Magnetic Field Dependence of Spectral Correlations between 31P-Containing Metabolites in Brain
Abstract
:1. Introduction
2. Materials and Methods
2.1. In Vivo 31P MRS Data
2.2. In Vivo Data Processing and Quantification
2.3. Monte Carlo Analysis of In Vivo Spectra
2.4. Correlation Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Liu, Y.; Gu, Y.; Yu, X. Assessing tissue metabolism by phosphorous-31 magnetic resonance spectroscopy and imaging: A methodology review. Quant. Imaging Med. Surg. 2017, 7, 707–726. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rango, M.; Bonifati, C.; Bresolin, N. Parkinson’s disease and brain mitochondrial dysfunction: A functional phosphorus magnetic resonance spectroscopy study. J. Cereb. Blood Flow Metab. 2006, 26, 283–290. [Google Scholar] [CrossRef] [Green Version]
- Albers, M.J.; Krieger, M.D.; Gonzalez-Gomez, I.; Gilles, F.H.; McComb, J.G.; Nelson, M.D., Jr.; Bluml, S. Proton-decoupled 31P MRS in untreated pediatric brain tumors. Magn. Reason. Med. 2005, 53, 22–29. [Google Scholar] [CrossRef]
- Fabbri, E.; Chia, C.W.; Spencer, R.G.; Fishbein, K.W.; Reiter, D.A.; Cameron, D.; Zane, A.C.; Moore, Z.A.; Gonzalez-Freire, M.; Zoli, M.; et al. Insulin Resistance Is Associated With Reduced Mitochondrial Oxidative Capacity Measured by 31P-Magnetic Resonance Spectroscopy in Participants Without Diabetes From the Baltimore Longitudinal Study of Aging. Diabetes 2017, 66, 170–176. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, S.; Chen, M.; Gao, L.; Liu, Y. Investigating Muscle Function After Stroke Rehabilitation with 31P-MRS: A Preliminary Study. Med. Sci. Monit. 2018, 24, 2841–2848. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khan, S.A.; Cox, I.J.; Hamilton, G.; Thomas, H.C.; Taylor-Robinson, S.D. In vivo and in vitro nuclear magnetic resonance spectroscopy as a tool for investigating hepatobiliary disease: A review of 1H and 31P MRS applications. Liver Int. 2005, 25, 273–281. [Google Scholar] [CrossRef] [PubMed]
- Argov, Z.; Bank, W.J. Phosphorus magnetic resonance spectroscopy (31P MRS) in neuromuscular disorders. Ann. Neurol. 1991, 30, 90–97. [Google Scholar] [CrossRef]
- Sinha, S.; Taly, A.B.; Ravishankar, S.; Prashanth, L.K.; Vasudev, M.K. Wilson’s disease: 31P and 1H MR spectroscopy and clinical correlation. Neuroradiology 2010, 52, 977–985. [Google Scholar] [CrossRef]
- Klemm, A.; Rzanny, R.; Funfstuck, R.; Werner, W.; Schubert, J.; Kaiser, W.A.; Stein, G. 31P-magnetic resonance spectroscopy (31P-MRS) of human allografts after renal transplantation. Nephrol. Dial. Transplant. 1998, 13, 3147–3152. [Google Scholar] [CrossRef] [Green Version]
- Schulze, A.; Hess, T.; Wevers, R.; Mayatepek, E.; Bachert, P.; Marescau, B.; Knopp, M.V.; De Deyn, P.P.; Bremer, H.J.; Rating, D. Creatine deficiency syndrome caused by guanidinoacetate methyltransferase deficiency: Diagnostic tools for a new inborn error of metabolism. J. Pediatr. 1997, 131, 626–631. [Google Scholar] [CrossRef]
