Saliva Metabolomic Profile in Dental Medicine Research: A Narrative Review
Abstract
:1. Introduction
2. Human Salivary Metabolome Research and Its Limitations
3. The Human Salivary Metabolome and Oral Pathologies
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- de Almeida, P.D.V.; Gregio, A.M.T.; Machado, M.A.N.; de Lima, A.A.S.; Azevedo, L.R. Saliva composition and functions: A comprehensive review. J. Contemp. Dent. Pract. 2008, 9, 72–80. [Google Scholar]
- Humphrey, S.P.; Williamson, R.T. A review of saliva: Normal composition, flow, and function. J. Prosthet Dent. 2001, 85, 162–169. [Google Scholar] [CrossRef] [PubMed]
- Dodds, M.W.; Johnson, D.A.; Yeh, C.K. Health benefits of saliva: A review. J. Dent. 2005, 33, 223–233. [Google Scholar] [CrossRef] [PubMed]
- Amerongen, A.V.; Veerman, E.C. Saliva—The defender of the oral cavity. Oral Dis. 2002, 8, 12–22. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pappa, E.; Kousvelari, E.; Vastardis, H. Saliva in the “Omics” era: A promising tool in paediatrics. Oral Dis. 2019, 25, 16–25. [Google Scholar] [CrossRef] [Green Version]
- Proctor, G.B. The physiology of salivary secretion. Periodontology 2016, 70, 11–25. [Google Scholar] [CrossRef] [Green Version]
- Soini, H.A.; Klouckova, I.; Wiesler, D.; Oberzaucher, E.; Grammer, K.; Dixon, S.J.; Xu, Y.; Brereton, R.G.; Penn, D.G.; Novotny, M.V. Analysis of volatile organic compounds in human saliva by a static sorptive extraction method and gas chromatography-mass spectrometry. J. Chem. Ecol. 2010, 36, 1035–1042. [Google Scholar] [CrossRef]
- Sanchez-Pablo, M.A.; Gonzalez-Garcia, V.; del Castillo-Rueda, A. Study of total stimulated saliva flow and hyperpigmentation in the oral mucosa of patients diagnosed with hereditary hemochromatosis. Series of 25 cases. Med. Oral Patol. Oral Cir. Bucal. 2012, 17, e45–e49. [Google Scholar] [CrossRef] [Green Version]
- Hsiao, Y.C.; Chu, L.J.; Chen, Y.T.; Chi, L.M.; Chien, K.Y.; Chiang, W.F.; Chang, Y.T.; Chen, S.F.; Wang, W.S.; Chuang, Y.N. Variability assessment of 90 salivary proteins in intraday and interday samples from healthy donors by multiple reaction monitoring-mass spectrometry. Proteom.–Clin. Appl. 2018, 12, 1700039. [Google Scholar] [CrossRef]
- Proctor, G.B.; Carpenter, G.H. Regulation of salivary gland function by autonomic nerves. Auton. Neurosci. Basic Clin. 2007, 133, 3–18. [Google Scholar] [CrossRef]
- Helmerhorst, E.J.; Dawes, C.; Oppenheim, F.G. The complexity of oral physiology and its impact on salivary diagnostics. Oral Dis. 2018, 24, 363–371. [Google Scholar] [CrossRef] [PubMed]
- Hanning, C.; Hanning, M.; Kensche, A.; Carpenter, G. The mucosal pellicle- An underestimated factor in oral physiology. Arch. Oral Biol. 2017, 80, 144–152. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Panneerselvam, K.; Ishikawa, S.; Krishnan, R.; Sugimoto, M. Salivary Metabolomics for Oral Cancer Detection: A Narrative Review. Metabolites 2022, 12, 436. [Google Scholar] [CrossRef] [PubMed]
- Cuevas-Córdoba, B.; Santiago-García, J. Saliva: A fluid of study for OMICS. OMICS 2014, 18, 87–97. [Google Scholar] [CrossRef] [PubMed]
