Glucose-6-Phosphate Dehydrogenase Activity in Milk May Serve as a Non-Invasive Metabolic Biomarker of Energy Balance in Postpartum Dairy Cows
Abstract
:1. Introduction
2. Materials and Methods
2.1. Cows and Experimental Procedures
2.2. Blood Sampling and Analysis of Metabolites and Stress Biomarkers
2.3. Milk Metabolites and Indicators of Oxidative Stress
2.4. Statistical Analysis
3. Results
3.1. Milk Production and Composition, Dry Matter Intake, and Energy Balance
3.2. Plasma Concentrations of Metabolites and Stress Biomarkers
3.3. Milk Metabolites and Markers of Oxidative Stress, and the Milk FA Profile
3.4. Correlations between Milk Metabolites and the FA Profile and the Calculated EB
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bell, A.W.; Bauman, D.E. Adaptations of Glucose Metabolism during Pregnancy and Lactation. J. Mammary Gland Biol. Neoplasia 1997, 2, 265–278. [Google Scholar] [CrossRef]
- Drackley, J.K. Biology of Dairy Cows during the Transition Period: The Final Frontier? J. Dairy Sci. 1999, 82, 2259–2273. [Google Scholar] [CrossRef] [PubMed]
- Goff, J.P.; Horst, R.L. Physiological Changes at Parturition and Their Relationship to Metabolic Disorders. J. Dairy Sci. 1997, 80, 1260–1268. [Google Scholar] [CrossRef] [PubMed]
- Mallard, B.A.; Dekkers, J.C.; Ireland, M.J.; Leslie, K.E.; Sharif, S.; Vankampen, C.L.; Wagter, L.; Wilkie, B.N. Alteration in Immune Responsiveness during the Peripartum Period and Its Ramification on Dairy Cow and Calf Health. J. Dairy Sci. 1998, 81, 585–595. [Google Scholar] [CrossRef]
- Bradford, B.J.; Yuan, K.; Farney, J.K.; Mamedova, L.K.; Carpenter, A.J. Invited Review: Inflammation during the Transition to Lactation: New Adventures with an Old Flame. J. Dairy Sci. 2015, 98, 6631–6650. [Google Scholar] [CrossRef] [Green Version]
- Zachut, M.; Šperanda, M.; de Almeida, A.M.; Gabai, G.; Mobasheri, A.; Hernández-Castellano, L.E. Biomarkers of Fitness and Welfare in Dairy Cattle: Healthy Productivity. J. Dairy Res. 2020, 87, 4–13. [Google Scholar] [CrossRef] [Green Version]
- Xu, W.; Van Knegsel, A.; Saccenti, E.; Van Hoeij, R.; Kemp, B.; Vervoort, J. Metabolomics of Milk Reflects a Negative Energy Balance in Cows. J. Proteome Res. 2020, 19, 2942–2949. [Google Scholar] [CrossRef]
- Scott, R.A.; Bauman, D.E.; Clark, J.H. Cellular Gluconeogenesis by Lactating Bovine Mammary Tissue. J. Dairy Sci. 1976, 59, 50–56. [Google Scholar] [CrossRef]
- Zhao, F.-Q. Biology of Glucose Transport in the Mammary Gland. J. Mammary Gland Biol. Neoplasia 2014, 19, 3–17. [Google Scholar] [CrossRef] [PubMed]
- Larsen, T.; Moyes, K.M. Are Free Glucose and Glucose-6-Phosphate in Milk Indicators of Specific Physiological States in the Cow? Animal 2015, 9, 86–93. [Google Scholar] [CrossRef] [Green Version]
- Zachut, M.; Kra, G.; Portnik, Y.; Shapiro, F.; Silanikove, N. Milk Glucose-6-Phosphate Dehydrogenase Activity and Glucose-6-Phosphate Are Associated with Oxidative Stress and Serve as Indicators of Energy Balance in Dairy Cows. RSC Adv. 2016, 6, 65412–65417. [Google Scholar] [CrossRef]
- Moallem, U.; Kamer, H.; Hod, A.; Lifshitz, L.; Kra, G.; Jacoby, S.; Portnick, Y.; Zachut, M. Reducing Milking Frequency from Thrice to Twice Daily in Early Lactation Improves the Metabolic Status of High-Yielding Dairy Cows with Only Minor Effects on Yields. J. Dairy Sci. 2019, 102, 9468–9480. [Google Scholar] [CrossRef] [PubMed]
- Feldman, E. Animal Models of Diabetic Complications Consortium (AMDCC Protocols), 2004, version 1: 1–3. Available online: http://www.amdcc.org/shared/showFile.aspx?doctypeid¼3&docid¼33 (accessed on 1 March 2017).
