Natural Corynanthe-Type Cholinesterase Inhibitors from Malaysian Uncaria attenuata Korth.: Isolation, Characterization, In Vitro and In Silico Studies
Abstract
:1. Introduction
2. Materials and Methods
2.1. The General Experimental Procedures
2.2. Chemicals and Reagents
2.3. Plant Material
2.4. Extraction of Plant Material
2.5. Alkaloid Isolation and Identification
2.6. Cholinesterase Inhibitory Assay
2.7. Molecular Docking
3. Results and Discussion
3.1. Structure Elucidation of Uncaria Attenuata Alkaloids 1–3
3.2. Cholinesterase-Inhibitory Activity
3.3. Molecular Docking Study
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- McKhann, G.; Drachman, D.; Folstein, M.; Katzman, R.; Price, D.; Stadlan, E.M. Clinical diagnosis of Alzheimer’s disease: Report of the NINCDS-ADRDA Work Group under the auspices of Department of Health and Human Services Task Force on Alzheimer’s Disease. Neurology 1984, 34, 939–944. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zeng, P.; Wang, X.M.; Ye, C.Y.; Su, H.F.; Tian, Q. The main alkaloids in Uncaria rhynchophylla and their anti-Alzheimer’s disease mechanism determined by a network pharmacology approach. Int. J. Mol. Sci. 2021, 22, 3612. [Google Scholar] [CrossRef] [PubMed]
- Wallace, R.A.; Dalton, A.J. What can we learn from study of Alzheimer’s disease in patients with Down syndrome for early-onset Alzheimer’s disease in the general population? Alzheimer’s Res. Ther. 2011, 3, 13. [Google Scholar] [CrossRef] [Green Version]
- Scheltens, P.; Blennow, K.; Breteler, M.M.; de Strooper, B.; Frisoni, G.B.; Salloway, S.; Van der Flier, W.M. Alzheimer’s disease. Lancet 2016, 388, 505–517. [Google Scholar] [CrossRef]
- Asaad, M.; Lee, J.H. A guide to using functional magnetic resonance imaging to study Alzheimer’s disease in animal models. Dis. Model. Mech. 2018, 11, 031724. [Google Scholar] [CrossRef] [Green Version]
- Mehta, D.; Jackson, R.; Paul, G.; Shi, J.; Sabbagh, M. Why do trials for Alzheimer’s disease drugs keep failing? A discontinued drug perspective for 2010–2015. Expert Opin. Investig. Drugs. 2017, 26, 735–739. [Google Scholar] [CrossRef]
- Lai, S.M.S.; Liew, S.Y.; Chear, N.J.Y.; Goh, B.H.; Tan, W.-N.; Khaw, K.Y. Plant terpenoids as the promising source of cholinesterase inhibitors for anti-AD therapy. Biology 2022, 11, 307. [Google Scholar]
- Melnikova, I. Therapies for Alzheimer’s disease. Nat. Rev. Drug Discov. 2007, 6, 341–342. [Google Scholar] [CrossRef]
- Colović, M.B.; Krstić, D.Z.; Lazarević-Pašti, T.D.; Bondžić, A.M.; Vasić, V.M. Acetylcholinesterase inhibitors: Pharmacology and toxicology. Curr. Neuropharmacol. 2013, 11, 315–335. [Google Scholar] [CrossRef] [Green Version]
- Shoja, S.S.; Azizi Khoei, A. Effectiveness of rivastigmine on positive, negative, and cognitive symptoms of schizophrenia: A double-blind clinical trial. Ther. Adv. Psychopharmacol. 2016, 6, 308–316. [Google Scholar] [CrossRef] [Green Version]
