3 | 249.13704 | 249.13649 | −2.20 | NA | 7.48 | <1 | 1.5 | ND | 100.11208; 132.0608; 147.0799; 161.0835; 174.12802; 202.12263 |
M12 | 1′-(ethylamino)-trihydroxy-[1,1′-bi(cyclohexan)]-3-one | C14 H25 NO4 | 271.17890 | 271.17836 | −1.99 | NA | 6.17 | <1 | ND | ND | 67.0543; 81.06995; |
M13 | 1′-(ethylamino)-trihydroxy-[1,1′-bi(cyclohexane)]-dione (3′-hydroxyphenyl)cyclohexenol-O-glucuronide | C18 H22 O8 | 366.13201 | 366.13147 | −1.47 | M13a | 5.18 | <1 | ND | ND | 79.05417; 81.06996; 131.04993; 173.09573 |
M13b | 5.85 | <1 | ND | ND | |||||||
M13c | 8.20 | <1 | ND | ND | |||||||
M14 | 3-HO-PCE-O-glucuronide = 3-OGlu-PCE | C20 H29 NO7 | 395.19495 | 395.19440 | −1.39 | NA | 5.97 | 21.6 | ND | ND | 81.0699; 107.04915; 133.0646 175.11226; |
M15 | diOH-PCE-O-glucuronide | C20 H29 NO8 | 411.18986 | 411.18932 | −1.31 | M22a | 0.58 | <1 | ND | ND | 81.0698; 123.04411 |
M22b | 3.97 | <1 | ND | ND | |||||||
M22c | 5.83 | <1 | ND | ND | |||||||
M22d | 6.87 | <1 | ND | ND |
m/z | 3-HO-PCE Metabolism (Present Study) | Rt (min) | O-PCE Metabolism (Previous Study) | Rt (min) |
---|---|---|---|---|
172.08881 | M1 | 6.51 | M2b | 6.51 |
174.10447 | M2a | 7.11 | M3b | 7.06 |
191.09938 | 3-OH-PCA (M4) | 11.68 | 2-OH-PCA (M5a) | 11.67 |
217.14666 | Dehydro-3-OH-PCE (M7) | 6.5 | O-PCE (Parent drug) | 6.5 |
219.16231 | 3-HO-PCE (Parent drug) | 7.11 | M9a (2-OH-PCE) | 7.06 |
235.15723 | DIOH-PCE (M9b) | 5.95 | DIOH-PCE (M12a) | 5.82 |
Biological Sample | Untargeted Screening Metabolites of the Eticyclidine Derivatives | Targeted Metabolite of 3-HO-PCE |
---|---|---|
Urine | m/z 174.10447 | m/z 241.13141 |
Hair | m/z 191.09938 | m/z 192.11503 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Larabi, I.A.; Joseph, D.; Lesueur, C.; Alvarez, J.-C. Characterization of 3-Hydroxyeticyclidine (3-HO-PCE) Metabolism in Human Liver Microsomes and Biological Samples Using High-Resolution Mass Spectrometry. Metabolites 2023, 13, 432. https://doi.org/10.3390/metabo13030432
Larabi IA, Joseph D, Lesueur C, Alvarez J-C. Characterization of 3-Hydroxyeticyclidine (3-HO-PCE) Metabolism in Human Liver Microsomes and Biological Samples Using High-Resolution Mass Spectrometry. Metabolites. 2023; 13(3):432. https://doi.org/10.3390/metabo13030432
Chicago/Turabian StyleLarabi, Islam Amine, Delphine Joseph, Camille Lesueur, and Jean-Claude Alvarez. 2023. "Characterization of 3-Hydroxyeticyclidine (3-HO-PCE) Metabolism in Human Liver Microsomes and Biological Samples Using High-Resolution Mass Spectrometry" Metabolites 13, no. 3: 432. https://doi.org/10.3390/metabo13030432
APA StyleLarabi, I. A., Joseph, D., Lesueur, C., & Alvarez, J.-C. (2023). Characterization of 3-Hydroxyeticyclidine (3-HO-PCE) Metabolism in Human Liver Microsomes and Biological Samples Using High-Resolution Mass Spectrometry. Metabolites, 13(3), 432. https://doi.org/10.3390/metabo13030432