- Möller, R.; Dannenberger, D.; Nürnberg, G.; Strucken, E.-M.; Brockmann, G.A. Relationship between the Fatty Acid Profile of Hair and Energy Availability of Lactating Primiparous Cows. J. Dairy Res. 2019, 86, 77–84. [Google Scholar] [CrossRef] [PubMed]
- McArt, J.A.A.; Nydam, D.V.; Oetzel, G.R.; Overton, T.R.; Ospina, P.A. Elevated Non-Esterified Fatty Acids and β-Hydroxybutyrate and Their Association with Transition Dairy Cow Performance. Vet. J. 2013, 198, 560–570. [Google Scholar] [CrossRef] [PubMed]
- Ospina, P.A.; McArt, J.A.; Overton, T.R.; Stokol, T.; Nydam, D.V. Using Nonesterified Fatty Acids and β-Hydroxybutyrate Concentrations during the Transition Period for Herd-Level Monitoring of Increased Risk of Disease and Decreased Reproductive and Milking Performance. Vet. Clin. Food Anim. Pract. 2013, 29, 387–412. [Google Scholar] [CrossRef]
- Duffield, T.F.; Lissemore, K.D.; McBride, B.W.; Leslie, K.E. Impact of Hyperketonemia in Early Lactation Dairy Cows on Health and Production. J. Dairy Sci. 2009, 92, 571–580. [Google Scholar] [CrossRef] [Green Version]
- Chapinal, N.; LeBlanc, S.J.; Carson, M.E.; Leslie, K.E.; Godden, S.; Capel, M.; Santos, J.E.P.; Overton, M.W.; Duffield, T.F. Herd-Level Association of Serum Metabolites in the Transition Period with Disease, Milk Production, and Early Lactation Reproductive Performance. J. Dairy Sci. 2012, 95, 5676–5682. [Google Scholar] [CrossRef] [Green Version]
- Imhasly, S.; Bieli, C.; Naegeli, H.; Nyström, L.; Ruetten, M.; Gerspach, C. Blood Plasma Lipidome Profile of Dairy Cows during the Transition Period. BMC Vet. Res. 2015, 11, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Kay, J.K.; Weber, W.J.; Moore, C.E.; Bauman, D.E.; Hansen, L.B.; Chester-Jones, H.; Crooker, B.A.; Baumgard, L.H. Effects of Week of Lactation and Genetic Selection for Milk Yield on Milk Fatty Acid Composition in Holstein Cows. J. Dairy Sci. 2005, 88, 3886–3893. [Google Scholar] [CrossRef] [Green Version]
- Stoop, W.M.; Bovenhuis, H.; Heck, J.M.L.; van Arendonk, J.A.M. Effect of Lactation Stage and Energy Status on Milk Fat Composition of Holstein-Friesian Cows. J. Dairy Sci. 2009, 92, 1469–1478. [Google Scholar] [CrossRef] [Green Version]
- Gross, J.J.; Bruckmaier, R.M. Metabolic Challenges in Lactating Dairy Cows and Their Assessment via Established and Novel Indicators in Milk. Animal 2019, 13 (Suppl. S1), s75–s81. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gross, J.; van Dorland, H.A.; Bruckmaier, R.M.; Schwarz, F.J. Milk Fatty Acid Profile Related to Energy Balance in Dairy Cows. J. Dairy Res. 2011, 78, 479–488. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pires, J.A.A.; Larsen, T.; Leroux, C. Milk metabolites and fatty acids as noninvasive biomarkers of metabolic status and energy balance in early-lactation cows. J. Dairy Sci. 2022, 105, 201–220. [Google Scholar] [CrossRef] [PubMed]
Groups | ||||
---|---|---|---|---|
NEB | PEB | SEM 1 | p-Value | |
Milk yield, kg/d | 49.6 | 44.9 | 0.9 | 0.0001 |
ECM 1, kg/d | 38.4 | 36.7 | 0.6 | 0.06 |
