Sociodemographic, Anthropometric, Body Composition, Nutritional, and Biochemical Factors Influenced by Age in a Postmenopausal Population: A Cross-Sectional Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants and Study Design
2.2. Sociodemographic Data Collection
2.3. Nutrient Intake
2.4. Anthropometric and Body Composition Analysis
2.5. Sample Processing
Measurement of Biochemical Parameters
2.6. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Barragán, R.; Ortega-Azorín, C.; Sorlí, J.V.; Asensio, E.M.; Coltell, O.; St-Onge, M.-P.; Portolés, O.; Corella, D. Effect of Physical Activity, Smoking, and Sleep on Telomere Length: A Systematic Review of Observational and Intervention Studies. J. Clin. Med. 2021, 11, 76. [Google Scholar] [CrossRef] [PubMed]
- Yu, Y.; Li, J.; Jiang, Y.; Zaid, M.; Zhao, Q.; Wang, N.; Liu, X.; Qiu, Y.; Zhu, J.; Tong, X.; et al. Association between Reproductive Factors and Type 2 Diabetes: A Cross-Sectional Study. Int. J. Environ. Res. Public Health 2022, 19, 1019. [Google Scholar] [CrossRef] [PubMed]
- Ozasa, K.; Noma, N.; Young, A.; Korczeniewska, O.A.; Eliav, E.; Imamura, Y. Potential Differences in Somatosensory Function during Premenopause and Early and Late Postmenopause in Patients with Burning Mouth Syndrome: An Observational Case–Control Study. J. Dent. Sci. 2022, 17, 399–406. [Google Scholar] [CrossRef] [PubMed]
- Hery, C.M.B.; Hale, L.; Naughton, M.J. Contributions of the Women’s Health Initiative to Understanding Associations between Sleep Duration, Insomnia Symptoms, and Sleep-Disordered Breathing across a Range of Health Outcomes in Post-Menopausal Women. Sleep Health 2020, 6, 48–59. [Google Scholar] [CrossRef]
- Takahashi, T.A.; Johnson, K.M. Menopause. Med. Clin. N. Am. 2015, 99, 521–534. [Google Scholar] [CrossRef]
- Pan, M.; Pan, X.; Zhou, J.; Wang, J.; Qi, Q.; Wang, L. Update on Hormone Therapy for the Management of Postmenopausal Women. Biosci. Trends 2022. [Google Scholar] [CrossRef]
- Okhai, H.; Dragomir, L.; Pool, E.R.; Sabin, C.A.; Miners, A.; Sherr, L.; Haag, K.; Dhairyawan, R.; Vora, N.; Sultan, B.; et al. Association between Health-Related Quality of Life and Menopausal Status and Symptoms in Women Living with HIV Aged 45–60 Years in England: An Analysis of the PRIME Study. Womens Health 2022, 18, 8722. [Google Scholar] [CrossRef]
- Jeong, J.; Kim, M. Awareness and Related Factors of Dyslipidemia in Menopausal Women in Korea. Healthcare 2022, 10, 112. [Google Scholar] [CrossRef]
- Farahmand, M.; Ramezani Tehrani, F.; Rahmati, M.; Azizi, F. Anthropometric Indices and Age at Natural Menopause: A 15-Year Follow-up Population-Based Study. Int. J. Endocrinol. Metab. 2021, 19, e109285. [Google Scholar] [CrossRef]
