Cell Adhesion Molecules in Schizophrenia Patients with Metabolic Syndrome
Abstract
:1. Introduction
2. Materials and Methods
2.1. The Study Population and Sample Collection
- The level of triglycerides above 1.7 mmol/L or an ongoing lipid-lowering therapy.
- The level of high-density lipoprotein cholesterol of less than 1.03 mmol/L in males or less than 1.29 mmol/L in females.
- Blood pressure higher than or equal to 130/85 mm Hg or the use of antihypertensive medication.
- The level of glucose in blood serum higher than or equal to 5.6 mmol/L or previously diagnosed type 2 diabetes mellitus.
2.2. Laboratory Metrics
2.3. Statistical Analysis
3. Results
3.1. Sociodemographic and Clinical Characteristics of the Subjects
3.2. Cell Adhesion Molecules
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sugawara, N.; Yasui-Furukori, N.; Sato, Y.; Umeda, T.; Kishida, I.; Yamashita, H.; Saito, M.; Furukori, H.; Nakagami, T.; Hatakeyama, M.; et al. Prevalence of metabolic syndrome among patients with schizophrenia in Japan. Schizophr. Res. 2010, 123, 244–250. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.; Nurjono, M.; Wong, A.; Salim, A. Prevalence of metabolic syndrome among patients with schizophrenia in Singapore. Ann. Acad. Med. Singap. 2012, 41, 457–462. [Google Scholar] [CrossRef] [PubMed]
- Kornetova, E.G.; Kornetov, A.N.; Mednova, I.A.; Goncharova, A.A.; Gerasimova, V.I.; Pozhidaev, I.V.; Boiko, A.S.; Semke, A.V.; Loonen, A.J.M.; Bokhan, N.A.; et al. Comparative Characteristics of the Metabolic Syndrome Prevalence in Patients With Schizophrenia in Three Western Siberia Psychiatric Hospitals. Front. Psychiatry 2021, 12, 661174. [Google Scholar] [CrossRef] [PubMed]
- Tian, Y.; Liu, D.; Wang, D.; Wang, J.; Xu, H.; Dai, Q.; Andriescue, E.C.; Wu, H.E.; Xiu, M.; Chen, D.; et al. Obesity in Chinese patients with chronic schizophrenia: Prevalence, clinical correlates and relationship with cognitive deficits. Schizophr. Res. 2020, 215, 270–276. [Google Scholar] [CrossRef]
- Sugai, T.; Suzuki, Y.; Yamazaki, M.; Shimoda, K.; Mori, T.; Ozeki, Y.; Matsuda, H.; Sugawara, N.; Yasui-Furukori, N.; Minami, Y.; et al. High Prevalence of Obesity, Hypertension, Hyperlipidemia, and Diabetes Mellitus in Japanese Outpatients with Schizophrenia: A Nationwide Survey. PLoS ONE 2016, 11, e0166429. [Google Scholar] [CrossRef]
- Bovolini, A.; Garcia, J.; Andrade, M.A.; Duarte, J.A. Metabolic syndrome pathophysiology and predisposing factors. Int. J. Sport. Med. 2021, 42, 199–214. [Google Scholar] [CrossRef]
- Lee, J.S.; Kwon, J.S.; Kim, D.; Kim, S.W.; Kim, J.J.; Kim, J.H.; Nam, H.J.; Ryu, S.; Park, I.H.; An, S.K.; et al. Prevalence of metabolic syndrome in [5b] patients with schizophrenia in Korea: A multicenter nationwide cross-sectional study. Psychiatry Investig. 2017, 14, 44. [Google Scholar] [CrossRef] [Green Version]