- Kaczor-Urbanowicz, K.E.; Martin Carreras-Presas, C.; Aro, K.; Tu, M.; Garcia-Godoy, F.; Wong, D.T. Saliva diagnostics—Current views and directions. Exp. Biol. Med. 2017, 242, 459–472. [Google Scholar] [CrossRef] [Green Version]
- Chaleckis, R.; Meister, I.; Zhang, P.; Wheelock, C.E. Challenges, progress and promises of metabolite annotation for LC-MS-based metabolomics. Curr. Opin. Biotechnol. 2019, 55, 44–50. [Google Scholar] [CrossRef]
- Wong, D.T. Salivaomics. J. Am. Dent. Assoc. 2012, 143, 19–24. [Google Scholar] [CrossRef]
- Hynne, H.; Sandås, E.M.; Elgstøen, K.B.P.; Rootwelt, H.; Utheim, T.P.; Galtung, H.K.; Jensen, J.L. Saliva Metabolomics in Dry Mouth Patients with Head and Neck Cancer or Sjögren’s Syndrome. Cells 2022, 11, 323. [Google Scholar] [CrossRef]
- Evans, E.D.; Duvallet, C.; Chu, N.D.; Oberst, M.K.; Murphy, M.A.; Rockafellow, I.; Sontag, D.; Alm, E.J. Predicting human health from biofluid-based metabolomics using machine learning. Sci. Rep. 2020, 10, 17635. [Google Scholar] [CrossRef]
- Takeda, I.; Stretch, C.; Barnaby, P.; Bhatnager, K.; Rankin, K.; Fu, H.; Weljie, A.; Jha, N.; Slupsky, C. Understanding the human salivary metabolome. NMR Biomed. 2009, 22, 577–584. [Google Scholar] [CrossRef]
- Mikkonen, J.J.; Singh, S.P.; Herrala, M.; Lappalainen, R.; Myllymaa, S.; Kullaa, A.M. Salivary metabolomics in the diagnosis of oral cancer and periodontal diseases. J. Periodontal Res. 2016, 51, 431–437. [Google Scholar] [CrossRef] [PubMed]
- Chiappin, S.; Antonelli, G.; Gatti, R.; De Palo, E.F. Saliva specimen: A new laboratory tool for diagnostic and basic investigation. Clin. Chim. Acta 2007, 383, 30–40. [Google Scholar] [CrossRef]
- Dame, Z.T.; Aziat, F.; Mandal, R.; Krishnamurthy, R.; Bouatra, S.; Borzouie, S.; Guo, A.C.; Sajed, T.; Deng, L.; Lin, H.; et al. The human saliva metabolome. Metabolomics 2015, 11, 1864–1883. [Google Scholar] [CrossRef]
- Pfaffe, T.; Cooper-White, J.; Beyerlein, P.; Kostner, K.; Punyadeera, C. Diagnostic potential of saliva: Current state and future applications. Clin. Chem. 2011, 57, 675–687. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hyvärinen, E.; Savolainen, M.; Mikkonen, J.J.W.; Kullaa, A.M. Salivary Metabolomics for Diagnosis and Monitoring Diseases: Challenges and Possibilities. Metabolites 2021, 11, 587. [Google Scholar] [CrossRef] [PubMed]
- Gardner, A.; Carpenter, G.; So, P.W. Salivary Metabolomics: From Diagnostic Biomarker Discovery to Investigating Biological Function. Metabolites 2020, 10, 47. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khurshid, Z.; Zohaib, S.; Najeeb, S.; Zafar, M.S.; Slowey, P.D.; Almas, K. Human Saliva Collection Devices for Proteomics: An Update. Int. J. Mol. Sci. 2016, 17, 846. [Google Scholar] [CrossRef] [Green Version]
- Silwood, C.; Lynch, E.; Claxson, A.; Grootveld, M. 1h and 13c nmr spectroscopic analysis of human saliva. J. Dent. Res. 2002, 81, 422–427. [Google Scholar] [CrossRef]
- Sugimoto, M.; Saruta, J.; Matsuki, C.; To, M.; Onuma, H.; Kaneko, M.; Soga, T.; Tomita, M.; Tsukinoki, K. Physiological and environmental parameters associated with mass spectrometry-based salivary metabolomic profiles. Metabolomics. 2013, 9, 454–463. [Google Scholar] [CrossRef]
- Human Metabolome Database. Available online: https://hmdb.ca (accessed on 29 January 2023).