- Chandankhede, M.; Gupta, M.; Pakhmode, S. Assessment of Psychological Status and Oxidative Stress in Postmenopausal Women: A Cross-Sectional Study. J. Menopausal Med. 2021, 27, 155–161. [Google Scholar] [CrossRef]
- Pardhe, B.D.; Pathak, S.; Bhetwal, A.; Ghimire, S.; Shakya, S.; Khanal, P.R.; Marahatta, S.B. Effect of Age and Estrogen on Biochemical Markers of Bone Turnover in Postmenopausal Women: A Population-Based Study from Nepal. Int. J. Womens Health 2017, 9, 781–788. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Salamanna, F.; Gambardella, A.; Contartese, D.; Visani, A.; Fini, M. Nano-Based Biomaterials as Drug Delivery Systems Against Osteoporosis: A Systematic Review of Preclinical and Clinical Evidence. Nanomaterials 2021, 11, 530. [Google Scholar] [CrossRef] [PubMed]
- Lee, G.; Choi, H.Y. Factors Associated with Dietary Control and Physical Activity in the Management of Metabolic Syndrome in Korean Menopausal Women. Int. J. Environ. Res. Public Health 2020, 17, 6901. [Google Scholar] [CrossRef]
- Ko, S.-H.; Kim, H.-S. Menopause-Associated Lipid Metabolic Disorders and Foods Beneficial for Postmenopausal Women. Nutrients 2020, 12, 202. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- World Medical Association. World Medical Association Declaration of Helsinki: Ethical Principles for Medical Research Involving Human Subjects. JAMA 2013, 310, 2191–2194. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ingestas Dietéticas de Referencia (IDR) para la Población Española, 2010. Act. Dietética 2010, 14, 196–197. [CrossRef]
- Fryar, C.D.; Kruszon-Moran, D.; Gu, Q.; Ogden, C.L. Mean Body Weight, Height, Waist Circumference, and Body Mass Index Among Adults: United States, 1999–2000 Through 2015–2016. Natl. Health Stat. Rep. 2018, 2018, 1–16. [Google Scholar]
- Dimala, C.A.; Ngu, R.C.; Kadia, B.M.; Tianyi, F.-L.; Choukem, S.P. Markers of Adiposity in HIV/AIDS Patients: Agreement between Waist Circumference, Waist-to-Hip Ratio, Waist-to-Height Ratio and Body Mass Index. PLoS ONE 2018, 13, e0194653. [Google Scholar] [CrossRef] [Green Version]
- Dionyssiotis, Y.; Skarantavos, G.; Kantaidou, I.; Papadatou, M.-C.; Papagelopoulos, P.; Angoules, A.; Papathanasiou, J.; Lyritis, G.P. Evaluation of Physical Performance in Musculoskeletal and Rheumatic Diseases with Jumping Mechanography. J. Frailty Sarcopenia Falls 2019, 4, 116–121. [Google Scholar] [CrossRef] [Green Version]
- Ablove, T.; Binkley, N.; Leadley, S.; Shelton, J.; Ablove, R. Body Mass Index Continues to Accurately Predict Percent Body Fat as Women Age despite Changes in Muscle Mass and Height. Menopause 2015, 22, 727–730. [Google Scholar] [CrossRef]
- Lee, Y.-S.; Nichols, J.F.; Domingo, A.; Kim, Y.; Park, S.M.; Han, G.; Seo, H.; Hovell, M. Balance Performance and Related Soft Tissue Components across Three Age Groups. Health Care Women Int. 2021, 42, 67–81. [Google Scholar] [CrossRef] [PubMed]