- Sneller, M.H.; de Boer, N.; Everaars, S.; Schuurmans, M.; Guloksuz, S.; Cahn, W.; Luykx, J.J. Clinical, Biochemical and Genetic Variables Associated With Metabolic Syndrome in Patients With Schizophrenia Spectrum Disorders Using Second-Generation Antipsychotics: A Systematic Review. Front. Psychiatry 2021, 12, 625935. [Google Scholar] [CrossRef]
- Boiko, A.S.; Mednova, I.A.; Kornetova, E.G.; Goncharova, A.A.; Semke, A.V.; Bokhan, N.A.; Ivanova, S.A. Metabolic Hormones in Schizophrenia Patients with Antipsychotic-Induced Metabolic Syndrome. J. Pers. Med. 2022, 12, 1655. [Google Scholar] [CrossRef]
- Salmenniemi, U.; Ruotsalainen, E.; Pihlajamäki, J.; Vauhkonen, I.; Kainulainen, S.; Punnonen, K.; Vanninen, E.; Laakso, M. Multiple abnormalities in glucose and energy metabolism and coordinated changes in levels of adiponectin, cytokines, and adhesion molecules in subjects with metabolic syndrome. Circulation 2004, 110, 3842–3848. [Google Scholar] [CrossRef] [Green Version]
- Grundy, S.M.; Brewer, H.B., Jr.; Cleeman, J.I.; Smith, S.C., Jr.; Lenfant, C.; American Heart Association, & National Heart, Lung, and Blood Institute. Definition of metabolic syndrome: Report of the National Heart, Lung, and Blood Institute/American Heart Association conference on scientific issues related to definition. Circulation 2004, 109, 433–438. [Google Scholar] [CrossRef] [Green Version]
- Deedwania, P.C. Metabolic syndrome and vascular disease: Is nature or nurture leading the new epidemic of cardiovascular disease? Circulation 2004, 109, 2–4. [Google Scholar] [CrossRef] [Green Version]
- Mednova, I.A.; Boiko, A.S.; Kornetova, E.G.; Parshukova, D.A.; Semke, A.V.; Bokhan, N.A.; Loonen, A.J.M.; Ivanova, S.A. Adipocytokines and Metabolic Syndrome in Patients with Schizophrenia. Metabolites 2020, 10, 410. [Google Scholar] [CrossRef]
- De Picker, L.J.; Morrens, M.; Chance, S.A.; Boche, D. Microglia and Brain Plasticity in Acute Psychosis and Schizophrenia Illness Course: A Meta-Review. Front. Psychiatry 2017, 8, 238. [Google Scholar] [CrossRef] [Green Version]
- Mondelli, V.; Vernon, A.C.; Turkheimer, F.; Dazzan, P.; Pariante, C.M. Brain microglia in psychiatric disorders. Lancet Psychiatry 2017, 4, 563–572. [Google Scholar] [CrossRef] [Green Version]
- Sheikh, M.A.; O’Connell, K.S.; Lekva, T.; Szabo, A.; Akkouh, I.A.; Osete, J.R.; Agartz, I.; Engh, J.A.; Andreou, D.; Boye, B.; et al. Systemic Cell Adhesion Molecules in Severe Mental Illness: Potential Role of Intercellular CAM-1 in Linking Peripheral and Neuroinflammation. Biol. Psychiatry 2023, 93, 187–196. [Google Scholar] [CrossRef]
- Levy, A.D.; Omar, M.H.; Koleske, A.J. Extracellular matrix control of dendritic spine and synapse structure and plasticity in adulthood. Front. Neuroanat. 2014, 8, 116. [Google Scholar] [CrossRef] [Green Version]