- Kong, Y.R.; Tay, K.C.; Su, Y.X.; Wong, C.K.; Tan, W.N.; Khaw, K.Y. Potential of naturally derived alkaloids as multi-targeted therapeutic agents for neurodegenerative diseases. Molecules 2021, 26, 728. [Google Scholar] [CrossRef] [PubMed]
- Singh, M.; Kaur, M.; Kukreja, H.; Chugh, R.; Silakari, O.; Singh, D. Acetylcholinesterase inhibitors as Alzheimer therapy: From nerve toxins to neuroprotection. Eur. J. Med. Chem. 2013, 70, 165–188. [Google Scholar] [CrossRef]
- Yang, W.; Ip, S.P.; Liu, L.; Xian, Y.F.; Lin, Z.X. Uncaria rhynchophylla and its major constituents on central nervous system: A review on their pharmacological actions. Curr. Vasc. Pharmacol. 2020, 18, 346–357. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Huang, Y.; Yu, X.; Lu, J.; Jia, W.; Song, J.; Liu, L.; Wang, Y.; Huang, Y.; Xie, J.; et al. Corynoxine protects dopaminergic neurons through inducing autophagy and diminishing neuroinflammation in rotenone-induced animal models of Parkinson’s disease. Front. Pharm. 2021, 12, 642900. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Drew, J.; Berney, W.; Lei, W. Neuroprotective natural products for Alzheimer’s disease. Cells 2021, 10, 1309. [Google Scholar] [CrossRef]
- Xian, Y.F.; Lin, Z.X.; Mao, Q.Q.; Hu, Z.; Zhao, M.; Che, C.T.; Ip, S.P. Bioassay-guided isolation of neuroprotective compounds from Uncaria rhynchophylla against beta-amyloid-induced neurotoxicity. Evid.-Based Complement. Altern. Med. eCAM 2012, 2012, 802625. [Google Scholar] [CrossRef] [Green Version]
- Phillipson, J.D.; Hemingway, S.R. Alkaloids of Uncaria attenuata, U. orientalis and U. Canescens. Phytochemistry 1975, 14, 1855–1863. [Google Scholar] [CrossRef]
- Ponglux, D.; Supavita, T.; Verpoorte, R.; Philipson, D. Alkaloids of Uncaria attenuata from Thailand. Phytochemistry 1980, 19, 2013–2016. [Google Scholar] [CrossRef]
- Tantivatana, P.; Ponglux, D.; Wongseripipatana, S.; Phillipson, J.D. Alkaloids of U(. attenuata U. salaccensis) from N.E. Thailand. Planta Med. 1980, 40, 299–301. [Google Scholar] [CrossRef]
- Aimi, N.; Shimizu, T.; Sada, H.; Takayama, H.; Sakai, S.; Wongseripipatana, S.; Ponglux, D. Structures of Us-7 and Us-8: A new type of oxindole alkaloids isolated from Uncaria attenuata Korth. J. Chem. Soc. Perkin Trans. 1997, 1, 187–188. [Google Scholar] [CrossRef]
- Ponglux, D.; Wongseripipatana, S.; Aimi, N.; Nishimura, M.; Ishikawa, M.; Sada, H.; Haginiwa, J.; Sakai, S. Structure and synthesis of two new types of oxindole alkaloids found from Uncaria salaccensis. Chem. Pharm. Bull. 1990, 38, 573–575. [Google Scholar] [CrossRef] [Green Version]
