Identification of a Biomarker Panel for Diagnosis of Early Childhood Caries Using Salivary Metabolic Profile
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Saliva Collection and Sample Preparation
2.3. NMR Measurements
2.4. Multivariate Statistical Analysis
2.5. Univariate Statistical Analysis and Receiver Operating Characteristic (ROC) Analysis of Selected Metabolites
3. Results
3.1. Characteristics of Study Participants
3.2. Metabolic Profiling and Important Salivary Metabolites in Caries
3.3. Multiple Biomarker Panel for Caries Diagnosis
3.4. Levels of Selected Metabolites Based on the ICDAS Classification
3.5. Correlation Analysis
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Anil, S.; Anand, P.S. Early Childhood Caries: Prevalence, Risk Factors, and Prevention. Front. Pediatr. 2017, 5, 157. [Google Scholar] [CrossRef] [Green Version]
- Ministry of Health and Welfare. 2018 Korean Children’s Oral Health Survey; Ministry of Health and Welfare: Sejong, Republic of Korea, 2019. [Google Scholar]
- Zou, J.; Du, Q.; Ge, L.H.; Wang, J.; Wang, X.J.; Li, Y.Q.; Song, G.T.; Zhao, W.; Chen, X.; Jiang, B.Z.; et al. Expert consensus on early childhood caries management. Int. J. Oral Sci. 2022, 14, 35. [Google Scholar] [CrossRef] [PubMed]
- Martins, P.; Vieira-Andrade, R.A.; Vieira-Andrade, R.G.; Correa-Faria, P.; Oliveira-Ferreira, F.; Marques, L.S.; Ramos-Jorge, M.L. Impact of Early Childhood Caries on the Oral Health-Related Quality of Life of Preschool Children and Their Parents. Caries Res. 2012, 47, 211–218. [Google Scholar] [CrossRef] [PubMed]
- Pitts, N.B.; Zero, D.T.; Marsh, P.D.; Ekstrand, K.; Weintraub, J.A.; Ramos-Gomez, F.; Tagami, J.; Twetman, S.; Tsakos, G.; Ismail, A. Dental caries. Nat. Rev. Dis. Prim. 2017, 3, 17030. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moynihan, P.J.; Kelly, S.A.M. Effect on Caries of Restricting Sugars Intake: Systematic Review to Inform WHO Guidelines. J. Dent. Res. 2014, 93, 8–18. [Google Scholar] [CrossRef] [Green Version]
- Berkowitz, R.J.; Koo, H.; McDermott, M.P.; Whelehan, M.T.; Ragusa, P.; Kopycka-Kedzierawski, D.T.; Karp, J.M.; Billings, R. Adjunctive chemotherapeutic suppression of mutans streptococci in the setting of severe early childhood caries: An exploratory study. J. Public Health Dent. 2009, 69, 163–167. [Google Scholar] [CrossRef]
- Duangthip, D.; Jiang, M.; Chu, C.; Lo, E. Approaches to treat dentin caries in preschool children: Systematic review. Eur. J. Paediatr. Dent. 2016, 17, 113. [Google Scholar]
- Bader, J.D.; Shugars, D.A.; Bonito, A.J. A systematic review of the performance of methods for identifying carious lesions. J. Public Health Dent. 2002, 62, 201–213. [Google Scholar] [CrossRef]
- Dias da Silva, P.; Martins Marques, M.; Steagall Jr, W.; Medeiros Mendes, F.; Lascala, C. Accuracy of direct digital radiography for detecting occlusal caries in primary teeth compared with conventional radiography and visual inspection: An in vitro study. Dentomaxillofacial Radiol. 2010, 39, 362–367. [Google Scholar] [CrossRef] [Green Version]