FCM 1 4%, kg/d | 47.0 | 45.4 | 1.2 | 0.40 |
Fat, % | 4.1 | 4.2 | 0.06 | 0.20 |
Protein, % | 3.2 | 3.4 | 0.03 | 0.0006 |
Lactose, % | 4.9 | 4.9 | 0.02 | 0.30 |
SCC 1, ×103 cells/mL | 191.9 | 173.7 | 45.3 | 0.80 |
Dry matter intake 21 d, kg/d | 22.8 | 26.3 | 0.3 | <0.0001 |
Calculated energy balance, Mcal/d | −5.9 | 4.1 | 0.5 | <0.0001 |
Groups | ||||
---|---|---|---|---|
NEB | PEB | SEM 1 | p-Value | |
Glucose, mg/dL | 57.5 | 62.9 | 1.1 | 0.002 |
BHBA 1, mg/dL | 7.8 | 6.0 | 0.27 | <0.0001 |
NEFA 1, µEq/L | 459.8 | 392.2 | 33.0 | 0.17 |
Malondialdehyde, µM | 323.1 | 301.5 | 0.69 | 0.82 |
Cortisol, pg/mL | 8.6 | 7.7 | 0.9 | 0.59 |
TNF-α 1, pg/mL | 339.8 | 402.2 | 33.0 | 0.25 |
Groups | ||||
---|---|---|---|---|
NEB | PEB | SEM 1 | p-Value | |
n | 11 | 13 | ||
Glucose, µM | 88.3 | 108.3 | 13.8 | 0.30 |
Glucose-6-phosphate, µM | 224.5 | 229.1 | 12.3 | 0.80 |
G6PDH activity, mU/mL 1 | 323.0 | 229.0 | 28.7 | 0.03 |
Malic acid, µM | 347.2 | 323.7 | 17.4 | 0.30 |
Lactic acid, µM | 237.7 | 231.8 | 21.7 | 0.80 |
Malondialdehyde, µM | 212.3 | 338.7 | 123.8 | 0.30 |
ORAC, µM 1 | 217.0 | 206.3 | 4.5 | 0.10 |
Milk fatty acids, % | ||||
C16:0 | 1.08 | 1.14 | 0.03 | 0.10 |
C18:0 | 0.39 | 0.40 | 0.01 | 0.32 |
C18:1 | 0.98 | 0.85 | 0.02 | 0.001 |
SFA1 | 2.57 | 2.70 | 0.06 | 0.10 |
MUFA 1 | 1.31 | 1.18 | 0.03 | 0.01 |
PUFA 1 | 0.24 | 0.22 | 0.01 | 0.30 |
UFA 1 | 1.51 | 1.38 | 0.04 | 0.02 |
Correlation to EB | r | p-Value |
---|---|---|
Glucose | −0.02 | 0.36 |
Glucose−6-phosphate | −0.18 | 0.008 |
G6PDH 1 activity | −0.39 | <0.0001 |
Malic acid | −0.13 | 0.08 |
Lactic acid | 0.03 | 0.65 |
Malondialdehyde | 0.17 | 0.02 |
ORAC 1 | 0.03 | 0.73 |
C16:0 | 0.14 | 0.24 |
C18:0 | 0.16 | 0.17 |
C18:1 | −0.20 | 0.08 |
SFA 1 | 0.21 | 0.07 |
MUFA 1 | −0.11 | 0.33 |
PUFA 1 | −0.06 | 0.61 |
UFA 1 | −0.09 | 0.43 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hod, A.; Daddam, J.R.; Kra, G.; Kamer, H.; Portnick, Y.; Moallem, U.; Zachut, M. Glucose-6-Phosphate Dehydrogenase Activity in Milk May Serve as a Non-Invasive Metabolic Biomarker of Energy Balance in Postpartum Dairy Cows. Metabolites 2023, 13, 312. https://doi.org/10.3390/metabo13020312
Hod A, Daddam JR, Kra G, Kamer H, Portnick Y, Moallem U, Zachut M. Glucose-6-Phosphate Dehydrogenase Activity in Milk May Serve as a Non-Invasive Metabolic Biomarker of Energy Balance in Postpartum Dairy Cows. Metabolites. 2023; 13(2):312. https://doi.org/10.3390/metabo13020312
Chicago/Turabian StyleHod, Ayelet, Jayasimha Rayalu Daddam, Gitit Kra, Hadar Kamer, Yuri Portnick, Uzi Moallem, and Maya Zachut. 2023. "Glucose-6-Phosphate Dehydrogenase Activity in Milk May Serve as a Non-Invasive Metabolic Biomarker of Energy Balance in Postpartum Dairy Cows" Metabolites 13, no. 2: 312. https://doi.org/10.3390/metabo13020312
APA StyleHod, A., Daddam, J. R., Kra, G., Kamer, H., Portnick, Y., Moallem, U., & Zachut, M. (2023). Glucose-6-Phosphate Dehydrogenase Activity in Milk May Serve as a Non-Invasive Metabolic Biomarker of Energy Balance in Postpartum Dairy Cows. Metabolites, 13(2), 312. https://doi.org/10.3390/metabo13020312