- Lukacs, J.; Largaespada, L. Explaining sex differences in dental caries prevalence: Saliva, hormones, and ‘‘life-history’’ etiologies. Am. J. Hum. Biol. 2006, 18, 540–555. [Google Scholar] [CrossRef]
- Mueller, D.C.; Piller, M.; Niessner, R.; Scherer, M.; Scherer, G. Untargeted metabolomic profiling in saliva of smokers and nonsmokers by a validated GC-TOF-MS method. J. Proteome Res. 2014, 13, 1602–1613. [Google Scholar] [CrossRef] [PubMed]
- Dallmann, R.; Viola, A.U.; Tarokh, L.; Cajochen, C.; Brown, S.A. The human circadian metabolome. Proc. Nati. Acad. Sci. USA 2012, 109, 2625–2629. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ishikawa, S.; Sugimoto, M.; Kitabatake, K.; Tu, M.; Sugano, A.; Yamamori, I.; Iba, A.; Yusa, K.; Kaneko, M.; Ota, S.; et al. Effect of Timing of Collection of Salivary Metabolomic Biomarkers on Oral Cancer Detection. Amino Acids 2017, 49, 761–770. [Google Scholar] [CrossRef]
- Gardner, A.; Parkes, H.G.; So, P.-W.; Carpenter, G.H. Determining bacterial and host contributions to the human salivary metabolome. J. Oral Microbiol. 2019, 11, 1617014. [Google Scholar] [CrossRef] [Green Version]
- Belstrøm, D. The salivary microbiota in health and disease. J. Oral Microbiol. 2020, 12, 1723975. [Google Scholar] [CrossRef] [Green Version]
- Wishart, D.S.; Cheng, L.L.; Copié, V.; Edison, A.S.; Eghbalnia, H.R.; Hoch, J.C.; Gouveia, G.J.; Pathmasiri, W.; Powers, R.; Schock, T.B.; et al. NMR and Metabolomics—A Roadmap for the Future. Metabolites 2022, 12, 678. [Google Scholar] [CrossRef] [PubMed]
- Gowda, G.A.N.; Djukovic, D. Overview of Mass Spectrometry-Based Metabolomics: Opportunities and Challenges. In Mass Spectrometry in Metabolomics. Methods in Molecular Biology, 1st ed.; Raftery, D., Ed.; Humana Press: New York, NY, USA, 2014; Volume 1198, pp. 3–12. [Google Scholar] [CrossRef] [Green Version]
- Naz, S.; Moreira dos Santos, D.C.; García, A.; Barbas, C. Analytical protocols based on LC-MS, GC-MS and CE-MS for nontargeted metabolomics of biological tissues. Bioanalysis 2014, 6, 1657–1677. [Google Scholar] [CrossRef]
- Drouin, N.; Ramautar, R. Capillary Electrophoresis-Mass Spectrometry for Metabolomics: Possibilities and Perspectives. Adv. Exp. Med. Biol. 2021, 1336, 159–178. [Google Scholar] [CrossRef] [PubMed]
- Vignoli, A.; Ghini, V.; Meoni, G.; Licari, C.; Takis, P.G.; Tenori, L.; Turano, P.; Luchinat, C. High-Throughput Metabolomics by 1D NMR. Angew. Chem. Int. Ed. Engl. 2019, 58, 968–994. [Google Scholar] [CrossRef]
- Zeki, Ö.C.; Eylem, C.C.; Reçber, T.; Kır, S.; Nemutlu, E. Integration of GC-MS and LC-MS for untargeted metabolomics profiling. J. Pharm. Biomed. Anal. 2020, 190, 113509. [Google Scholar] [CrossRef]
- Emwas, A.H. The strengths and weaknesses of NMR spectroscopy and mass spectrometry with particular focus on metabolomics research. Methods Mol. Biol. 2015, 1277, 161–193. [Google Scholar] [CrossRef]
- Marshall, D.D.; Powers, R. Beyond the paradigm: Combining mass spectrometry and nuclear magnetic resonance for metabolomics. Prog. Nucl. Magn. Reson. Spectrosc. 2017, 100, 1–16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Delvaux, A.; Rathahao-Paris, E.; Alves, S. Different ion mobility-mass spectrometry coupling techniques to promote metabolomics. Mass. Spectrom. Rev. 2022, 41, 695–721. [Google Scholar] [CrossRef] [PubMed]
- Aristizabal-Henao, J.J.; Lemas, D.J.; Griffin, E.K.; Costa, K.A.; Camacho, C.; Bowden, J.A. Metabolomic Profiling of Biological Reference Materials using a Multiplatform High-Resolution Mass Spectrometric Approach. J. Am. Soc. Mass. Spectrom. 2021, 32, 2481–2489. [Google Scholar] [CrossRef] [PubMed]
- Pezzatti, J.; Boccard, J.; Codesido, S.; Gagnebin, Y.; Joshi, A.; Picard, D.; González-Ruiz, V.; Rudaz, S. Implementation of liquid chromatography-high resolution mass spectrometry methods for untargeted metabolomic analyses of biological samples: A tutorial. Anal. Chim. Acta 2020, 1105, 28–44. [Google Scholar] [CrossRef]
- Martias, C.; Baroukh, N.; Mavel, S.; Blasco, H.; Lefèvre, A.; Roch, L.; Montigny, F.; Gatien, J.; Schibler, L.; Dufour-Rainfray, D.; et al. Optimization of Sample Preparation for Metabolomics Exploration of Urine, Feces, Blood and Saliva in Humans Using Combined NMR and UHPLC-HRMS Platforms. Molecules 2021, 26, 4111. [Google Scholar] [CrossRef] [PubMed]
- Psychogios, N.; Hau, D.D.; Peng, J.; Guo, A.C.; Mandal, R.; Bouatra, S.; Sinelnikov, I.; Krishnamurthy, R.; Eisner, R.; Gautam, B.; et al. The human serum metabolome. PLoS ONE 2011, 6, 16957. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bouatra, S.; Aziat, F.; Mandal, R.; Guo, A.C.; Wilson, M.R.; Knox, C.; Bjorndahl, T.C.; Krishnamurthy, R.; Saleem, F.; Liu, P.; et al. The human urine metabolome. PLoS ONE 2013, 8, e73076. [Google Scholar] [CrossRef] [Green Version]
- WHO. International Programme on Chemical Safety Biomarkers in Risk Assessment: Validity and Validation. Environmental Health Criteria 222. Available online: http://www.inchem.org/documents/ehc/ehc/ehc222.htm (accessed on 16 April 2021).