- Spaveras, A.; Karkaz, F.; Antoniadou, M. Caries detection with laser fluorescence devices. Limitations of their use. Stomatol. EDU J. 2017, 4, 46–53. [Google Scholar] [CrossRef]
- Hegde, M.N.; Attavar, S.H.; Shetty, N.; Hegde, N.D.; Hegde, N.N. Saliva as a biomarker for dental caries: A systematic review. J. Conserv. Dent. 2019, 22, 2–6. [Google Scholar] [CrossRef] [PubMed]
- Paqué, P.N.; Herz, C.; Wiedemeier, D.B.; Mitsakakis, K.; Attin, T.; Bao, K.; Belibasakis, G.N.; Hays, J.P.; Jenzer, J.S.; Kaman, W.; et al. Salivary Biomarkers for Dental Caries Detection and Personalized Monitoring. J. Pers. Med. 2021, 11, 235. [Google Scholar] [CrossRef]
- Brennan, L. NMR-based metabolomics: From sample preparation to applications in nutrition research. Prog. Nucl. Magn. Reson. Spectrosc. 2014, 83, 42–49. [Google Scholar] [CrossRef]
- Dame, Z.T.; Aziat, F.; Mandal, R.; Krishnamurthy, R.; Bouatra, S.; Borzouie, S.; Guo, A.C.; Sajed, T.; Deng, L.; Lin, H.; et al. The human saliva metabolome. Metabolomics 2015, 11, 1864–1883. [Google Scholar] [CrossRef]
- Wallner-Liebmann, S.; Tenori, L.; Mazzoleni, A.; Dieber-Rotheneder, M.; Konrad, M.; Hofmann, P.; Luchinat, C.; Turano, P.; Zatloukal, K. Individual Human Metabolic Phenotype Analyzed by 1H NMR of Saliva Samples. J. Proteome Res. 2016, 15, 1787–1793. [Google Scholar] [CrossRef]
- Meleti, M.; Quartieri, E.; Antonelli, R.; Pezzi, M.E.; Ghezzi, B.V.; Viani, M.; Setti, G.; Casali, E.; Ferrari, E.; Ciociola, T.; et al. Metabolic Profiles of Whole, Parotid and Submandibular/Sublingual Saliva. Metabolites 2020, 10, 318. [Google Scholar] [CrossRef]
- Duarte, D.; Castro, B.; Pereira, J.L.; Marques, J.F.; Costa, A.L.; Gil, A.M. Evaluation of Saliva Stability for NMR Metabolomics: Collection and Handling Protocols. Metabolites 2020, 10, 515. [Google Scholar] [CrossRef] [PubMed]
- Quartieri, E.; Casali, E.; Ferrari, E.; Ghezzi, B.; Gallo, M.; Spisni, A.; Meleti, M.; Pertinhez, T.A. Sample optimization for saliva 1H-NMR metabolic profiling. Anal. Biochem. 2022, 640, 114412. [Google Scholar] [CrossRef] [PubMed]
- Takeda, I.; Stretch, C.; Barnaby, P.; Bhatnager, K.; Rankin, K.; Fu, H.; Weljie, A.; Jha, N.; Slupsky, C. Understanding the human salivary metabolome. NMR Biomed. 2009, 22, 577–584. [Google Scholar] [CrossRef]
- Pereira, J.L.; Duarte, D.; Carneiro, T.J.; Ferreira, S.; Cunha, B.; Soares, D.; Costa, A.L.; Gil, A.M. Saliva NMR metabolomics: Analytical issues in pediatric oral health research. Oral Dis. 2019, 25, 1545–1554. [Google Scholar] [CrossRef]
- Sugimoto, M.; Saruta, J.; Matsuki, C.; To, M.; Onuma, H.; Kaneko, M.; Soga, T.; Tomita, M.; Tsukinoki, K. Physiological and environmental parameters associated with mass spectrometry-based salivary metabolomic profiles. Metabolomics 2013, 9, 454–463. [Google Scholar] [CrossRef]