- Bellon, A.; Krebs, M.O.; Jay, T.M. Factoring neurotrophins into a neurite-based pathophysiological model of schizophrenia. Prog. Neurobiol. 2011, 94, 77–90. [Google Scholar] [CrossRef]
- Merelo, V.; Durand, D.; Lescallette, A.R.; Vrana, K.E.; Hong, L.E.; Faghihi, M.A.; Bellon, A. Associating schizophrenia, long non-coding RNAs and neurostructural dynamics. Front. Mol. Neurosci. 2015, 8, 57. [Google Scholar] [CrossRef] [Green Version]
- Radu, G.; Luca, C.; Petrescu, L.; Bordejevic, D.A.; Tomescu, M.C.; Andor, M.; Cîtu, I.; Mavrea, A.; Buda, V.; Tomescu, C.; et al. The Predictive Value of Endothelial Inflammatory Markers in the Onset of Schizophrenia. Neuropsychiatr. Dis. Treat. 2020, 16, 545–555. [Google Scholar] [CrossRef] [Green Version]
- Müller, N. The Role of Intercellular Adhesion Molecule-1 in the Pathogenesis of Psychiatric Disorders. Front. Pharmacol. 2019, 10, 1251. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kong, D.H.; Kim, Y.K.; Kim, M.R.; Jang, J.H.; Lee, S. Emerging Roles of Vascular Cell Adhesion Molecule-1 (VCAM-1) in Immunological Disorders and Cancer. Int. J. Mol. Sci. 2018, 19, 1057. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brake, D.K.; Smith, E.O.; Mersmann, H.; Smith, C.W.; Robker, R.L. ICAM-1 expression in adipose tissue: Effects of diet-induced obesity in mice. Am. J. Physiol. Cell Physiol. 2006, 291, C1232–C1239. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gerhardt, C.C.; Romero, I.A.; Cancello, R.; Camoin, L.; Strosberg, A.D. Chemokines control fat accumulation and leptin secretion by cultured human adipocytes. Mol. Cell. Endocrinol. 2001, 175, 81–92. [Google Scholar] [CrossRef]
- Entman, M.L.; Youker, K.; Shoji, T.; Kukielka, G.; Shappell, S.B.; Taylor, A.A.; Smith, C.W. Neutrophil induced oxidative injury of cardiac myocytes. A compartmented system requiring CD11b/CD18-ICAM-1 adherence. J. Clin. Investig. 1992, 90, 1335–1345. [Google Scholar] [CrossRef] [Green Version]
- Berner, R.; Niemeyer, C.M.; Leititis, J.U.; Funke, A.; Schwab, C.; Rau, U.; Richter, K.; Tawfeek, M.S.; Clad, A.; Brandis, M. Plasma levels and gene expression of granulocyte colony-stimulating factor, tumor necrosis factor-alpha, interleukin (IL)-1beta, IL-6, IL-8, and soluble intercellular adhesion molecule-1 in neonatal early onset sepsis. Pediatr. Res. 1998, 44, 469–477. [Google Scholar] [CrossRef] [Green Version]
- Güler, S.; Cakir, B.; Demirbas, B.; Yönem, A.; Odabasi, E.; Onde, U.; Aykut, O.; Gürsoy, G. Plasma soluble intercellular adhesion molecule 1 levels are increased in type 2 diabetic patients with nephropathy. Horm. Res. 2002, 58, 67–70. [Google Scholar] [CrossRef]
- Coata, G.; Pennacchi, L.; Bini, V.; Liotta, L.; Di Renzo, G.C. Soluble adhesion molecules: Marker of pre-eclampsia and intrauterine growth restriction. J. Matern. Fetal Neonatal Med. 2002, 12, 28–34. [Google Scholar] [CrossRef]
- Blankenberg, S.; Barbaux, S.; Tiret, L. Adhesion molecules and atherosclerosis. Atherosclerosis 2003, 170, 191–203. [Google Scholar] [CrossRef]