- Khurshid, Z.; Zafar, M.S.; Khan, R.S.; Najeeb, S.; Slowey, P.D.; Rehman, I.U. Role of Salivary Biomarkers in Oral Cancer Detection. Adv. Clin. Chem. 2018, 86, 23–70. [Google Scholar] [CrossRef]
- Yan, S.-K.; Wei, B.; Lin, Z.; Yang, Y.; Zhou, Z.; Zhang, W. A metabonomic approach to the diagnosis of oral squamous cell carcinoma, oral lichen planus and oral leukoplakia. Oral. Oncol. 2008, 44, 477–483. [Google Scholar] [CrossRef]
- Jou, Y.J.; Lin, C.; Lai, C.; Chen, C.H.; Kao, J.Y.; Chen, S.Y.; Tsai, M.-H.; Huang, S.-H.; Lin, C.-W. Proteomic identification of salivary transferrin as a biomarker for early detection of oral cancer. Anal. Chim. Acta 2010, 681, 41–48. [Google Scholar] [CrossRef] [PubMed]
- Sugimoto, M.; Wong, D.T.; Hirayama, A.; Soga, T.; Tomita, M. Capillary electrophoresis mass spectrometry-based saliva metabolomics identified oral, breast and pancreatic cancer-specific profiles. Metabolomics 2010, 6, 78–95. [Google Scholar] [CrossRef] [Green Version]
- Wei, J.; Xie, G.; Zhou, Z.; Shi, P.; Qiu, Y.; Zheng, X.; Chen, T.; Su, M.; Zhao, A.; Jia, W. Salivary metabolite signatures of oral cancer and leukoplakia. Int. J. Cancer 2011, 129, 2207–2217. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Gao, P.; Wang, X.; Duan, Y. Investigation and identification of potential biomarkers in human saliva for the early diagnosis of oral squamous cell carcinoma. Clin. Chim. Acta 2014, 427, 79–85. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Gao, P.; Wang, X.; Duan, Y. The early diagnosis and monitoring of squamous cell carcinoma via saliva metabolomics. Sci. Rep. 2014, 4, 6802. [Google Scholar] [CrossRef] [Green Version]
- Ishikawa, S.; Sugimoto, M.; Kitabatake, K.; Sugano, A.; Nakamura, M.; Kaneko, M.; Ota, S.; Hiwatari, K.; Enomoto, A.; Soga, T. Identification of salivary metabolomic biomarkers for oral cancer screening. Sci. Rep. 2016, 6, 31520. [Google Scholar] [CrossRef] [Green Version]
- Ohshima, M.; Sugahara, K.; Kasahara, K.; Katakura, A. Metabolomic analysis of the saliva of japanese patients with oral squamous cell carcinoma. Oncol. Rep. 2017, 37, 2727–2734. [Google Scholar] [CrossRef] [Green Version]
- Lohavanichbutr, P.; Zhang, Y.; Wang, P.; Gu, H.; Gowda, G.A.N.; Djukovic, D.; Buas, M.F.; Raftery, D.; Chen, C. Salivary Metabolite Profiling Distinguishes Patients with Oral Cavity Squamous Cell Carcinoma from Normal Controls. PLoS ONE 2018, 13, e0204249. [Google Scholar] [CrossRef] [Green Version]
- Ishikawa, S.; Wong, D.T.W.; Sugimoto, M.; Gleber-Netto, F.O.; Li, F.; Tu, M.; Zhang, Y.; Akin, D.; Iino, M. Identification of salivary metabolites for oral squamous cell carcinoma and oral epithelial dysplasia screening from persistent suspicious oral mucosal lesions. Clin. Oral Investig. 2019, 23, 3557–3563. [Google Scholar] [CrossRef]
- Sridharan, G.; Ramani, P.; Patankar, S.; Vijayaraghavan, R. Evaluation of Salivary Metabolomics in Oral Leukoplakia and Oral Squamous Cell Carcinoma. J. Oral Pathol. Med. 2019, 48, 299–306. [Google Scholar] [CrossRef]
- Ishikawa, S.; Hiraka, T.; Kirii, K.; Sugimoto, M.; Shimamoto, H.; Sugano, A.; Kitabatake, K.; Toyoguchi, Y.; Kanoto, M.; Nemoto, K.; et al. Relationship between Standard Uptake Values of Positron Emission Tomography/Computed Tomography and Salivary Metabolites in Oral Cancer: A Pilot Study. J. Clin. Med. 2020, 9, 3958. [Google Scholar] [CrossRef] [PubMed]
- Song, X.; Yang, X.; Narayanan, R.; Shankar, V.; Ethiraj, S.; Wang, X.; Duan, N.; Ni, Y.H.; Hu, Q.; Zare, R.N. Oral squamous cell carcinoma diagnosed from saliva metabolic profiling. Proc. Natl. Acad. Sci. USA 2020, 117, 16167–16173. [Google Scholar] [CrossRef] [PubMed]
- de Sá Alves, M.; de Sá Rodrigues, N.; Bandeira, C.M.; Chagas, J.F.S.; Pascoal, M.B.N.; Nepomuceno, G.L.J.T.; da Silva Martinho, H.; Alves, M.G.O.; Mendes, M.A.; Dias, M.; et al. Identification of Possible Salivary Metabolic Biomarkers and Altered Metabolic Pathways in South American Patients Diagnosed with Oral Squamous Cell Carcinoma. Metabolites 2021, 11, 650. [Google Scholar] [CrossRef] [PubMed]