- Tiziani, S.; Lopes, V.; Günther, U.L. Early stage diagnosis of oral cancer using 1H NMR–based metabolomics. Neoplasia 2009, 11, 269–276. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lohavanichbutr, P.; Zhang, Y.; Wang, P.; Gu, H.; Nagana Gowda, G.; Djukovic, D.; Buas, M.F.; Raftery, D.; Chen, C. Salivary metabolite profiling distinguishes patients with oral cavity squamous cell carcinoma from normal controls. PLoS ONE 2018, 13, e0204249. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, S.; Kim, H.J.; Song, Y.; Lee, H.A.; Kim, S.; Chung, J. Metabolic phenotyping of saliva to identify possible biomarkers of periodontitis using proton nuclear magnetic resonance. J. Clin. Periodontol. 2021, 48, 1240–1249. [Google Scholar] [CrossRef]
- Romano, F.; Meoni, G.; Manavella, V.; Baima, G.; Tenori, L.; Cacciatore, S.; Aimetti, M. Analysis of salivary phenotypes of generalized aggressive and chronic periodontitis through nuclear magnetic resonance-based metabolomics. J. Periodontol. 2018, 89, 1452–1460. [Google Scholar] [CrossRef] [Green Version]
- Aimetti, M.; Cacciatore, S.; Graziano, A.; Tenori, L. Metabonomic analysis of saliva reveals generalized chronic periodontitis signature. Metabolomics 2012, 8, 465–474. [Google Scholar] [CrossRef]
- Yilmaz, A.; Geddes, T.; Han, B.; Bahado-Singh, R.O.; Wilson, G.D.; Imam, K.; Maddens, M.; Graham, S.F. Diagnostic bi-omarkers of Alzheimer’s disease as identified in saliva using 1H NMR-based metabolomics. J. Alzheimer’s Dis. 2017, 58, 355–359. [Google Scholar] [CrossRef]
- Kumari, S.; Goyal, V.; Kumaran, S.S.; Dwivedi, S.; Srivastava, A.; Jagannathan, N. Quantitative metabolomics of saliva using proton NMR spectroscopy in patients with Parkinson’s disease and healthy controls. Neurol. Sci. 2020, 41, 1201–1210. [Google Scholar] [CrossRef]
- Fidalgo, T.K.S.; Freitas-Fernandes, L.B.; Angeli, R.; Muniz, A.M.S.; Gonsalves, E.; Santos, R.; Nadal, J.; Almeida, F.C.L.; Valente, A.P.; Souza, I.P.R. Salivary metabolite signatures of children with and without dental caries lesions. Metabolomics 2013, 9, 657–666. [Google Scholar] [CrossRef]
- Fidalgo, T.K.S.; Freitas-Fernandes, L.B.; Almeida, F.C.L.; Valente, A.P.; Souza, I.P.R. Longitudinal evaluation of salivary profile from children with dental caries before and after treatment. Metabolomics 2015, 11, 583–593. [Google Scholar] [CrossRef]
- Chong, J.; Wishart, D.S.; Xia, J. Using Metaboanalyst 4.0 for Comprehensive and Integrative Metabolomics Data Analysis. Curr. Protoc. Bioinform. 2019, 68, e86. [Google Scholar] [CrossRef]
- Silwood, C.J.L.; Lynch, E.; Claxson, A.W.D.; Grootveld, M.C. H-1 and C-13 NMR spectroscopic analysis of human saliva. J. Dent. Res. 2002, 81, 422–427. [Google Scholar] [CrossRef]
- Westerhuis, J.A.; Hoefsloot, H.C.J.; Smit, S.; Vis, D.J.; Smilde, A.K.; van Velzen, E.J.J.; Van Duijnhoven, J.P.M.; van Dorsten, F.A. Assessment of PLSDA cross validation. Metabolomics 2008, 4, 81–89. [Google Scholar] [CrossRef] [Green Version]