- Montazeri, S.A.; Ramezani Tehrani, F.; Bidhendi Yarandi, R.; Erfani, H.; Mansournia, M.A.; Azizi, F. Effect of Aging, Menopause, and Age at Natural Menopause on the Trend in Body Mass Index: A 15-Year Population-Based Cohort. Fertil. Steril. 2019, 111, 780–786. [Google Scholar] [CrossRef] [PubMed]
- Arikawa, A.Y.; Kurzer, M.S. Associations between Diet Quality and Anthropometric Measures in White Postmenopausal Women. Nutrients 2021, 13, 1947. [Google Scholar] [CrossRef] [PubMed]
- Naufel, M.F.; Boldarine, V.T.; Oyama, L.M.; do Nascimento, C.M.O.; Silva Dos Santos, G.M.; Hachul, H.; Ribeiro, E.B. Age and Leptinemia Association with Anxiety and Depression Symptoms in Overweight Middle-Aged Women. Menopause 2019, 26, 317–324. [Google Scholar] [CrossRef] [PubMed]
- Canavez, F.S.; Werneck, G.L.; Parente, R.C.M.; Celeste, R.K.; Faerstein, E. The Association between Educational Level and Age at the Menopause: A Systematic Review. Arch. Gynecol. Obstet. 2011, 283, 83–90. [Google Scholar] [CrossRef]
- Wolfe, J.D. Age, Cohort, and Social Change: Parental and Spousal Education and White Women’s Health Limitations From 1967 to 2012. Res. Aging 2019, 41, 186–210. [Google Scholar] [CrossRef]
- Lepori, L.; Radovanovic, D.; Schoenenberger, A.W.; Suter, P.M.; Erne, P.; Parati, G.; Gallino, A.; Bianchetti, M.G.; Muggli, F. Age-Dependency of Cardiometabolic Risk and Protective Factors in Females Living in a Countryside Area of Switzerland. Praxis 2021, 110, 252–256. [Google Scholar] [CrossRef]
- Tikhonoff, V.; Casiglia, E.; Gasparotti, F.; Spinella, P. The Uncertain Effect of Menopause on Blood Pressure. J. Hum. Hypertens. 2019, 33, 421–428. [Google Scholar] [CrossRef]
- Consitt, L.A.; Dudley, C.; Saxena, G. Impact of Endurance and Resistance Training on Skeletal Muscle Glucose Metabolism in Older Adults. Nutrients 2019, 11, E2636. [Google Scholar] [CrossRef] [Green Version]
- Anagnostis, P.; Stevenson, J.C.; Crook, D.; Johnston, D.G.; Godsland, I.F. Effects of Menopause, Gender and Age on Lipids and High-Density Lipoprotein Cholesterol Subfractions. Maturitas 2015, 81, 62–68. [Google Scholar] [CrossRef]
- Graff-Iversen, S.; Thelle, D.S.; Hammar, N. Serum Lipids, Blood Pressure and Body Weight around the Age of the Menopause. Eur. J. Prev. Cardiol. 2008, 15, 83–88. [Google Scholar] [CrossRef] [PubMed]
- Hyvärinen, M.; Juppi, H.-K.; Taskinen, S.; Karppinen, J.E.; Karvinen, S.; Tammelin, T.H.; Kovanen, V.; Aukee, P.; Kujala, U.M.; Rantalainen, T.; et al. Metabolic Health, Menopause, and Physical Activity-a 4-Year Follow-up Study. Int. J. Obes. 2022, 46, 544–554. [Google Scholar] [CrossRef] [PubMed]