- Tantray, S.; Sharma, S.; Prabhat, K.; Nasrullah, N.; Gupta, M. Salivary metabolite signatures of oral cancer and leukoplakia through gas chromatography-mass spectrometry. J. Oral Maxillofac. Pathol. 2022, 26, 31–37. [Google Scholar] [CrossRef] [PubMed]
- Ozmeric, N. Advances in periodontal disease markers. Clin. Chim. Acta 2004, 343, 1–16. [Google Scholar] [CrossRef]
- Barnes, V.M.; Ciancio, S.G.; Shibly, O.; Xu, T.; Devizio, W.; Trivedi, H.M.; Guo, L.; Jönsson, T.J. Metabolomics reveals elevated macromolecular degradation in periodontal disease. J. Dent. Res. 2011, 90, 1293–1297. [Google Scholar] [CrossRef]
- Aimetti, M.; Cacciatore, S.; Graziano, A.; Tenori, L. Metabonomic analysis of saliva reveals generalized chronic periodontitis signature. Metabolomics 2012, 8, 465–474. [Google Scholar] [CrossRef]
- Huang, Y.; Zhu, M.; Li, Z.; Sa, R.; Chu, Q.; Zhang, Q.; Zhang, H.; Tang, W.; Zhang, M.; Yin, H. Mass spectrometry-based metabolomic profiling identifies alterations in salivary redox status and fatty acid metabolism in response to inflammation and oxidative stress in periodontal disease. Free Radic. Biol. Med. 2014, 70, 223–232. [Google Scholar] [CrossRef]
- Barnes, V.M.; Kennedy, A.D.; Panagakos, F.; Devizio, W.; Trivedi, H.M.; Jönsson, T.; Guo, L.; Cervi, S.; Scannapieco, F.A. Global Metabolomic Analysis of Human Saliva and Plasma from Healthy and Diabetic Subjects, with and without Periodontal Disease. PLoS ONE 2014, 9, e105181. [Google Scholar] [CrossRef]
- Kuboniwa, M.; Sakanaka, A.; Hashino, E.; Bamba, T.; Fukusaki, E.; Amano, A. Prediction of Periodontal Inflammation via Metabolic Profiling of Saliva. J. Dent. Res. 2016, 95, 1381–1386. [Google Scholar] [CrossRef]
- Ozeki, M.; Nozaki, T.; Aoki, J.; Bamba, T.; Jensen, K.R.; Murakami, S.; Toyoda, M. Metabolomic Analysis of Gingival Crevicular Fluid Using Gas Chromatography/Mass Spectrometry. Mass. Spectrom. 2016, 5, A0047. [Google Scholar] [CrossRef] [Green Version]
- Rzeznik, M.; Triba, M.N.; Levy, P.; Jungo, S.; Botosoa, E.; Duchemann, B.; Le Moyec, L.; Bernaudin, J.F.; Savarin, P.; Guez, D. Identification of a discriminative metabolomic fingerprint of potential clinical relevance in saliva of patients with periodontitis using 1H nuclear magnetic resonance (NMR) spectroscopy. PLoS ONE 2017, 12, e0182767. [Google Scholar] [CrossRef] [Green Version]
- Liebsch, C.; Pitchika, V.; Pink, C.; Samietz, S.; Kastenmüller, G.; Artati, A.; Suhre, K.; Adamski, J.; Nauck, M.; Völzke, H.; et al. The Saliva Metabolome in Association to Oral Health Status. J. Dent. Res. 2019, 98, 642–651. [Google Scholar] [CrossRef]
- Singh, M.P.; Saxena, M.; Saimbi, C.S.; Siddiqui, M.H.; Roy, R. Post-periodontal surgery propounds early repair salivary biomarkers by 1H NMR based metabolomics. Metabolomics 2019, 15, 141. [Google Scholar] [CrossRef] [PubMed]
- Romano, F.; Meoni, G.; Manavella, V.; Baima, G.; Mariani, G.M.; Cacciatore, S.; Tenori, L.; Aimetti, M. Effect of non-surgical periodontal therapy on salivary metabolic fingerprint of generalized chronic periodontitis using nuclear magnetic resonance spectroscopy. Arch. Oral Biol. 2019, 97, 208–214. [Google Scholar] [CrossRef] [PubMed]
- Gawron, K.; Wojtowicz, W.; Łazarz-Bartyzel, K.; Łamasz, A.; Qasem, B.; Mydel, P.; Chomyszyn-Gajewska, M.; Potempa, J.; Mlynarz, P. Metabolomic Status of The Oral Cavity in Chronic Periodontitis. In Vivo 2019, 33, 1165–1174. [Google Scholar] [CrossRef] [Green Version]
- Schulte, F.; King, O.D.; Paster, B.J.; Moscicki, A.B.; Yao, T.J.; Van Dyke, R.B.; Shiboski, C.; Ryder, M.; Seage, G.; Hardt, M. Pediatric HIV/AIDS Cohort Study. Salivary metabolite levels in perinatally HIV-infected youth with periodontal disease. Metabolomics 2020, 16, 98. [Google Scholar] [CrossRef] [PubMed]
