Dietary Supplementation of Chestnut Tannins in Prepartum Dairy Cows Improves Antioxidant Defense Mechanisms Interacting with Thyroid Status
Abstract
:1. Introduction
2. Materials and Methods
2.1. Blood Samples and Analyses
2.2. Metabolite and Hormone Analyses
2.3. Estimation of Total Antioxidant Capacity in Blood Serum
2.4. Estimation of Superoxide Dismutase (SOD) Activity in Blood Serum
2.5. Estimation of Glutathione Peroxidase (GPx) Activity in Blood Serum
2.6. Determination of Lipid Peroxidation (TBARS)
2.7. Determination of Reduced Glutathione (GSH)
2.8. Statistical Analyses
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bionaz, M.; Trevisi, E.; Calamari, L.; Librandi, F.; Ferrari, A.; Bertoni, G. Plasma Paraoxonase, Health, Inflammatory Conditions, and Liver Function in Transition Dairy Cows. J. Dairy Sci. 2007, 90, 1740–1750. [Google Scholar] [CrossRef] [Green Version]
- Sordillo, L.M.; Mavangira, V.; Sordillo, L.M.; Mavangira, V. The Nexus between Nutrient Metabolism, Oxidative Stress and Inflammation in Transition Cows. Anim. Prod. Sci. 2014, 54, 1204–1214. [Google Scholar] [CrossRef]
- Tsuchiya, Y.; Kawahara, N.; Kim, Y.-H.; Ichijo, T.; Sato, S. Changes in Oxidative Stress Parameters in Healthy and Diseased Holstein Cows during the Transition Period in Yamagata Prefecture, Japan. J. Vet. Med. Sci. 2020, 82, 955–961. [Google Scholar] [CrossRef]
- Bernabucci, U.; Ronchi, B.; Lacetera, N.; Nardone, A. Influence of Body Condition Score on Relationships Between Metabolic Status and Oxidative Stress in Periparturient Dairy Cows. J. Dairy Sci. 2005, 88, 2017–2026. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abuelo, A.; Hernández, J.; Benedito, J.L.; Castillo, C. The Importance of the Oxidative Status of Dairy Cattle in the Periparturient Period: Revisiting Antioxidant Supplementation. J. Anim. Physiol. Anim. Nutr. 2015, 99, 1003–1016. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Surai, P.F.; Kochish, I.I.; Fisinin, V.I.; Juniper, D.T. Revisiting Oxidative Stress and the Use of Organic Selenium in Dairy Cow Nutrition. Animals 2019, 9, 462. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, H.W.; Zhou, D.W.; Li, K. Effects of Chestnut Tannins on Performance and Antioxidative Status of Transition Dairy Cows. J. Dairy Sci. 2013, 96, 5901–5907. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, Q.; Liu, X.; Zhao, G.; Hu, T.; Wang, Y. Potential and Challenges of Tannins as an Alternative to In-Feed Antibiotics for Farm Animal Production. Anim. Nutr./Zhongguo Xu Mu Shou Yi Xue Hui 2018, 4, 137–150. [Google Scholar] [CrossRef]
- Prodanović, R.; Nedić, S.; Simeunović, P.; Borozan, S.; Nedić, S.; Bojkovski, J.; Kirovski, D.; Vujanac, I. Effects of Chestnut Tannins Supplementation of Prepartum Moderate Yielding Dairy Cows on Metabolic Health, Antioxidant and Colostrum Indices. Ann. Anim. Sci. 2021, 21, 609–621. [Google Scholar] [CrossRef]
- Makkar, H.P.S.; Francis, G.; Becker, K. Bioactivity of Phytochemicals in Some Lesser-Known Plants and Their Effects and Potential Applications in Livestock and Aquaculture Production Systems. Animal 2007, 1, 1371–1391. [Google Scholar] [CrossRef] [Green Version]