- Watanabe, K.; Iida, M.; Harada, S.; Kato, S.; Kuwabara, K.; Kurihara, A.; Takeuchi, A.; Sugiyama, D.; Okamura, T.; Suzuki, A.; et al. Metabolic Profiling of Charged Metabolites in Association with Menopausal Status in Japanese Community-Dwelling Midlife Women: Tsuruoka Metabolomic Cohort Study. Maturitas 2022, 155, 54–62. [Google Scholar] [CrossRef] [PubMed]
- Jayanthi, R.; Srinivasan, A.R.; Niranjan, G. Thyroid Status in Premenopausal and Postmenopausal Women—A Biochemical Study on Insulin Resistance in Non Obese, Overweight and Obese Type 2 Diabetics. Diabetes Metab. Syndr. Clin. Res. Rev. 2018, 12, 859–862. [Google Scholar] [CrossRef] [PubMed]
- Buzas, R.; Ivan, V.-S.; Gheorghe-Fronea, O.-F.; Morgovan, A.F.; Ardelean, M.; Albulescu, N.; Dorobantu, M.; Lighezan, D.F. Arterial Hypertension and Serum Uric Acid in Elderly- SEPHAR III Study. Arq. Bras. Cardiol. 2021, 117, 378–384. [Google Scholar] [CrossRef]
- Gowda, S.; Desai, P.B.; Kulkarni, S.S.; Hull, V.V.; Math, A.A.K.; Vernekar, S.N. Markers of Renal Function Tests. N. Am. J. Med. Sci. 2010, 2, 170–173. [Google Scholar] [PubMed]
- Köhler, O.M.; Grünberg, W.; Schnepel, N.; Muscher-Banse, A.S.; Rajaeerad, A.; Hummel, J.; Breves, G.; Wilkens, M.R. Dietary Phosphorus Restriction Affects Bone Metabolism, Vitamin D Metabolism and Rumen Fermentation Traits in Sheep. J. Anim. Physiol. Anim. Nutr. 2021, 105, 35–50. [Google Scholar] [CrossRef] [PubMed]
- Niafar, M.; Pourafkari, L.; Aminmozaffari, S.; Nader, N.D. Association of Vitamin D Deficiency and Thyroid Function in Postmenopausal Women. Adv. Pharm. Bull. 2016, 6, 639–644. [Google Scholar] [CrossRef] [Green Version]
- Carranza-Lira, S.; López-Chávez, M.; Luna, A.D.L.; Rosales-Ortiz, S.; Méndez-González, G.J. Relationship of Vitamin D Blood Concentration with Muscle Mass and Cognitive Function in Postmenopausal Women. Gac. Med. Mex. 2021, 157, 484–493. [Google Scholar] [CrossRef]
- Pereda, C.A.; Nishishinya, M.B.; Roldan, E.J.A. 25-Hydroxyvitamin D Serum Levels in Rheumatic Female Patients in Southeast Spain: The Paradigm of Daily Optimal Sunshine Levels and Inadequate Vitamin D Status. Endocrinol. Diabetes Nutr. 2019, 66, 181–187. [Google Scholar] [CrossRef]
- Cavalli, L.; Cavalli, T.; Marcucci, G.; Falchetti, A.; Masi, L.; Brandi, M.L. Biological Effects of Various Regimes of 25-Hydroxyvitamin D3 (Calcidiol) Administration on Bone Mineral Metabolism in Postmenopausal Women. Clin. Cases Miner. Bone Metab. 2009, 6, 169–173. [Google Scholar] [PubMed]
- Oh, S.B.; Lee, W.Y.; Nam, H.-K.; Rhie, Y.-J.; Lee, K.-H. Serum Osteocalcin Levels in Overweight Children. Ann. Pediatr. Endocrinol. Metab. 2019, 24, 104–107. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, Y.; Ma, X.; Shen, Y.; Gu, C.; Tang, J.; Bao, Y. Role of Hyperglycaemia in the Relationship between Serum Osteocalcin Levels and Relative Skeletal Muscle Index. Clin. Nutr. Edinb. Scotl. 2019, 38, 2704–2711. [Google Scholar] [CrossRef] [PubMed]