- Tsakadze, N.L.; Sen, U.; Zhao, Z.; Sithu, S.D.; English, W.R.; D’Souza, S.E. Signals mediating cleavage of intercellular adhesion molecule-1. Am. J. Physiol. Cell Physiol. 2004, 287, C55–C63. [Google Scholar] [CrossRef] [Green Version]
- Targher, G.; Bonadonna, R.C.; Alberiche, M.; Zenere, M.B.; Muggeo, M.; Bonora, E. Relation between soluble adhesion molecules and insulin sensitivity in type 2 diabetic individuals: Role of adipose tissue. Diabetes Care 2001, 24, 1961–1966. [Google Scholar] [CrossRef] [Green Version]
- Weyer, C.; Yudkin, J.S.; Stehouwer, C.D.; Schalkwijk, C.G.; Pratley, R.E.; Tataranni, P.A. Humoral markers of inflammation and endothelial dysfunction in relation to adiposity and in vivo insulin action in Pima Indians. Atherosclerosis 2002, 161, 233–242. [Google Scholar] [CrossRef]
- Schram, M.T.; Stehouwer, C.D. Endothelial dysfunction, cellular adhesion molecules and the metabolic syndrome. Horm. Metab. Res. 2005, 37 (Suppl. S1), 49–55. [Google Scholar] [CrossRef]
- Blank, T.; Detje, C.N.; Spieß, A.; Hagemeyer, N.; Brendecke, S.M.; Wolfart, J.; Staszewski, O.; Zöller, T.; Papageorgiou, I.; Schneider, J.; et al. Brain Endothelial- and Epithelial-Specific Interferon Receptor Chain 1 Drives Virus-Induced Sickness Behavior and Cognitive Impairment. Immunity 2016, 44, 901–912. [Google Scholar] [CrossRef] [Green Version]
- Meixensberger, S.; Kuzior, H.; Fiebich, B.L.; Süß, P.; Runge, K.; Berger, B.; Nickel, K.; Denzel, D.; Schiele, M.A.; Michel, M.; et al. Upregulation of sICAM-1 and sVCAM-1 Levels in the Cerebrospinal Fluid of Patients with Schizophrenia Spectrum Disorders. Diagnostics 2021, 11, 1134. [Google Scholar] [CrossRef]
- An, H.; Zhou, L.; Yu, Y.; Fan, H.; Fan, F.; Tan, S.; Wang, Z.; Z, B.; Shi, J.; Yang, F.; et al. Serum NCAM levels and cognitive deficits in first episode schizophrenia patients versus health controls. Schizophr. Res. 2018, 192, 457–458. [Google Scholar] [CrossRef] [Green Version]
- Rønn, L.C.; Hartz, B.P.; Bock, E. The neural cell adhesion molecule (NCAM) in development and plasticity of the nervous system. Exp. Gerontol. 1998, 33, 853–864. [Google Scholar] [CrossRef]
- Kiss, J.Z.; Muller, D. Contribution of the neural cell adhesion molecule to neuronal and synaptic plasticity. Rev. Neurosci. 2001, 12, 297–310. [Google Scholar] [CrossRef]
- Kiryushko, D.; Berezin, V.; Bock, E. Regulators of neurite outgrowth: Role of cell adhesion molecules. Ann. N. Y. Acad. Sci. 2004, 1014, 140–154. [Google Scholar] [CrossRef]
- An, H.; Qin, J.; Fan, H.; Fan, F.; Tan, S.; Wang, Z.; Shi, J.; Yang, F.; Tan, Y.; Huang, X.F. Decreased serum NCAM is positively correlated with hippocampal volumes and negatively correlated with positive symptoms in first-episode schizophrenia patients. J. Psychiatr. Res. 2020, 131, 108–113. [Google Scholar] [CrossRef]