- Takayama, H.; Watanabe, T.; Seki, H.; Aimi, N.; Sakai, S. Geissoschizine revisited—Definite proof of its stereostructure. Tetrahedron Lett. 1992, 33, 6831–6834. [Google Scholar] [CrossRef]
- Matsuo, H.; Okamoto, R.; Zaima, K.; Hirasawa, Y.; Ismail, I.S.; Lajis, N.H.; Morita, H. New vasorelaxant indole alkaloids, villocarines A-D from Uncaria villosa. Bioorg. Med. Chem. 2011, 19, 4075–4079. [Google Scholar] [CrossRef] [PubMed]
- Ellman, G.L.; Courtney, K.D.; Andres, V., Jr.; Feather-Stone, R.M. A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem. Pharmacol. 1961, 7, 88–95. [Google Scholar] [CrossRef]
- Khaw, K.Y.; Kumar, P.; Yusof, S.R.; Ramanathan, S.; Murugaiyah, V. Probing simple structural modification of α-mangostin on its cholinesterase inhibition and cytotoxicity. Arch. Pharm. 2020, 353, 2000156. [Google Scholar] [CrossRef]
- Chear, N.J.; Khaw, K.Y.; Murugaiyah, V.; Lai, C.S. Cholinesterase inhibitory activity and chemical constituents of Stenochlaena palustris fronds at two different stages of maturity. J. Food Drug Anal. 2016, 24, 358–366. [Google Scholar] [CrossRef] [Green Version]
- Flores-Bocanegra, L.; Raja, H.A.; Graf, T.N.; Augustinović, M.; Wallace, E.D.; Hematian, S.; Kellogg, J.J.; Todd, D.A.; Cech, N.B.; Oberlies, N.H. The chemistry of Kratom [Mitragyna speciosa]: Updated characterization data and methods to elucidate indole and oxindole alkaloids. J. Nat. Prod. 2020, 83, 2165–2177. [Google Scholar] [CrossRef]
- Beckett, A.H.; Dwuma-Badu, D.; Haddock, R.E. Some new mitragyna-type indoles and oxindoles; the influence of stereochemistry on mass spectra. Tetrahedron 1969, 25, 5961–5969. [Google Scholar] [CrossRef]
- Wang, M.; Carrell, E.J.; Ali, Z.; Avula, B.; Avonto, C.; Parcher, J.F.; Khan, I.A. Comparison of three chromatographic techniques for the detection of mitragynine and other indole and oxindole alkaloids in Mitragyna speciosa (kratom) plants. J. Sep. Sci. 2014, 37, 1411–1418. [Google Scholar] [CrossRef]
- Liang, J.H.; Luan, Z.L.; Tian, X.G.; Zhao, W.Y.; Wang, Y.L.; Sun, C.P.; Huo, X.K.; Deng, S.; Zhang, B.J.; Zhang, Z.J.; et al. Uncarialins A-I, monoterpenoid Indole alkaloids from Uncaria rhynchophylla as natural agonists of the 5-HT1A receptor. J. Nat. Prod. 2019, 82, 3302–3310. [Google Scholar] [CrossRef]
- Chear, N.J.; León, F.; Sharma, A.; Kanumuri, S.; Zwolinski, G.; Abboud, K.A.; Singh, D.; Restrepo, L.F.; Patel, A.; Hiranita, T.; et al. Exploring the chemistry of alkaloids from Malaysian Mitragyna speciosa (Kratom) and the role of oxindoles on human opioid receptors. J. Nat. Prod. 2021, 84, 1034–1043. [Google Scholar] [CrossRef]
- Kutchan, T.M. Strictosidine: From alkaloid to enzyme to gene. Phytochemistry 1993, 323, 493–506. [Google Scholar] [CrossRef] [PubMed]
- Rueffer, M.; Nagakura, N.; Zenk, M.H. Strictosidine, the common precursor for monoterpenoid indole alkaloids with 3 α and 3 β configuration. Tetrahedron Lett. 1978, 19, 1593–1596. [Google Scholar] [CrossRef] [Green Version]