- Tanner, T.; Harju, L.; Päkkilä, J.; Patinen, P.; Tjäderhane, L.; Anttonen, V. Consumption of snacks and dental caries among Finnish young men: A cross-sectional epidemiological study. Odontology 2020, 108, 486–492. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zahid, N.; Khadka, N.; Ganguly, M.; Varimezova, T.; Turton, B.; Spero, L.; Sokal-Gutierrez, K. Associations between Child Snack and Beverage Consumption, Severe Dental Caries, and Malnutrition in Nepal. Int. J. Environ. Res. Public Health 2020, 17, 7911. [Google Scholar] [CrossRef] [PubMed]
- Dashper, S.G.; Reynolds, E.C. Lactic acid excretion by Streptococcus mutans. Microbiology (Reading) 1996, 142, 33–39. [Google Scholar] [CrossRef] [Green Version]
- Moussa, D.G.; Sharma, A.K.; Mansour, T.; Witthuhn, B.; Perdigao, J.; Rudney, J.D.; Aparicio, C.; Gomez, A. Functional Biomarkers of Ex-Vivo Dental Caries Onset. bioRxiv 2022. [Google Scholar] [CrossRef]
- Havsed, K.; Stensson, M.; Jansson, H.; Carda-Diéguez, M.; Pedersen, A.; Neilands, J.; Svensäter, G.; Mira, A. Bacterial Composition and Metabolomics of Dental Plaque From Adolescents. Front. Cell. Infect. Microbiol. 2021, 11, 716493. [Google Scholar] [CrossRef]
- Angarita-Díaz, M.P.; Simon-Soro, A.; Forero, D.; Balcázar, F.; Sarmiento, L.; Romero, E.; Mira, A. Evaluation of possible biomarkers for caries risk in children 6 to 12 years of age. J. Oral Microbiol. 2021, 13, 1956219. [Google Scholar] [CrossRef] [PubMed]
- Mira, A.; Artacho, A.; Camelo-Castillo, A.; Garcia-Esteban, S.; Simon-Soro, A. Salivary Immune and Metabolic Marker Analysis (SIMMA): A Diagnostic Test to Predict Caries Risk. Diagnostics 2017, 7, 38. [Google Scholar] [CrossRef] [Green Version]
- Silwood, C.J.; Lynch, E.J.; Seddon, S.; Sheerin, A.; Claxson, A.W.; Grootveld, M. 1H-NMR analysis of microbial-derived organic acids in primary root carious lesions and saliva. NMR Biomed. 1999, 12, 345–356. [Google Scholar] [CrossRef]
- Slomiany, B.L.; Murty, V.L.; Slomiany, A. Salivary lipids in health and disease. Prog. Lipid Res. 1985, 24, 311–324. [Google Scholar] [CrossRef]
- Murty, V.L.; Slomiany, B.L.; Laszewicz, W.; Slomiany, A.; Petropoulou, K.; Mandel, I.D. Lipids of developing dental plaque in caries-resistant and caries-susceptible adult people. Arch. Oral Biol. 1985, 30, 171–175. [Google Scholar] [CrossRef]
- Slomiany, B.L.; Murty, V.L.; Aono, M.; Slomiany, A.; Mandel, I.D. Lipid composition of human parotid and submandibular saliva from caries-resistant and caries-susceptible adults. Arch. Oral Biol. 1982, 27, 803–808. [Google Scholar] [CrossRef]
- Beachey, E.H. Bacterial adherence: Adhesin-receptor interactions mediating the attachment of bacteria to mucosal surfaces. J. Infect. Dis. 1981, 143, 325–345. [Google Scholar] [CrossRef]
- BUK, Ö.; YARAT, A. Lipids and Their Importance in Dentistry. Eur. J. Res. Dent. 2020, 4, 89–93. [Google Scholar]