- Singh, S.; Kumar, D.; Lal, A.K. Serum Osteocalcin as a Diagnostic Biomarker for Primary Osteoporosis in Women. J. Clin. Diagn. Res. JCDR 2015, 9, RC04–RC07. [Google Scholar] [CrossRef]
- Lee, S.W.; Jo, H.H.; Kim, M.R.; You, Y.O.; Kim, J.H. Association between Obesity, Metabolic Risks and Serum Osteocalcin Level in Postmenopausal Women. Gynecol. Endocrinol. 2012, 28, 472–477. [Google Scholar] [CrossRef] [PubMed]
- Czajkowska, M.; Plinta, R.; Owczarek, A.; Olszanecka-Glinianowicz, M.; Skrzypulec-Plinta, V. Circulating Sclerostin Levels in Relation to Nutritional Status, Sex Hormones and Selected Bone Turnover Biochemical Markers Levels in Peri- and Postmenopausal Women. Ginekol. Pol. 2019, 90, 371–375. [Google Scholar] [CrossRef] [Green Version]
- Fiacco, S.; Mernone, L.; Ehlert, U. Psychobiological Indicators of the Subjectively Experienced Health Status—Findings from the Women 40+ Healthy Aging Study. BMC Womens Health 2020, 20, 16. [Google Scholar] [CrossRef]
Characteristics | Total Population (n = 78) | <54 Years (n = 26) | 54–62 Years (n = 26) | >62 Years (n = 26) | p Value | Reference Values |
---|---|---|---|---|---|---|
Mean ± SD | Mean ± SD | Mean ± SD | Mean ± SD | |||
Anthropometric and body composition parameters | ||||||
Weight (Kg) | 68.7 ± 13.2 | 71.1 ± 15.1 | 68.5 ± 12.3 | 66.2 ± 11.8 | 0.414 | |
Height (m) | 159.3 ± 6.23 | 162.1 ± 6.35 a | 158.9 ± 5.68 | 156.5 ± 5.43 a | 0.004 | |
BMI (Kg/m2) | 27.0 ± 4.60 | 26.9 ± 5.07 | 27.1 ± 4.52 | 27.0 ± 4.31 | 0.996 | 22.0–27.0 |
Waist perimeter (cm) | 89.0 ± 12.6 | 87.4 ± 16.6 | 88.9 ± 12.4 | 91.0 ± 13.3 | 0.592 | <90.0 |
Hip perimeter (cm) | 105.8 ± 10.5 | 105.9 ± 9.61 | 106.5 ± 10.7 | 104.9 ± 11.5 | 0.873 | <110.0 |
Waist/hip ratio | 0.83 ± 0.08 | 0.81 ± 0.08 | 0.83 ± 0.07 | 0.85 ± 0.08 | 0.202 | <0.80 |
Fat mass (%) | 37.6 ± 5.92 | 36.9 ± 5.77 | 38.6 ± 5.66 | 37.2 ± 6.46 | 0.556 | 23.0–31.0 |
Fat free mass (%) | 62.4 ± 5.92 | 63.1 ± 5.77 | 61.4 ± 5.66 | 62.7 ± 6.46 | 0.556 | >69.0 |
Dietary intake | ||||||
Energy (kcal/day) | 1378 ± 337 | 1361.8 ± 394.4 | 1326.4 ± 304.7 | 1457.8 ± 294.6 | 0.381 | 2000.0 |
Carbohydrates (g/day) | 149.7 ± 42.5 | 144.9 ± 49.2 | 142.9 ± 40.1 | 162.7 ± 34.7 | 0.200 | 275.0 |
Fats (g/day) | 59.1 ± 20.6 | 59.9 ± 25.4 | 56.1 ± 17.1 | 61.2 ± 18.1 | 0.658 | 70.0 |
Proteins (g/day) | 61.6 ± 15.4 | 59.2 ± 14.3 | 60.3 ± 15.4 | 65.7 ± 16.3 | 0.281 | 50.0 |
Fiber (g/day) | 15.9 ± 8.11 | 12.9 ± 5.23 a | 14.9 ± 5.83 | 20.7 ± 10.7 a | 0.001 | >25 |
Characteristics | n (%) | n (%) | n (%) | n (%) | p Value | Reference Values |
Sociodemographic | ||||||
Blood pressure | - | - | - | - | - | - |
Normal blood pressure | 43 (55) | 18 (69) | 14 (54) | 11 (42) | 0.165 | - |