- Shamma, M.; Shine, R.J.; Kompis, I.; Sticzay, T.; Morsingh, F.; Poisson, J.; Pousset, J.L. The stereochemistry of the pentacyclic oxindole alkaloids. J. Am. Chem. Soc. 1967, 89, 1739–1740. [Google Scholar] [CrossRef] [PubMed]
- Wang, K.; Zhou, X.Y.; Wang, Y.Y.; Li, M.M.; Li, Y.S.; Peng, L.Y.; Cheng, X.; Li, Y.; Wang, Y.P.; Zhao, Q.S. Macrophyllionium and macrophyllines A and B, oxindole alkaloids from Uncaria macrophylla. J. Nat. Prod. 2011, 74, 12–15. [Google Scholar] [CrossRef]
- Wu, W.; Zhang, Z.; Li, F.; Deng, Y.; Lei, M.; Long, H.; Hou, J.; Wu, W. A network-based approach to explore the mechanisms of Uncaria alkaloids in treating hypertension and alleviating Alzheimer’s disease. Int. J. Mol. Sci. 2020, 21, 1766. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, Z.D.; Duan, D.Z.; Du, J.; Yang, M.J.; Li, S.; Yao, X.J. Geissoschizine methyl ether, a corynanthean-type indole alkaloid from Uncaria rhynchophylla as a potential acetylcholinesterase inhibitor. Nat. Prod. Res. 2012, 26, 22–28. [Google Scholar] [CrossRef]
- Jiang, W.W.; Su, J.; Wu, X.D.; He, J.; Peng, L.Y.; Cheng, X.; Zhao, Q.S. Geissoschizine methyl ether N-oxide, a new alkaloid with antiacetylcholinesterase activity from Uncaria rhynchophylla. Nat. Prod. Res. 2015, 29, 842–847. [Google Scholar] [CrossRef]
Compound (1) | ||||
---|---|---|---|---|
Position | 1H [δH (J, Hz)] | 13C (δc) | HMBC 1H to 13C | NOESY 1H to 1H |
NH | 7.48 [br s (1H)] | - | 7, 8 | - |
2 | - | 181.5 | - | - |
3 | 2.75 [dd (1H, 11.9, 2.6)] | 68.4 | 8 | 5b, 14b, 21b |
5a | 3.36 [overlapped (1H)] | 54.6 | 3, 7 | 6b, 21a |
5b | 2.52 [q (1H, 8.9)] | 6, 21 | 3 | |
6a | 2.42 [ddd (1H, 9.2, 2.2)] | 35.4 | 2, 5 | - |
6b | 2.08 [m (1H)] | 8 | 5a, 9 | |
7 | - | 56.7 | - | - |
8 | - | 133.1 | - | - |
9 | 7.41 [br d (1H, 7.8)] | 125.5 | 7, 11, 13 | 6b, 14a |
10 | 7.02 [td (7.8, 1.0)] | 122.4 | 8, 12 | - |
11 | 7.19 [td (1H, 7.8, 1.0)] | 127.5 | 9, 13 | - |
12 | 6.83 [br d (1H, 7.8)] | 109.1 | 8, 10 | - |
13 | - | 139.9 | - | - |
14a | 1.32 [s (1H)] | 31.8 | 6, 15, 16 | - |
14b | 1.28 [s (1H)] | 3, 5, 15, 20 | 3, 15, 21b | |
15 | 3.84 [d (1H, 6.9)] | 30.5 | 3, 14, 16, 17, 19, 20, 21, 22 | 14b, 18, 21b |
16 | - | 111.9 | - | - |
17 | 7.25 [s (1H)] | 158.7 | 15, 16, OCH3-17, 22 | OCH3-17 |
18 | 1.52 dd [(3H, 6.8, 1.8)] | 13.1 | 19, 20 | 15 |
19 | 5.41 [q (1H, 6.7)] | 121.8 | 15, 18, 21 | 21a |
20 | - | 135.1 | - | - |
21a | 3.54 [br d (1H, 12.4)] | 60.4 | 3, 15, 19, 20 | 5a, 19 |
21b | 3.32 [overlapped (1H)] | 3, 19, 20 | 3, 14b, 5b | |
22 | - | 168.7 | - | - |
OCH3-22 | 3.66 [s (3H)] | 51.3 | 22 | - |
OCH3-17 | 3.76 [s (3H)] | 61.4 | 17 | 17 |
Samples | AChE | BChE | Selectivity Index | |||||
---|---|---|---|---|---|---|---|---|