- Jayanegara, A.; Togtokhbayar, N.; Makkar, H.P.S.; Becker, K. Tannins Determined by Various Methods as Predictors of Methane Production Reduction Potential of Plants by an in Vitro Rumen Fermentation System. Anim. Feed Sci. Technol. 2009, 150, 230–237. [Google Scholar] [CrossRef]
- Waghorn, G.; Salem, H.B.; Priolo, A.; Morand-Fehr, P.; Udén, P.; Waghorn, G. Beneficial and Detrimental Effects of Dietary Condensed Tannins for Sustainable Sheep and Goat Production-Progress and Challenges. Anim. Feed Sci. Technol. 2008, 147, 116–139. [Google Scholar] [CrossRef]
- Mueller-Harvey, I. Unravelling the Conundrum of Tannins in Animal Nutrition and Health. J. Sci. Food Agric. 2006, 86, 2010–2037. [Google Scholar] [CrossRef]
- Wang, Y.; McAllister, T.A.; Acharya, S. Condensed Tannins in Sainfoin: Composition, Concentration, and Effects on Nutritive and Feeding Value of Sainfoin Forage. Crop Sci. 2015, 55, 13–22. [Google Scholar] [CrossRef]
- Jayanegara, A.; Goel, G.; Makkar, H.P.S.; Becker, K. Divergence between Purified Hydrolysable and Condensed Tannin Effects on Methane Emission, Rumen Fermentation and Microbial Population in Vitro. Anim. Feed Sci. Technol. 2015, 209, 60–68. [Google Scholar] [CrossRef]
- Živković, J.; Zeković, Z.; Mujić, I.; Vidovic, S.; Cvetkovič, D.; Lepojević, Ž.; Nikolicacute, G.; Trutič, N. Scavenging Capacity of Superoxide Radical and Screening of Antimicrobial Activity of Castanea Sativa Mill. Extracts. Czech J. Food Sci. 2010, 28, 61–68. [Google Scholar] [CrossRef] [Green Version]
- Kochman, J.; Jakubczyk, K.; Bargiel, P.; Janda-Milczarek, K. The Influence of Oxidative Stress on Thyroid Diseases. Antioxidants 2021, 10, 1442. [Google Scholar] [CrossRef]
- Santi, A.; Duarte, M.M.M.F.; Moresco, R.N.; Menezes, C.; Bagatini, M.D.; Schetinger, M.R.C.; Loro, V.L. Association between Thyroid Hormones, Lipids and Oxidative Stress Biomarkers in Overt Hypothyroidism. Clin. Chem. Lab. Med. 2010, 48, 1635–1639. [Google Scholar] [CrossRef]
- Mancini, A.; Di Segni, C.; Raimondo, S.; Olivieri, G.; Silvestrini, A.; Meucci, E.; Currò, D. Thyroid Hormones, Oxidative Stress, and Inflammation. Mediat. Inflamm. 2016, 2016, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Martinez, B.; Soñanez-Organis, J.G.; Godoy-Lugo, J.A.; Horin, L.J.; Crocker, D.E.; Ortiz, R.M. Thyroid Hormone-Stimulated Increases in PGC-1α and UCP2 Promote Life History-Specific Endocrine Changes and Maintain a Lipid-Based Metabolism. Am. J. Physiol. Integr. Comp. Physiol. 2017, 312, R189–R196. [Google Scholar] [CrossRef] [Green Version]
- Oktay, S.; Uslu, L.; Emekli, N. Effects of Altered Thyroid States on Oxidative Stress Parameters in Rats. J. Basic Clin. Physiol. Pharmacol. 2017, 28, 620–624. [Google Scholar] [CrossRef] [PubMed]
- Weitzel, J.M.; Viergutz, T.; Albrecht, D.; Bruckmaier, R.; Schmicke, M.; Tuchscherer, A.; Koch, F.; Kuhla, B. Hepatic Thyroid Signaling of Heat-Stressed Late Pregnant and Early Lactating Cows. J. Endocrinol. 2017, 234, 129–141. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bisschop, P.H.; Toorians, A.W.; Edert, E.; Wiersinga, W.M.; Gooren, L.J.; Fliers, E. The Effects of Sex-Steroid Administration on the Pituitary-Thyroid Axis in Transsexuals. Eur. J. Endocrinol. 2006, 155, 11–16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Šamanc, H.; Stojić, V.; Kirovski, D.; Jovanović, M.; Cernescu, H.; Vujanac, I. Thyroid Hormones Concentrations during the Mid-Dry Period: An Early Indicator of Fatty Liver in Holstein-Friesian Dairy Cows. J. Thyroid Res. 2010, 2010, 897602. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fiore, E.; Giambelluca, S.; Morgante, M.; Piccione, G.; Vazzana, I.; Contiero, B.; Orefice, T.; Arfuso, F.; Gianesella, M. Changes in Thyroid Hormones Levels and Metabolism in Dairy Cows around Calving. Acta Vet. Brno. 2017, 67, 318–330. [Google Scholar] [CrossRef] [Green Version]