- Gumuslu, E.; Cine, N.; Ertan Gökbayrak, M.; Mutlu, O.; Komsuoglu Celikyurt, I.; Ulak, G. Exenatide Alters Gene Expression of Neural Cell Adhesion Molecule (NCAM), Intercellular Cell Adhesion Molecule (ICAM), and Vascular Cell Adhesion Molecule (VCAM) in the Hippocampus of Type 2 Diabetic Model Mice. Med. Sci. Monit. 2016, 22, 2664–2669. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Frei, T.; von Bohlen und Halbach, F.; Wille, W.; Schachner, M. Different extracellular domains of the neural cell adhesion molecule (N-CAM) are involved in different functions. J. Cell Biol. 1992, 118, 177–194. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Doherty, P.; Walsh, F.S. Signal transduction events underlying neurite outgrowth stimulated by cell adhesion molecules. Curr. Opin. Neurobiol. 1994, 4, 49–55. [Google Scholar] [CrossRef] [PubMed]
- Kay, S.R.; Fiszbein, A.; Opler, L.A. The positive and negative syndrome scale (PANSS) for schizophrenia. Schizophr. Bull. 1987, 13, 261–276. [Google Scholar] [CrossRef]
- Andreasen, N.C.; Pressler, M.; Nopoulos, P.; Miller, D.; Ho, B.C. Antipsychotic dose equivalents and dose-years: A standardized method for comparing exposure to different drugs. Biol. Psychiatry 2010, 67, 255–262. [Google Scholar] [CrossRef] [Green Version]
- Alberti, K.G.; Zimmet, P.; Shaw, J. Metabolic syndrome–a new world-wide definition. A Consensus Statement from the International Diabetes Federation. Diabet. Med. 2006, 23, 469–480. [Google Scholar] [CrossRef]
- Sytnyk, V.; Leshchyns’ka, I.; Schachner, M. Neural Cell Adhesion Molecules of the Immunoglobulin Superfamily Regulate Synapse Formation, Maintenance, and Function. Trends Neurosci. 2017, 40, 295–308. [Google Scholar] [CrossRef]
- Levchuk, L.A.; Meeder, E.M.G.; Roschina, O.V.; Loonen, A.J.M.; Boiko, A.S.; Michalitskaya, E.V.; Epimakhova, E.V.; Losenkov, I.S.; Simutkin, G.G.; Bokhan, N.A.; et al. Exploring Brain Derived Neurotrophic Factor and Cell Adhesion Molecules as Biomarkers for the Transdiagnostic Symptom Anhedonia in Alcohol Use Disorder and Comorbid Depression. Front. Psychiatry 2020, 11, 296. [Google Scholar] [CrossRef] [Green Version]
- Nguyen, T.T.; Dev, S.I.; Chen, G.; Liou, S.C.; Martin, A.S.; Irwin, M.R.; Carroll, J.E.; Tu, X.; Jeste, D.V.; Eyler, L. Abnormal levels of vascular endothelial biomarkers in schizophrenia. Eur. Arch. Psychiatry Clin. Neurosci. 2018, 268, 849–860. [Google Scholar] [CrossRef] [Green Version]
- Cai, H.Q.; Catts, V.S.; Webster, M.J.; Galletly, C.; Liu, D.; O’Donnell, M.; Weickert, T.W.; Weickert, C.S. Increased macrophages and changed brain endothelial cell gene expression in the frontal cortex of people with schizophrenia displaying inflammation. Mol. Psychiatry 2020, 25, 761–775. [Google Scholar] [CrossRef] [Green Version]