% Inhibition at 100 µM | IC50, µM | IC50, µg/mL | % Inhibition at 100 µM | IC50, µM | IC50, µg/mL | AChE a | BChE b | |
Methanol extract * | - | - | 16.46 ± 2.30 | - | - | 46.32 ± 1.17 | 2.81 | 0.36 |
Alkaloid extract * | - | - | 8.90 ± 2.43 | - | - | 21.74 ± 4.34 | 2.44 | 0.41 |
Compound (1) | 22.11 ± 3.23 | - | - | 87.44 ± 1.34 | 35.38 ± 5.60 | 13.51 | - | - |
Compound (2) | 75.55 ± 2.61 | 14.45 ± 2.94 | 5.29 | 95.80 ± 2.33 | 13.94 ± 2.69 | 5.10 | 0.97 | 1.04 |
Compound (3) | 81.53 ± 1.45 | 40.55 ± 0.91 | 14.84 | 90.75 ± 3.56 | 17.64 ± 0.58 | 6.45 | 0.43 | 2.30 |
Galantamine HBr | - | 0.94 ± 0.12 | 0.35 | - | 30.41 ± 1.11 | 11.20 | 32.35 | 0.03 |
Binding Energy (kcal) | Residue | Type of Interaction | Distance (Å) | Interaction Sites | |
---|---|---|---|---|---|
TcAChE | −13.40 | Trp 84 | Pi–alkyl | 4.40 | Choline-binding site |
Pi–alkyl | 5.00 | ||||
Pi–alkyl | 5.30 | ||||
Gly 118 | H-bond | 1.98 | Oxyanion hole | ||
Ala 201 | H-bond | 2.69 | Oxyanion hole | ||
Phe 290 | Pi–alkyl | 4.74 | Acyl-binding pocket | ||
Phe 288 | Pi–alkyl | 4.96 | Acyl-binding pocket | ||
hBChE | −11.21 | Trp 82 | Pi–sigma | 3.68 | Choline-binding site |
Pi–alkyl | 5.22 | ||||
Pi–alkyl | 4.17 | ||||
His 438 | Pi-alkyl | 5.46 | Catalytic site | ||
Pi-cation | 5.76 | ||||
Ala 199 | Pi-alkyl | 4.65 | Oxyanion hole |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chear, N.J.-Y.; Ching-Ga, T.A.F.; Khaw, K.-Y.; León, F.; Tan, W.-N.; Yusof, S.R.; McCurdy, C.R.; Murugaiyah, V.; Ramanathan, S. Natural Corynanthe-Type Cholinesterase Inhibitors from Malaysian Uncaria attenuata Korth.: Isolation, Characterization, In Vitro and In Silico Studies. Metabolites 2023, 13, 390. https://doi.org/10.3390/metabo13030390
Chear NJ-Y, Ching-Ga TAF, Khaw K-Y, León F, Tan W-N, Yusof SR, McCurdy CR, Murugaiyah V, Ramanathan S. Natural Corynanthe-Type Cholinesterase Inhibitors from Malaysian Uncaria attenuata Korth.: Isolation, Characterization, In Vitro and In Silico Studies. Metabolites. 2023; 13(3):390. https://doi.org/10.3390/metabo13030390
Chicago/Turabian StyleChear, Nelson Jeng-Yeou, Tan Ai Fein Ching-Ga, Kooi-Yeong Khaw, Francisco León, Wen-Nee Tan, Siti R. Yusof, Christopher R. McCurdy, Vikneswaran Murugaiyah, and Surash Ramanathan. 2023. "Natural Corynanthe-Type Cholinesterase Inhibitors from Malaysian Uncaria attenuata Korth.: Isolation, Characterization, In Vitro and In Silico Studies" Metabolites 13, no. 3: 390. https://doi.org/10.3390/metabo13030390
APA StyleChear, N. J. -Y., Ching-Ga, T. A. F., Khaw, K. -Y., León, F., Tan, W. -N., Yusof, S. R., McCurdy, C. R., Murugaiyah, V., & Ramanathan, S. (2023). Natural Corynanthe-Type Cholinesterase Inhibitors from Malaysian Uncaria attenuata Korth.: Isolation, Characterization, In Vitro and In Silico Studies. Metabolites, 13(3), 390. https://doi.org/10.3390/metabo13030390