- Citterio, F.; Romano, F.; Meoni, G.; Iaderosa, G.; Grossi, S.; Sobrero, A.; Dego, F.; Corana, M.; Berta, G.N.; Tenori, L.; et al. Changes in the Salivary Metabolic Profile of Generalized Periodontitis Patients after Non-surgical Periodontal Therapy: A Metabolomic Analysis Using Nuclear Magnetic Resonance Spectroscopy. J. Clin. Med. 2020, 9, 3977. [Google Scholar] [CrossRef]
- Rodrigues, W.F.; Miguel, C.B.; Agostinho, F.; da Silva, G.V.; Lazo-Chica, J.E.; Scapin, S.M.N.; Napimoga, M.H.; Trindade-da-Silva, C.A.; Krieger, J.E.; Pereira, A.D.C.; et al. Metabolomic Evaluation of Chronic Periodontal Disease in Older Adults. Mediat. Inflamm. 2021, 2021, 1796204. [Google Scholar] [CrossRef]
- Overmyer, K.A.; Rhoads, T.W.; Merrill, A.E.; Ye, Z.; Westphall, M.S.; Acharya, A.; Shukla, S.K.; Coon, J.J. Proteomics, Lipidomics, Metabolomics, and 16S DNA Sequencing of Dental Plaque From Patients With Diabetes and Periodontal Disease. Mol. Cell Proteom. 2021, 20, 100126. [Google Scholar] [CrossRef]
- Barros, S.P.; Williams, R.; Offenbacher, S.; Morelli, T. Gingival crevicular fluid as a source of biomarkers for periodontitis. Periodontol 2000 2016, 70, 53–64. [Google Scholar] [CrossRef] [PubMed]
Authors | Groups | Analytical Method | Discrimination Method | Observations—Candidate Biomarkers |
---|---|---|---|---|
Yan et al., 2008 [53] | Oral squamous cell carcinoma (OSCC)/precancerous lesions | High performance liquid chromatography—mass spectrometry (HPLC—MS) | Multivariate hierarchical principle component analysis | |
Jou et al., 2010 [54] | Healthy controls vs. oral cancer subjects | Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (TOF–MS) | Western plotting + immunoassays | Increased transferrin levels in oral cancer subjects + linear correlation between transferrin and stage of tumor |
Sugimoto et al., 2010 [55] | Healthy controls vs. oral cancer vs. pancreatic cancer vs. breast cancer vs. periodontal disease | Capillary electrophoresis time-of-flight mass spectrometry (CE-TOF-MS) | Principal component analysis (PCA)/independent multiple logistic regression models (MLR) | Increased taurine, choline, and betaine Decreased pipecolinic acid and L-carnitine |
Wei et al., 2011 [56] | Healthy controls vs. oral cancer vs. precancerous conditions | Ultraperformance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry (LC—TOF—MS) | PCA/orthogonal partial least squares discriminant analysis | Increased valine, lactic acid and phenylalanine are the best combination of salivary biomarkers for the discrimination of oral cancer from precancerous conditions |
Wang et al., 2014 [57] | Healthy controls vs. Stages I + II OSCC | LC—MS analysis | Multivariate data analysis | Increased choline, betaine and pipecolinic acid Decreased L—cainitine in OSCC |
Wang et al., 2014 [58] | Follow-up study | Reverse-phase liquid and hydrophilic interaction chromatography and TOF—MS | Multivariate data analysis | Increased propionylcholine decreased N-actyl-L-phenylalanine, sphinganine, phytosphingosine and S-carboxymethyl-L-cysteine |
Ishikawa et al., 2016 [59] | Healthy controls vs OSCC | CE—TOF—MS | MLR/support vector machine-feature selection/stepwise feature selection | Increased pipecolate and s-adenosylmethionine |
Ohshima et al., 2017 [60] | Healthy controls vs. OSCC | CE—TOF—MS | Wilcoxon rank sum test | Increased choline, valine, isoleucine, leucine, 2-oxoisovaleric acid and 3-hydroxybutyric acid Decreased urea |
Lohavanichbutr et al., 2018 [61] | Healthy controls vs. OSCC vs. oropharyngeal squamous cell carcinoma (OPSC) | Nuclear magnetic resonance spectroscopy (NMR), LC—MS, Quadrupole time-of-flight liquid chromatography—mass spectrometry (Q—TOF—LC—MS) | MLR | Decreased glycine, proline, citrulline, and ornithine were associated with early stage OSCC |