- Li, S.; van der Veen, J.W.; An, L.; Stolinski, J.; Johnson, C.; Ferraris-Araneta, M.; Victorino, M.; Tomar, J.S.; Shen, J. Cerebral phosphoester signals measured by 31P magnetic resonance spectroscopy at 3 and 7 Tesla. PLoS ONE 2021, 16, e02486322021. [Google Scholar] [CrossRef] [PubMed]
- Kilby, P.M.; Bolas, N.M.; Radda, G.K. 31P-NMR study of brain phospholipid structures in vivo. Biochim. Biophys. Acta 1991, 1085, 257–264. [Google Scholar] [CrossRef] [PubMed]
- Hong, S.; An, L.; Shen, J. Monte Carlo study of metabolite correlations originating from spectral overlap. J. Magn. Reason. 2022, 341, 107257. [Google Scholar] [CrossRef] [PubMed]
- Shen, J.; Shenkar, D.; An, L.; Tomar, J.S. Local and Interregional Neurochemical Associations Measured by Magnetic Resonance Spectroscopy for Studying Brain Functions and Psychiatric Disorders. Front. Psychiatry 2020, 11, 802. [Google Scholar] [CrossRef]
- Stanley, J.A.; Pettegrew, J.W. Postprocessing method to segregate and quantify the broad components underlying the phosphodiester spectral region of in vivo 31P brain spectra. Magn. Reason. Med. 2001, 45, 390–396. [Google Scholar] [CrossRef]
- de Graaf, R.A.; Chowdhury, G.M.; Behar, K.L. Quantification of high-resolution 1H NMR spectra from rat brain extracts. Anal. Chem. 2011, 83, 216–224. [Google Scholar] [CrossRef] [Green Version]
- Provencher, S.W. Estimation of metabolite concentrations from localized in vivo proton NMR spectra. Magn. Reason. Med. 1993, 30, 672–679. [Google Scholar] [CrossRef]
- Smith, S.A.; Levante, T.O.; Meier, B.H.; Ernst, R.R. Computer Simulations in Magnetic-Resonance. An Object-Oriented Programming Approach. J. Magn. Reason. Ser. A 1994, 106, 75–105. [Google Scholar] [CrossRef]
- Deelchand, D.K.; Nguyen, T.M.; Zhu, X.H.; Mochel, F.; Henry, P.G. Quantification of in vivo 31P NMR brain spectra using LCModel. NMR Biomed. 2015, 28, 633–641. [Google Scholar] [CrossRef] [Green Version]
- Monteiro, C.; Neyret, S.; Leforestier, J.; Herve du Penhoat, C. Solution conformation of various uridine diphosphoglucose salts as probed by NMR spectroscopy. Carbohydr. Res. 2000, 329, 141–155. [Google Scholar] [CrossRef]
- Lu, M.; Zhu, X.H.; Chen, W. In vivo 31P MRS assessment of intracellular NAD metabolites and NAD+/NADH redox state in human brain at 4 T. NMR Biomed. 2016, 29, 1010–1017. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ren, J.; Sherry, A.D.; Malloy, C.R. 31P-MRS of healthy human brain: ATP synthesis, metabolite concentrations, pH, and T1 relaxation times. NMR Biomed. 2015, 28, 1455–1462. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, Y.; Shen, J. Effects of noise and linewidth on in vivo analysis of glutamate at 3 T. J. Magn. Reson. 2020, 314, 106732. [Google Scholar] [CrossRef] [PubMed]
- Hong, S.; Shen, J. Neurochemical correlations in short echo time proton magnetic resonance spectroscopy. NMR Biomed. 2023, e4910. [Google Scholar] [CrossRef]