- Guan, R.; Wang, D.; Wang, B.; Jiang, L.; Liu, J. Prognostic Potential of Pre-Partum Blood Biochemical and Immune Variables for Postpartum Mastitis Risk in Dairy Cows. BMC Vet. Res. 2020, 16, 136. [Google Scholar] [CrossRef] [PubMed]
- Oyaizu, M. Studies on Products of Browning Reaction. Antioxidative Activities of Products of Browning Reaction Prepared from Glucosamine. Jpn. J. Nutr. Diet. 1986, 44, 307–315. [Google Scholar] [CrossRef] [Green Version]
- Sun, M.; Zigman, S. An Improved Spectrophotometric Assay for Superoxide Dismutase Based on Epinephrine Autoxidation. Anal. Biochem. 1978, 90, 81–89. [Google Scholar] [CrossRef]
- Günzler, W.A.; Kremers, H.; Flohé, L. An Improved Coupled Test Procedure for Glutathione Peroxidase (EC 1-11-1-9-) in Blood. Z. Klin. Chem. Klin. Biochem. 1974, 12, 444–448. [Google Scholar] [CrossRef] [Green Version]
- Gutteridge, J.M. Lipid Peroxidation and Antioxidants as Biomarkers of Tissue Damage. Clin. Chem. 1995, 41, 1819–1828. [Google Scholar] [CrossRef]
- Traverso, N.; Menini, S.; Maineri, E.P.; Patriarca, S.; Odetti, P.; Cottalasso, D.; Marinari, U.M.; Pronzato, M.A. Malondialdehyde, a Lipoperoxidation-Derived Aldehyde, Can Bring About Secondary Oxidative Damage To Proteins. J. Gerontol. Ser. A Biol. Sci. Med. Sci. 2004, 59, B890–B895. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Giustarini, D.; Dalle-Donne, I.; Milzani, A.; Fanti, P.; Rossi, R. Analysis of GSH and GSSG after Derivatization with N-Ethylmaleimide. Nat. Protoc. 2013, 8, 1660–1669. [Google Scholar] [CrossRef] [PubMed]
- Al-Naimi, M.; Hussien, N.; Rasheed, H.; Al-kuraishy, H.; Al-Gareeb, A. Levothyroxine Improves Paraoxonase (PON-1) Serum Levels in Patients with Primary Hypothyroidism: Case–Control Study. J. Adv. Pharm. Technol. Res. 2018, 9, 113. [Google Scholar] [CrossRef]
- Baskol, G.; Atmaca, H.; Tanrıverdi, F.; Baskol, M.; Kocer, D.; Bayram, F. Oxidative Stress and Enzymatic Antioxidant Status in Patients with Hypothyroidism before and after Treatment. Exp. Clin. Endocrinol. Diabetes 2007, 115, 522–526. [Google Scholar] [CrossRef]
- Soldado, D.; Bessa, R.J.B.; Jerónimo, E. Condensed Tannins as Antioxidants in Ruminants—Effectiveness and Action Mechanisms to Improve Animal Antioxidant Status and Oxidative Stability of Products. Animals 2021, 11, 3243. [Google Scholar] [CrossRef] [PubMed]
- McSweeney, C.S.; Palmer, B.; McNeill, D.M.; Krause, D.O. Microbial Interactions with Tannins: Nutritional Consequences for Ruminants. Anim. Feed Sci. Technol. 2001, 91, 83–93. [Google Scholar] [CrossRef]
- Aboagye, I.A.; Oba, M.; Castillo, A.R.; Koenig, K.M.; Iwaasa, A.D.; Beauchemin, K.A. Effects of Hydrolyzable Tannin with or without Condensed Tannin on Methane Emissions, Nitrogen Use, and Performance of Beef Cattle Fed a High-Forage Diet. J. Anim. Sci. 2018, 96, 5276–5286. [Google Scholar] [CrossRef]