Ishakawa et al., 2019 [62] | OSCC vs. oral epithelial dysplasia (OED) vs. persistent suspicious oral mucosal lesions (PSOML) | CE—TOF—MS | MLR | Decreased ornithine, carnitine, arginine, o-hydroxybenzoate, N-acetylglucosamine-1-phosphate, and ribose 5-phosphate (R5P) in OSCC/OED compared to PSOML |
Shridharan et al., 2019 [63] | Healthy controls vs. oral leukoplakia vs. OSCC | Quadrupole time-of-flight liquid chromatography—mass spectrometry (Q—TOF—LC—MS) | ANOVA/chi—square tests |
Increased 1-methylhistidine, inositol 1,3,4-triphosphate, d-glycerate-2-phosphate, 4-nitroquinoline-1-oxide, 2-oxoarginine, norcocaine nitroxide, sphinganine-1-phosphate, and pseudouridine in oral leukoplakia and OSCC decreased l-homocysteic acid, ubiquinone, neuraminic acid, and estradiol valerate. |
Ishakawa et al., 2020 [64] | Healthy controls vs. oral cancer | 18F-FDG PET/CT | MLR | N-acetylneuraminate and 3-phenylpropionate can be used to discriminate between patients with oral cancer and controls |
Song et al., 2020 [65] | Healthy controls vs. OSCC vs. premalignant lesions | Conductive polymer spray mass spectrometry (CPSI-MS) | Lasso regression model | Increased cadaverine, putrescine, spermidine, 5-aminopentanoic acid and proline in the OSCC group Decreased pipecolic acid, lysine, arginine, ornithine, and histidine in the OSCC group |
De Sa Alves et al., 2021 [66] | Healthy controls vs. OSCC | Gas-chromatography mass spectrometry (GC-MS) | PCA, Wilcoxon—Mann Whitney test | Identification of 24 metabolites as candidate biomarkers. Increased malic acid, methionine, maltose, and inosine |
Tantray et al., 2022 [67] | Healthy controls vs. oral leukoplakia vs. OSCC | GC—MS | Increased decanedioic acid, 2-methyloctacosane, eicosane, octane, 3,5-dimethyl, pentadecane, hentriacontane, 5,5-diethylpentadecane, nonadecane, oxalic acid, 6-phenylundecanea, l-proline, 2-furancarboxamide, 2-isopropyl-5-methyl-1-heptanol, pentanoic acid, docosane |
Authors | Groups | Analytical Method | Discrimination Method | Observations—Candidate Biomarkers |
---|---|---|---|---|
Sugimoto et al., 2010 [55] | Healthy controls vs. oral cancer vs. periodontal disease vs. pancreatic cancer vs. breast cancer | CE-TOF-MS | MLR/PCA | There was no significant differences between patients with periodontal disease and healthy controls concerning oral polyamine levels. |
Barnes et al., 2011 [69] | Healthy controls vs. periodontal specimens | UHPLC MS/MS + GC/MS | Welch’s—t-test + false discovery rates | Increased dipeptides leucylisoleucine, phenylphenol, serylisoleucine, fatty acids, arachidonate, arachidate Many of these metabolites are the products of host-microbial metabolism. |
Aimetti et al., 2012 [70] | Healthy controls vs. gingivitis vs. localized chronic periodontitis vs. generalized chronic periodontitis vs. localized aggressive periodontitis vs. generalized aggressive periodontitis | NMR | PCA, Projection to Latent Structure (PLS), Canonical Correlation Analysis (CA) | Metabolic profiles of generalized chronic periodontitis patients exhibited increased acetate, c-aminobutyrate, n-butyrate, succinate, trimethylamine, propionate, phenylalanine, and valine and decreased concentrations of pyruvate and N-acetyl groups in generalized chronic periodontitis |
Huang et al., 2014 [71] | Patients with chronic periodontitis | Inductively coupled plasma mass spectrometry (ICP-MS)/GC-MS/LC-MS | Analysis of variance followed by Student’s t-test. | Increased PGE2, PGD2,PGF2a, TXB2, 5-HETE, F2- isoprostane decreased PGI2,13-HODE, and 9-HODE |
Barnes et al., 2014 [72] | Diabetic and non-diabetic human subjects with a healthy periodontium, gingivitis and periodontitis | GC-MS/LC-MS | ANOVA/t-tests/False discovery rate method | Comparison of healthy, gingivitis and periodontitis saliva samples within the non-diabetic group: Increased levels of oxidized glutathione and cysteine-glutathione disulfide, increased markers of oxidative stress, including increased purine degradation metabolites increased amino acid levels and increased ω-3 (docosapentaenoate) and ω-6 fatty acids (linoleate and arachidonate) |