- Sugimoto, M.; Wong, D.T.; Hirayama, A.; Soga, T.; Tomita, M. Capillary electrophoresis mass spectrometry-based saliva metabolomics identified oral, breast and pancreatic cancer-specific profiles. Metabolomics 2010, 6, 78–95. [Google Scholar] [CrossRef] [Green Version]
- Liebsch, C.; Pitchika, V.; Pink, C.; Samietz, S.; Kastenmüller, G.; Artati, A.; Suhre, K.; Adamski, J.; Nauck, M.; Völzke, H.; et al. The Saliva Metabolome in Association to Oral Health Status. J. Dent. Res. 2019, 98, 642–651. [Google Scholar] [CrossRef]
- Brand, H.S.; Jörning, G.; Chamuleau, R.A.; Abraham-Inpijn, L. Effect of a protein-rich meal on urinary and salivary free amino acid concentrations in human subjects. Clin. Chim. Acta 1997, 264, 37–47. [Google Scholar] [CrossRef] [Green Version]
- Nakamura, Y.; Kodama, H.; Satoh, T.; Adachi, K.; Watanabe, S.; Yokote, Y.; Sakagami, H. Diurnal Changes in Salivary Amino Acid Concentrations. In Vivo 2010, 24, 837–842. [Google Scholar]
- Carpenter, G. Salivary factors that maintain the normal oral commensal microflora. J. Dent. Res. 2020, 99, 644–649. [Google Scholar] [CrossRef] [PubMed]
- Washio, J.; Ogawa, T.; Suzuki, K.; Tsukiboshi, Y.; Watanabe, M.; Takahashi, N. Amino acid composition and amino ac-id-metabolic network in supragingival plaque. Biomed. Res.-Tokyo 2016, 37, 251–257. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hayes, M.L.; Hyatt, A.T. The decarboxylation of amino acids by bacteria derived from human dental plaque. Arch. Oral Biol. 1974, 19, 361–369. [Google Scholar] [CrossRef] [PubMed]
- Vranić, L.; Granić, P.; Rajić, Z. Basic amino acid in the pathogenesis of caries. Acta Stomatol. Croat. 1991, 25, 71–76. [Google Scholar] [PubMed]
- Fonteles, C.S.R.; Guerra, M.H.; Ribeiro, T.R.; Mendonça, D.N.; de Carvalho, C.B.; Monteiro, A.J.; Toyama, D.O.; Toyama, M.H.; Fonteles, M.C. Association of free amino acids with caries experience and mutans streptococci levels in whole saliva of children with early childhood caries. Arch. Oral Biol. 2009, 54, 80–85. [Google Scholar] [CrossRef] [PubMed]
- Geller, J. Metabolic significance of collagen in tooth structure. J. Dent. Res. 1958, 37, 276–279. [Google Scholar] [CrossRef]
- Das, S.K.; Harris, R.S. Effect of dietary supplementation of glycine on Caries development and lipids in rat molars. J. Dent. Res. 1975, 54, 987–992. [Google Scholar] [CrossRef]
- McClure, F.J.; Folk, J.E. Lysine and cariogenicity of two experimental rat diets. Science 1955, 122, 557–558. [Google Scholar] [CrossRef]
- Mc, C.F. Effect of lysine provided by different routes on cariogenicity of lysine deficient diet. Proc. Soc. Exp. Biol. Med. 1957, 96, 631–633. [Google Scholar]
- Vanwuyckhuyse, B.C.; Perinpanayagam, H.E.R.; Bevacqua, D.; Raubertas, R.F.; Billings, R.J.; Bowen, W.H.; Tabak, L.A. Association of Free Arginine and Lysine Concentrations in Human Parotid Saliva with Caries Experience. J. Dent. Res. 1995, 74, 686–690. [Google Scholar] [CrossRef]