- Reininghaus, E.Z.; Lackner, N.; Birner, A.; Bengesser, S.; Fellendorf, F.T.; Platzer, M.; Rieger, A.; Queissner, R.; Kainzbauer, N.; Reininghaus, B.; et al. Extracellular matrix proteins matrix metallopeptidase 9 (MMP9) and soluble intercellular adhesion molecule 1 (sICAM-1) and correlations with clinical staging in euthymic bipolar disorder. Bipolar Disord. 2016, 18, 155–163. [Google Scholar] [CrossRef]
- Pantović-Stefanović, M.; Petronijević, N.; Dunjić-Kostić, B.; Velimirović, M.; Nikolić, T.; Jurišić, V.; Lačković, M.; Damjanović, A.; Totić-Poznanović, S.; Jovanović, A.A.; et al. sVCAM-1, sICAM-1, TNF-α and IL-6 levels in bipolar disorder type I: Acute, longitudinal and therapeutic implications. World J. Biol. Psychiatry 2018, 19 (Suppl. S2), S41–S51. [Google Scholar] [CrossRef]
- Schwarz, M.J.; Riedel, M.; Ackenheil, M.; Müller, N. Decreased levels of soluble intercellular adhesion molecule-1 (sICAM-1) in unmedicated and medicated schizophrenic patients. Biol. Psychiatry 2000, 47, 29–33. [Google Scholar] [CrossRef]
- Kronig, H.; Riedel, M.; Schwarz, M.J.; Strassnig, M.; Moller, H.J.; Ackenheil, M.; Muller, N. ICAM G241A polymorphism and soluble ICAM-1 serum levels: Evidence for an active immune process in schizophrenia. Neuroimmunomodulation 2005, 12, 54–59. [Google Scholar] [CrossRef] [Green Version]
- Boiko, A.S.; Mednova, I.A.; Kornetova, E.G.; Gerasimova, V.I.; Kornetov, A.N.; Loonen, A.J.M.; Bokhan, N.A.; Ivanova, S.A. Cytokine Level Changes in Schizophrenia Patients with and without Metabolic Syndrome Treated with Atypical Antipsychotics. Pharmaceuticals 2021, 14, 446. [Google Scholar] [CrossRef]
- Sharp, C.; Warren, A.; Oshima, T.; Williams, L.; Li, J.H.; Alexander, J.S. Poly ADP ribose-polymerase inhibitors prevent the upregulation of ICAM-1 and E-selectin in response to Th1 cytokine stimulation. Inflammation 2001, 25, 157–163. [Google Scholar] [CrossRef]
- Almutairi, M.M.; Gong, C.; Xu, Y.G.; Chang, Y.; Shi, H. Factors controlling permeability of the blood-brain barrier. Cell. Mol. Life Sci. 2016, 73, 57–77. [Google Scholar] [CrossRef]
- Loonen, A.J.M.; Ivanova, S.A. Circuits regulating pleasure and happiness: Evolution and role in mental disorders. Acta Neuropsychiatr. 2018, 30, 29–42. [Google Scholar] [CrossRef] [Green Version]
- Loonen, A.J.M.; Ivanova, S.A. Circuits regulating pleasure and happiness—Focus on potential biomarkers for circuitry including the habenuloid complex. Acta Neuropsychiatr. 2022, 34, 229–239. [Google Scholar] [CrossRef]
- Hubbard, A.K.; Rothlein, R. Intercellular adhesion molecule-1 (ICAM-1) expression and cell signaling cascades. Free Radic. Biol. Med. 2000, 28, 1379–1386. [Google Scholar] [CrossRef]
- Lim, S.C.; Caballero, A.E.; Smakowski, P.; LoGerfo, F.W.; Horton, E.S.; Veves, A. Soluble intercellular adhesion molecule, vascular cell adhesion molecule, and impaired microvascular reactivity are early markers of vasculopathy in type 2 diabetic individuals without microalbuminuria. Diabetes Care 1999, 22, 1865–1870. [Google Scholar] [CrossRef] [PubMed]