- Yeh, C.T.; Yen, G.C. Induction of Hepatic Antioxidant Enzymes by Phenolic Acids in Rats Is Accompanied by Increased Levels of Multidrug Resistance-Associated Protein 3 MRNA Expression. J. Nutr. 2006, 136, 11–15. [Google Scholar] [CrossRef] [Green Version]
- Haslam, E. Plant Polyphenols: Vegetable Tannins Revisited. In Chemistry and Pharmacology of Natural Products; Cambridge University Press: Cambridge, UK, 1989. [Google Scholar]
- Al-Amoudi, W.M. Toxic Effects of Lambda-Cyhalothrin, on the Rat Thyroid: Involvement of Oxidative Stress and Ameliorative Effect of Ginger Extract. Toxicol. Rep. 2018, 5, 728–736. [Google Scholar] [CrossRef]
- Bešlo, D.; Došlić, G.; Agić, D.; Rastija, V.; Šperanda, M.; Gantner, V.; Lučić, B. Polyphenols in Ruminant Nutrition and Their Effects on Reproduction. Antioxidants 2022, 11, 970. [Google Scholar] [CrossRef]
- Abdollahi, M.; Ranjbar, A.; Shadnia, S.; Nikfar, S.; Rezaie, A. Pesticides and Oxidative Stress: A Review. Med. Sci. Monit. 2004, 10, 141–147. [Google Scholar]
- Abliz, A.; Chen, C.; Deng, W.; Wang, W.; Sun, R. NADPH Oxidase Inhibitor Apocynin Attenuates PCB153-Induced Thyroid Injury in Rats. Int. J. Endocrinol. 2016, 2016, 1–11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, H.-J.; Jeong, S.-J.; Park, M.N.; Linnes, M.; Han, H.J.; Kim, J.H.; Lieske, J.C.; Kim, S.-H. Gallotannin Suppresses Calcium Oxalate Crystal Binding and Oxalate-Induced Oxidative Stress in Renal Epithelial Cells. Biol. Pharm. Bull. 2012, 35, 539–544. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Daré, R.G.; Nakamura, C.V.; Ximenes, V.F.; Lautenschlager, S.O.S. Tannic Acid, a Promising Anti-Photoaging Agent: Evidences of Its Antioxidant and Anti-Wrinkle Potentials, and Its Ability to Prevent Photodamage and MMP-1 Expression in L929 Fibroblasts Exposed to UVB. Free Radic. Biol. Med. 2020, 160, 342–355. [Google Scholar] [CrossRef] [PubMed]
- Sarandöl, E.; Taş, S.; Dirican, M.; Serdar, Z. Oxidative Stress and Serum Paraoxonase Activity in Experimental Hypothyroidism: Effect of Vitamin E Supplementation. Cell Biochem. Funct. 2005, 23, 1–8. [Google Scholar] [CrossRef]
- Leghait, J.; Gayrard, V.; Picard-Hagen, N.; Camp, M.; Perdu, E.; Toutain, P.-L.; Viguié, C. Fipronil-Induced Disruption of Thyroid Function in Rats Is Mediated by Increased Total and Free Thyroxine Clearances Concomitantly to Increased Activity of Hepatic Enzymes. Toxicology 2009, 255, 38–44. [Google Scholar] [CrossRef]
- Yao, H.T.; Chang, Y.W.; Lan, S.J.; Yeh, T.K. The Inhibitory Effect of Tannic Acid on Cytochrome P450 Enzymes and NADPH-CYP Reductase in Rat and Human Liver Microsomes. Food Chem. Toxicol. 2008, 46, 645–653. [Google Scholar] [CrossRef]
- Weitzel, J.; Hamann, S.; Jauk, M.; Lacey, M.; Filbry, A.; Radtke, C.; Iwen, K.; Kutz, S.; Harneit, A.; Lizardi, P.; et al. Hepatic Gene Expression Patterns in Thyroid Hormone-Treated Hypothyroid Rats. J. Mol. Endocrinol. 2003, 31, 291–303. [Google Scholar] [CrossRef] [Green Version]
- Marklund, S.L.; Holme, E.; Hellner, L. Superoxide Dismutase in Extracellular Fluids. Clin. Chim. Acta. 1982, 126, 41–51. [Google Scholar] [CrossRef]
- Griess, B.; Tom, E.; Domann, F.; Teoh-Fitzgerald, M. Extracellular Superoxide Dismutase and Its Role in Cancer. Free Radic. Biol. Med. 2017, 112, 464–479. [Google Scholar] [CrossRef]