- Schulz, A.; Lang, R.; Behr, J.; Hertel, S.; Reich, M.; Kümmerer, K.; Hannig, M.; Hannig, C.; Hofmann, T. Targeted metabolomics of pellicle and saliva in children with different caries activity. Sci. Rep. 2020, 10, 697. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tanaka, S.; Machino, M.; Akita, S.; Yokote, Y.; Sakagami, H. Changes in Salivary Amino Acid Composition during Aging. In Vivo 2010, 24, 853–856. [Google Scholar] [PubMed]
Characteristic | Control | ECC | |
---|---|---|---|
Subjects (Male/Female) | 29 (13/16) | 25 (14/11) | |
Age (mean ± SD) | 4.1 ± 0.8 | 4.4 ± 0.7 | |
Body height (mean ± SD) | 106.3 ± 7.1 | 106.4 ± 6.4 | |
Body weight (mean ± SD) | 17.8 ± 2.4 | 17.3 ± 2.4 | |
dfs (decayed and filled teeth surfaces) (mean ± SD) | 0 | 14.0 ± 10.9 | |
dft (decayed and filled teeth) (mean ± SD) | 0 | 5.4 ± 2.7 | |
Snyder test score, n (%) | score 1 | 12 (41.4%) | 8 (32.0%) |
score 2 | 10 (34.5%) | 6 (24.0%) | |
score 3 | 6 (20.7%) | 7 (28.0%) | |
score 4 | 1 (3.4%) | 4 (16.0%) | |
ICDAS classification | Not severe (ICDAS score ≤3) | 6 (24%) | |
Severe (ICDAS score ≥3) | 19 (76%) | ||
Drink consumption frequency, n (%) | Rarely or Never | 9 | 3 |
1–2 times/week | 10 | 12 | |
3–4 times/week | 7 | 6 | |
5–6 times/week | 3 | 3 | |
Daily | 0 | 1 | |
Snack consumption frequency, n (%) | Rarely or Never | 0 | 0 |
1–2 times/week | 0 | 0 | |
3–4 times/week | 11 (38.0%) | 5 (20.0%) | |
5–6 times/week | 5 (17.2%) | 3 (12.0%) | |
Daily | 13 (44.8%) | 17 (68.0%) | |
Daily toothbrushing frequency, n (%) | 1 time | 1 (3.4%) | 0 |
2 times | 11 (38.0%) | 10 (40.0%) | |
3 times | 15 (51.7%) | 15 (60.0%) | |
4 times | 2 (6.9%) | 0 |
Metabolites | Fold Change | log2(FC) | t-test (FDR) | AUC | One-Way ANOVA | |
---|---|---|---|---|---|---|
FDR | Tukey’s HSD | |||||
Glycine | 0.33 | −1.62 | <0.001 | 0.903 | <0.001 | ECC0-Control; ECC2-Control |
Formate | 3.28 | 1.71 | <0.001 | 0.883 | <0.001 | ECC0-Control; ECC2-Control |
Tyrosine | 0.52 | −0.94 | <0.001 | 0.843 | <0.001 | ECC0-Control; ECC2-Control |
GPC | 1.53 | 0.61 | <0.001 | 0.839 | <0.001 | ECC2-Control |
Lysine | 0.52 | −0.93 | <0.001 | 0.839 | <0.001 | ECC0-Control; ECC2-Control |
Isoleucine | 0.47 | −1.08 | <0.001 | 0.836 | <0.001 | ECC0-Control; ECC2-Control |
Proline | 0.25 | −1.98 | <0.001 | 0.822 | 0.0015 | ECC2-Control |
Lactate | 2.53 | 1.34 | 0.0067 | 0.817 | 0.0119 | ECC0-Control; ECC2-Control |
Alanine | 0.60 | −0.74 | 0.0017 | 0.803 | 0.0021 | ECC2-Control |
dfs | dit | Snyder | Snack | Drink | Toothbrushing | Alanine | Formate | Glycine | GPC | Isoleucine | Lactate | Lysine | Proline | Tyrosine | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
dfs | 1 | ||||||||||||||
dft | 0.906 (<0.001) | 1 | |||||||||||||
Snyder | 0.0026 (0.985) | 0.139 (0.318) | 1 | ||||||||||||
Snack | 0.232 (0.092) | 0.264 (0.053) | −0.122 (0.379) | 1 | |||||||||||
Drink | 0.389 (0.004) | 0.337 (0.012) | −0.092 (0.507) | 0.123 (0.375) | 1 | ||||||||||