- Luc, G.; Arveiler, D.; Evans, A.; Amouyel, P.; Ferrieres, J.; Bard, J.M.; Elkhalil, L.; Fruchart, J.C.; Ducimetiere, P.; PRIME Study Group. Circulating soluble adhesion molecules ICAM-1 and VCAM-1 and incident coronary heart disease: The PRIME Study. Atherosclerosis 2003, 170, 169–176. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hsu, L.A.; Ko, Y.L.; Wu, S.; Teng, M.S.; Chou, H.H.; Chang, C.J.; Chang, P.Y. Association of soluble intercellular adhesion molecule-1 with insulin resistance and metabolic syndrome in Taiwanese. Metabolism 2009, 58, 983–988. [Google Scholar] [CrossRef] [PubMed]
- Krakoff, J.; Funahashi, T.; Stehouwer, C.D.; Schalkwijk, C.G.; Tanaka, S.; Matsuzawa, Y.; Kobes, S.; Tataranni, P.A.; Hanson, R.L.; Knowler, W.C.; et al. Inflammatory markers, adiponectin, and risk of type 2 diabetes in the Pima Indian. Diabetes Care 2003, 26, 1745–1751. [Google Scholar] [CrossRef] [Green Version]
- Leinonen, E.; Hurt-Camejo, E.; Wiklund, O.; Hultén, L.M.; Hiukka, A.; Taskinen, M.R. Insulin resistance and adiposity correlate with acute-phase reaction and soluble cell adhesion molecules in type 2 diabetes. Atherosclerosis 2003, 166, 387–394. [Google Scholar] [CrossRef]
- Bagg, W.; Ferri, C.; Desideri, G.; Gamble, G.; Ockelford, P.; Braatvedt, G.D. The influences of obesity and glycemic control on endothelial activation in patients with type 2 diabetes. J. Clin. Endocrinol. Metab. 2001, 86, 5491–5497. [Google Scholar] [CrossRef]
- Gorden, A.; Yang, R.; Yerges-Armstrong, L.M.; Ryan, K.A.; Speliotes, E.; Borecki, I.B.; Harris, T.B.; Chu, X.; Wood, G.C.; Still, C.D.; et al. Genetic variation at NCAN locus is associated with inflammation and fibrosis in non-alcoholic fatty liver disease in morbid obesity. Hum. Hered. 2013, 75, 34–43. [Google Scholar] [CrossRef] [Green Version]
Parameter | Patients with MetS n = 82 | Patients without MetS n = 129 | p-Value | |
---|---|---|---|---|
Sex | Female, n (%) | 38 (46.3%) | 70 (54.3%) | 0.145 |
Male, n (%) | 44 (53.7%) | 59 (45.7%) | ||
Age, years (Me [Q1; Q3]) | 44 [34; 52] | 33 [28; 39] | <0.001 * | |
Age of SCZ onset, years (Me [Q1; Q3]) | 26 [21; 31] | 23 [19; 29] | 0.002 * | |
Duration of disorder, years (Me [Q1; Q3]) | 16 [8.75; 22] | 8 [4; 15] | <0.001 * | |
PANSS, total score (Me [Q1; Q3]) | 100 [85; 109] | 100 [88; 111] | 0.282 | |
Total CPZeq (Me [Q1; Q3]) | 434.8 [225; 687.5] | 450 [250; 750] | 0.962 | |
BMI (Me [Q1; Q3]) | 31.15 [26.9; 35.58] | 24 [21.9; 28.4] | <0.001 * | |
Waist circumference, cm (mean ± SD) | 104.82 ± 12.08 | 85.83 ± 13.22 | <0.001 ** | |
Normal weight (BMI < 25), n (%) | 8 (9.2%) | 74 (57.4%) | <0.001 * | |
Overweight or obesity (BMI > 25), n (%) | 74 (90.8%) | 55 (42.6%) |
Parameter, ng/mL | Patients with MetS n = 82 | Patients without MetS n = 129 | p-Value |
---|---|---|---|