- Nedić, S.; Vakanjac, S.; Samardžija, M.; Borozan, S. Paraoxonase 1 in Bovine Milk and Blood as Marker of Subclinical Mastitis Caused by Staphylococcus Aureus. Res. Vet. Sci. 2019, 125, 323–332. [Google Scholar] [CrossRef]
- Čabarkapa, A.; Borozan, S.; Živković, L.; Stojanović, S.; Milanović-Čabarkapa, M.; Bajić, V.; Spremo-Potparević, B. CaNa2EDTA Chelation Attenuates Cell Damage in Workers Exposed to Lead--A Pilot Study. Chem. Biol. Interact. 2015, 242, 171–178. [Google Scholar] [CrossRef] [PubMed]
- Meyerholz, M.M.; Mense, K.; Linden, M.; Raliou, M.; Sandra, O.; Schuberth, H.J.; Hoedemaker, M.; Schmicke, M. Peripheral Thyroid Hormone Levels and Hepatic Thyroid Hormone Deiodinase Gene Expression in Dairy Heifers on the Day of Ovulation and during the Early Peri-Implantation Period. Acta Vet. Scand. 2016, 58, 52. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kieliszek, M.; Błazejak, S. Selenium: Significance, and Outlook for Supplementation. Nutrition 2013, 29, 713–718. [Google Scholar] [CrossRef] [PubMed]
Diet | ||
---|---|---|
Item | Far-Off | Close-Up |
Ingredient, g/kg of DM | ||
Alfalfa hay | 173 | 170 |
Corn silage | 374 | 369 |
Alfalfa haylage | 115.3 | 91.3 |
Molasses | - | 38.3 |
Corn grain | 36.5 | 113 |
Barley | 59.7 | 29.4 |
Soyabean cake (42%CP) | - | 15.7 |
Soyabean meal (44%CP) | - | 1.96 |
Sunflower meal (34%CP) | 17.4 | 85.4 |
Wheat bran | 153 | 64.8 |
Calcium carbonate | 60.5 | 4.90 |
Monocalcium phosphate | 2.49 | 1.96 |
NaCl | 1.66 | 4.90 |
Sodium bicarbonate | - | 0.98 |
Vitamine Mineral Mix | 5.80 | 7.85 |
DMI (kg/day) | 12.1 | 10.2 |
Chemical composition | ||
Energy | ||
NEL(Mcal/kg of DM) | 1.39 | 1.57 |
CP (g/kg of DM) | 122 | 140 |
RDP (g/kg of DM) | 92 | 110 |
RUP (g/kg of DM) | 30 | 30 |
MP (g/kg of DM) | 76.4 | 81.8 |
NDF (g/kg of DM) | 477 | 382 |
ADF (g/kg of DM) | 305 | 236 |
NFC (g/kg of DM) | 335 | 407 |
Ether Extract (g/kg of DM) | 21 | 25 |
Ca (g/kg of DM) | 7 | 7 |
p (g/kg of DM) | 4 | 4 |
Ash (g/kg of DM) | 112 | 82.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Prodanović, R.; Nedić, S.; Vujanac, I.; Bojkovski, J.; Nedić, S.; Jovanović, L.; Kirovski, D.; Borozan, S. Dietary Supplementation of Chestnut Tannins in Prepartum Dairy Cows Improves Antioxidant Defense Mechanisms Interacting with Thyroid Status. Metabolites 2023, 13, 334. https://doi.org/10.3390/metabo13030334
Prodanović R, Nedić S, Vujanac I, Bojkovski J, Nedić S, Jovanović L, Kirovski D, Borozan S. Dietary Supplementation of Chestnut Tannins in Prepartum Dairy Cows Improves Antioxidant Defense Mechanisms Interacting with Thyroid Status. Metabolites. 2023; 13(3):334. https://doi.org/10.3390/metabo13030334
Chicago/Turabian StyleProdanović, Radiša, Sreten Nedić, Ivan Vujanac, Jovan Bojkovski, Svetlana Nedić, Ljubomir Jovanović, Danijela Kirovski, and Sunčica Borozan. 2023. "Dietary Supplementation of Chestnut Tannins in Prepartum Dairy Cows Improves Antioxidant Defense Mechanisms Interacting with Thyroid Status" Metabolites 13, no. 3: 334. https://doi.org/10.3390/metabo13030334
APA StyleProdanović, R., Nedić, S., Vujanac, I., Bojkovski, J., Nedić, S., Jovanović, L., Kirovski, D., & Borozan, S. (2023). Dietary Supplementation of Chestnut Tannins in Prepartum Dairy Cows Improves Antioxidant Defense Mechanisms Interacting with Thyroid Status. Metabolites, 13(3), 334. https://doi.org/10.3390/metabo13030334