Toothbrushing | −0.042 (0.763) | 0.0243 (0.862) | −0.217 (0.116) | 0.228 (0.0971) | −0.119 (0.390) | 1 | |||||||||
Alanine | −0.412 (0.0019) | −0.450 (<0.001) | 0.150 (0.280) | −0.088 (0.525) | −0.115 (0.407) | −0.112 (0.418) | 1 | ||||||||
Formate | 0.487 (<0.001) | 0.529 (<0.001) | −0.090 (0.521) | 0.386 (0.004) | 0.124 (0.371) | 0.146 (0.294) | −0.415 (0.0018) | 1 | |||||||
Glycine | −0.468 (<0.001) | −0.555 (<0.001) | −0.038 (0.787) | −0.169 (0.222) | −0.100 (0.471) | −0.126 (0.364) | 0.568 (<0.001) | −0.641 (<0.001) | 1 | ||||||
GPC | 0.550 (<0.001) | 0.605 (<0.001) | −0.017 (0.902) | 0.153 (0.268) | 0.078 (0.575) | 0.206 (0.136) | −0.522 (<0.001) | 0.487 (<0.001) | −0.661 (<0.001) | 1 | |||||
Isoleucine | −0.414 (0.0018) | −0.522 (<0.001) | 0.012 (0.929) | −0.262 (0.0557) | −0.161 (0.245) | −0.320 (0.0182) | 0.562 (<0.001) | −0.534 (<0.001) | 0.698 (<0.001) | −0.643 (<0.001) | 1 | ||||
Lactate | 0.116 (0.403) | 0.198 (0.152) | 0.305 (0.025) | −0.158 (0.253) | −0.047 (0.734) | −0.103 (0.459) | 0.126 (0.365) | 0.159 (0.249) | −0.264 (0.0535) | 0.0779 (0.576) | −0.223 (0.105) | 1 | |||
Lysine | −0.403 (0.0025) | −0.461 (<0.001) | −0.071 (0.608) | −0.246 (0.0724) | −0.116 (0.402) | −0.144 (0.299) | 0.472 (<0.001) | −0.648 (<0.001) | 0.790 (<0.001) | −0.487 (<0.001) | 0.595 (<0.001) | −0.289 (0.0341) | 1 | ||
Proline | −0.356 (0.0082) | −0.428 (0.001) | −0.083 (0.552) | −0.135 (0.330) | −0.060 (0.667) | −0.0442 (0.751) | 0.508 (<0.001) | −0.545 (<0.001) | 0.939 (<0.001) | −0.574 (<0.001) | 0.546 (<0.001) | −0.235 (0.0879) | 0.745 (<0.001) | 1 | |
Tyrosine | −0.391 (0.0035) | −0.492 (<0.001) | −0.088 (0.525) | −0.263 (0.0542) | −0.217 (0.116) | −0.254 (0.0644) | 0.360 (0.0076) | −0.643 (<0.001) | 0.756 (<0.001) | −0.414 (0.0019) | 0.752 (<0.001) | −0.365 (0.0067) | 0.722 (<0.001) | 0.608 (<0.001) | 1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, S.; Song, Y.; Kim, S.; Kim, S.; Na, H.; Lee, S.; Chung, J.; Kim, S. Identification of a Biomarker Panel for Diagnosis of Early Childhood Caries Using Salivary Metabolic Profile. Metabolites 2023, 13, 356. https://doi.org/10.3390/metabo13030356
Kim S, Song Y, Kim S, Kim S, Na H, Lee S, Chung J, Kim S. Identification of a Biomarker Panel for Diagnosis of Early Childhood Caries Using Salivary Metabolic Profile. Metabolites. 2023; 13(3):356. https://doi.org/10.3390/metabo13030356
Chicago/Turabian StyleKim, Seonghye, Yuri Song, Seyeon Kim, Siyeong Kim, Heesam Na, Sujin Lee, Jin Chung, and Suhkmann Kim. 2023. "Identification of a Biomarker Panel for Diagnosis of Early Childhood Caries Using Salivary Metabolic Profile" Metabolites 13, no. 3: 356. https://doi.org/10.3390/metabo13030356
APA StyleKim, S., Song, Y., Kim, S., Kim, S., Na, H., Lee, S., Chung, J., & Kim, S. (2023). Identification of a Biomarker Panel for Diagnosis of Early Childhood Caries Using Salivary Metabolic Profile. Metabolites, 13(3), 356. https://doi.org/10.3390/metabo13030356