Kuboniwa et al., 2016 [73] | Periodontal inflamed surface area (PISA) before and after removal of supragingival plaque | GC-MS | OPLS | Increased cadaverine, 5-oxoproline, and histidine |
Ozeki et al., 2016 [74] | GCF of moderate pockets vs. deep pockets vs. healthy controls | GC-MS | PCA | Increased putrescine, lysine, phenylalanine, ribose, taurine, 5-aminovaleric acid, and galactose in deep pocket sites |
Rzeznick et al., 2017 [75] | Healthy controls vs. generalized periodontitis | NMR | PCA/OPLS | Increased short chain fatty acids such as butyrate. Decreased lactate, γ-amino-butyrate, methanol, and threonine |
Liebsch et al., 2019 [76] | Age-stratified groups of oral health—correlation between metabolites and periodontal disease severity | LC-MS/MS | Linear regression analysis | Increased phenylacetate. |
Singh et al., 2019 [77] | Surgically treated periodontal subjects vs. untreated periodontal patients | NMR | Multivariate and quantitative analysis | Increased lactate, ethanol, succinate, and glutamate in surgically treated periodontal subjects |
Romano et al., 2019 [78] | Healthy controls vs. treated generalized chronic periodontitis | NMR | Univariate and multivariate paired approaches | The post-treatment metabolic profile of GCP patients could not be assimilated to that of healthy controls who exhibited different levels of lactate, pyruvate, valine, proline, tyrosine, and formate. |
Gawron et al., 2019 [79] | Healthy control vs. chronic periodontitis | NMR | Multivariate analysis/OPLS | Increased lactate and isopropanol decreased glycerol, acetone and methanol |
Schulte et al., 2020 [80] | Perinatally-acquired HIV patients vs. HIV-exposed, but uninfected patients and moderate periodontitis | LC-MS/MS | Increased cadaverine particularly in HIV exposed but uninfected individuals with moderate periodontitis | |
Citterio et al., 2020 [81] | Healthy controls vs. untreated periodontitis vs. non surgically treated periodontal patients | NMR | Multivariate analysis/partial least squares (PLS)/OPLS | The post-NST metabolic profile of periodontal patients could not be completely assimilated to that of healthy controls. decreased leucine, valine, phenylalanine, isoleucine, hypoxanthine and uracil after non surgical treatment compared to untreated periodontitis |
Rodriques et al., 2021 [82] | Healthy controls vs. periodontal patients (over 65 years old) | GC-MS | Partial least squares analysis (PLS) | Increased 5-aminovaleric acid and serine in the gingival crevicular fluid |
Overmyer et al., 2021 [83] | Supragingival dental plaque of healthy controls vs. periodontitis, vs. periodontitis + diabetes type 2 vs. periodontitis + prediabetes | GC-MS/LC-MS/MS | Generalized additive mixed-effect models/zero-adjusted Gamma distribution, log normal distribution, bimodal log normal distribution/log-likelihood ratio testing/Benjamini–Hochberg FDR correction | Increased phosphatidylcholines, plasmenyl phosphatidylcholines, ceramides containing non-OH fatty acids, and host proteins related to actin filament rearrangement |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tzimas, K.; Pappa, E. Saliva Metabolomic Profile in Dental Medicine Research: A Narrative Review. Metabolites 2023, 13, 379. https://doi.org/10.3390/metabo13030379
Tzimas K, Pappa E. Saliva Metabolomic Profile in Dental Medicine Research: A Narrative Review. Metabolites. 2023; 13(3):379. https://doi.org/10.3390/metabo13030379
Chicago/Turabian StyleTzimas, Konstantinos, and Eftychia Pappa. 2023. "Saliva Metabolomic Profile in Dental Medicine Research: A Narrative Review" Metabolites 13, no. 3: 379. https://doi.org/10.3390/metabo13030379
APA StyleTzimas, K., & Pappa, E. (2023). Saliva Metabolomic Profile in Dental Medicine Research: A Narrative Review. Metabolites, 13(3), 379. https://doi.org/10.3390/metabo13030379