sICAM-1 | 138.97 [104.12; 174.03] | 117.88 [91.64; 157.32] | 0.039 * |
sNCAM | 235.36 [203.26; 296.58] | 247.31 [212.26; 305.12] | 0.279 |
sVCAM-1 | 937.09 [813.52; 1153.77] | 1027.82 [905.17; 1201.98] | 0.033 * |
Parameter, ng/mL | Normal (BMI < 25) n = 82 | Overweight and Obesity (BMI ≥ 25) n = 129 | p-Value |
---|---|---|---|
sICAM-1 | 106.63 [82.16; 138.77] | 138.67 [109.07; 176.09] | <0.001 * |
sNCAM | 246.71 [215.03; 304.72] | 240.27 [210; 30.31] | 0.5 |
sVCAM-1 | 1009.25 [847.58; 1160.28] | 1009.39 [871.86; 1175.2] | 0.958 |
Parameter | sICAM-1 | sNCAM | sVCAM-1 | |
---|---|---|---|---|
Age | ρ p-value | 0.111 0.214 | −0.202 * 0.022 | 0.090 0.309 |
Duration of illness | ρ p-value | −0.050 0.575 | −0.111 0.211 | 0.105 0.235 |
BMI | ρ p-value | 0.204 * 0.036 | −0.027 0.785 | 0.083 0.396 |
sICAM-1 | ρ p-value | 1 | 0.354 * <0.001 | 0.444 * <0.001 |
sNCAM | ρ p-value | 0.354 * <0.001 | 1 | 0.501 * <0.001 |
sVCAM-1 | ρ p-value | 0.444 * <0.001 | 0.501 * <0.001 | 1 |
sICAM-1 | sNCAM | sVCAM-1 | ||
---|---|---|---|---|
Age | ρ p-value | 0.021 0.851 | −0.110 0.327 | 0.088 0.438 |
Duration of illness | ρ p-value | −0.035 0.758 | −0.133 0.235 | −0.081 0.476 |
BMI | ρ p-value | 0.015 0.900 | −0.090 0.453 | −0.072 0.551 |
sICAM-1 | ρ p-value | 1 | 0.170 0.126 | 0.364 * 0.001 |
sNCAM | ρ p-value | 0.170 0.126 | 1 | 0.438 * <0.001 |
sVCAM-1 | ρ p-value | 0.364 * 0.001 | 0.438 * <0.001 | 1 |
Variable | B | p-Value | Adjusted R2 |
---|---|---|---|
sICAM-1 | |||
Age, years | −0.0230 | 0.845 | −0.006 |
Duration of illness, years | −0.045 | 0.675 | |
MetS | 0.091 | 0.223 | |
sNCAM | |||
Age, years | −0.112 | 0.275 | 0.001 |
Duration of illness, years | 0.002 | 0.984 | |
MetS | −0.028 | 0.701 | |
sVCAM-1 | |||
Age, years | 0.148 | 0.149 | 0.013 |
Duration of illness, years | −0.081 | 0.423 | |
MetS | −0.157 | 0.034 * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Boiko, A.S.; Mednova, I.A.; Kornetova, E.G.; Semke, A.V.; Bokhan, N.A.; Ivanova, S.A. Cell Adhesion Molecules in Schizophrenia Patients with Metabolic Syndrome. Metabolites 2023, 13, 376. https://doi.org/10.3390/metabo13030376
Boiko AS, Mednova IA, Kornetova EG, Semke AV, Bokhan NA, Ivanova SA. Cell Adhesion Molecules in Schizophrenia Patients with Metabolic Syndrome. Metabolites. 2023; 13(3):376. https://doi.org/10.3390/metabo13030376
Chicago/Turabian StyleBoiko, Anastasiia S., Irina A. Mednova, Elena G. Kornetova, Arkadiy V. Semke, Nikolay A. Bokhan, and Svetlana A. Ivanova. 2023. "Cell Adhesion Molecules in Schizophrenia Patients with Metabolic Syndrome" Metabolites 13, no. 3: 376. https://doi.org/10.3390/metabo13030376
APA StyleBoiko, A. S., Mednova, I. A., Kornetova, E. G., Semke, A. V., Bokhan, N. A., & Ivanova, S. A. (2023). Cell Adhesion Molecules in Schizophrenia Patients with Metabolic Syndrome. Metabolites, 13(3), 376. https://doi.org/10.3390/metabo13030376