- Muirhead, R.J. Aspects of Multivariate Statistical Theory; Wiley: New York, NY, USA, 1982. [Google Scholar]
- Johnson, R.A.; Wichern, D.W. Applied Multivariate Statistical Analysis, 5th ed.; Prentice Hall: Upper Saddle River, NJ, USA, 2002. [Google Scholar]
- An, L.; Li, S.; Murdoch, J.B.; Araneta, M.F.; Johnson, C.; Shen, J. Detection of glutamate, glutamine, and glutathione by radiofrequency suppression and echo time optimization at 7 tesla. Magn. Reson. Med. 2015, 73, 451–458. [Google Scholar] [CrossRef] [PubMed]
PCr | ATP | NAD+ | NADH | GPC | GPE | Piex | Piin | PC | PE | MP | |
---|---|---|---|---|---|---|---|---|---|---|---|
Metabolites only | |||||||||||
CV (0 Hz) | 0.65 | 0.67 | 9.30 | 37.20 | 2.40 | 4.51 | 9.22 | 2.82 | 4.27 | 1.83 | 2.91 |
CV (10 Hz) | 0.79 | 0.74 | 12.46 | 53.00 | 2.74 | 5.36 | 10.81 | 3.47 | 4.80 | 2.11 | 3.19 |
CV (20 Hz) | 0.93 | 0.75 | 15.27 | 66.54 | 3.19 | 5.95 | 12.96 | 4.04 | 5.55 | 2.31 | 3.51 |
Metabolites + baseline | |||||||||||
CV (0 Hz) | 0.70 | 0.85 | 9.76 | 37.24 | 2.53 | 5.34 | 11.17 | 3.28 | 5.20 | 2.31 | 4.17 |
CV (10 Hz) | 0.91 | 0.97 | 13.21 | 51.58 | 2.92 | 6.55 | 13.50 | 4.08 | 6.16 | 2.65 | 4.68 |
CV (20 Hz) | 1.05 | 1.05 | 16.84 | 67.77 | 3.46 | 7.69 | 15.41 | 4.92 | 6.85 | 3.05 | 5.20 |
PCr | ATP | NAD+ | NADH | UDPG | GPC | GPE | Piex | Piin | PC | PE | MP | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Metabolites only | ||||||||||||
CV (0 Hz) | 0.31 | 0.37 | 5.30 | 14.55 | 7.31 | 1.99 | 2.76 | 10.40 | 1.99 | 3.35 | 1.42 | 7.04 |
CV (10 Hz) | 0.45 | 0.40 | 6.48 | 20.44 | 8.08 | 2.44 | 3.50 | 12.23 | 2.47 | 4.05 | 1.68 | 7.53 |
CV (20 Hz) | 0.56 | 0.44 | 8.21 | 27.52 | 8.84 | 3.00 | 4.11 | 14.96 | 2.97 | 4.75 | 1.97 | 8.22 |
Metabolites + baseline | ||||||||||||
CV (0 Hz) | 0.34 | 0.44 | 5.32 | 15.08 | 8.15 | 2.06 | 3.05 | 11.82 | 2.19 | 4.05 | 1.65 | 9.00 |
CV (10 Hz) | 0.50 | 0.51 | 6.58 | 20.18 | 9.71 | 2.68 | 4.12 | 14.95 | 2.89 | 4.99 | 2.04 | 9.97 |
CV (20 Hz) | 0.61 | 0.57 | 8.12 | 27.31 | 11.11 | 3.28 | 4.97 | 17.56 | 3.59 | 5.81 | 2.37 | 11.34 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hong, S.; Shen, J. Magnetic Field Dependence of Spectral Correlations between 31P-Containing Metabolites in Brain. Metabolites 2023, 13, 211. https://doi.org/10.3390/metabo13020211
Hong S, Shen J. Magnetic Field Dependence of Spectral Correlations between 31P-Containing Metabolites in Brain. Metabolites. 2023; 13(2):211. https://doi.org/10.3390/metabo13020211
Chicago/Turabian StyleHong, Sungtak, and Jun Shen. 2023. "Magnetic Field Dependence of Spectral Correlations between 31P-Containing Metabolites in Brain" Metabolites 13, no. 2: 211. https://doi.org/10.3390/metabo13020211
APA StyleHong, S., & Shen, J. (2023). Magnetic Field Dependence of Spectral Correlations between 31P-Containing Metabolites in Brain. Metabolites, 13(2), 211. https://doi.org/10.3390/metabo13020211