High blood pressure | 35 (45) | 8 (31) | 12 (46) | 15 (58) | - | |
Physical exercise | - | - | - | - | - | - |
Sedentary | 20 (26) | 9 (35) | 5 (19) | 6 (23) | 0.310 | - |
Non-sedentary | 58 (74) | 17 (65) | 21 (81) | 20 (77) | - | |
Smoking habit | - | - | - | - | - | - |
Non-smoker | 62 (80) | 17 (65) | 23 (89) | 22 (85) | 0.045 | - |
Smoker | 16 (20) | 9 (35) | 3 (11) | 4 (15) | - | |
Educational level | - | - | - | - | - | - |
Basic educational level | 29 (37) | 7 (27) | 6 (23) | 16 (62) | 0.008 | - |
Secondary or high educational level | 49 (63) | 19 (73) | 20 (77) | 10 (38) | - |
Characteristics | Total Population (n = 78) | <54 Years (n = 26) | 54–62 Years (n = 26) | >62 Years (n = 26) | p Value | Reference Values |
---|---|---|---|---|---|---|
Mean ± SD | Mean ± SD | Mean ± SD | Mean ± SD | |||
Glucose (mg/dL) | 92.2 ± 15.9 | 85.0 ± 12.9 b | 91.6 ± 9.31 | 100.9 ± 20.2 b | 0.001 | 70.0–110.0 |
Creatinine (mg/dL) | 0.69 ± 0.13 | 0.66 ± 0.10 | 0.68 ± 0.07 | 0.74 ± 0.18 | 0.085 | 0.50–0.90 |
Urea (mg/dL) | 34.5 ± 9.08 | 32.9 ± 0.09 | 32.4 ± 6.97 c | 38.7 ± 10.5 c | 0.024 | 10.0–50.0 |
Uric acid (mg/dL) | 4.40 ± 1.07 | 4.10 ± 0.90 b | 4.20 ± 0.96 c | 4.97 ± 1.16 b,c | 0.005 | 2.40–5.70 |
Total bilirubin (mg/dL) | 0.47 ± 0.14 | 0.42 ± 0.12 b | 0.48 ± 0.10 | 0.53 ± 0.16 b | 0.023 | 0.10–1.20 |
Total proteins (g/dL) | 7.08 ± 0.52 | 7.12 ± 0.60 | 7.07 ± 0.45 | 7.05 ± 0.53 | 0.883 | 6.60–8.70 |
Albumin (mg/dL) | 4.44 ± 0.21 | 4.49 ± 0.22 | 4.48 ± 0.22 | 4.37 ± 0.18 | 0.120 | 3.50–5.20 |
Prealbumin (mg/dL) | 25.2 ± 5.07 | 24.9 ± 4.10 | 25.8 ± 5.53 | 24.8 ± 5.87 | 0.805 | 20.0–40.0 |
Transferrin (mg/dL) | 280.2 ± 45.9 | 287.5 ± 42.5 | 269.1 ± 45.9 | 283.4 ± 49.9 | 0.385 | 200.0–360.0 |
CRP (mg/L) | 1.04 ± 6.95 | 2.35 ± 11.3 | 0.32 ± 0.43 | 0.22 ± 0.13 | 0.447 | 0.02–5.00 |
Triglycerides (mg/dL) | 108.2 ± 67.9 | 102.5 ± 84.2 | 109.6 ± 62.8 | 113.4 ± 52.3 | 0.845 | 50.0–200.0 |
HDL (mg/dL) | 66.6 ± 15.6 | 67.5 ± 13.1 | 65.2 ± 10.1 | 67.3 ± 22.3 | 0.845 | 40.0–60.0 |
LDL (mg/dL) | 128.0 ± 31.3 | 122.2 ± 29.0 | 137.8 ± 31.2 | 124.4 ± 32.9 | 0.156 | 70.0–190.0 |
Total cholesterol (mg/dL) | 220.5 ± 34.4 | 215.4 ± 31.0 | 227.2 ± 36.7 | 219.3 ± 35.8 | 0.453 | 110.0–200.0 |
Osteocalcin (ng/mL) | 15.3 ± 9.82 | 13.1 ± 8.96 | 15.3 ± 8.45 | 18.0 ± 11.7 | 0.209 | 15.0–46.0 |
PTH (pg/mL) | 56.2 ± 23.8 | 57.6 ± 31.0 | 51.7 ± 15.6 | 59.3 ± 20.7 | 0.516 | 20.0–70.0 |
Leptin (ng/mL) | 13.9 ± 4.83 | 13.4 ± 5.02 | 14.9 ± 5.28 | 13.4 ± 4.07 | 0.400 | 3.60–11.1 |
25–OH–D (ng/mL) | 23.5 ± 7.40 | 20.7 ± 5.49 a | 27.1 ± 8.30 a | 22.8 ± 6.98 | 0.006 | 30.0–100.0 |
25–OH–D3 (ng/mL) | 17.7 ± 7.06 | 15.1 ± 5.39 a | 20.9 ± 7.90 a | 17.5 ± 6.74 | 0.012 | >20 |
25–OH–D2 (ng/mL) | 5.74 ± 3.11 | 5.62 ± 2.32 | 6.25 ± 4.27 | 5.31 ± 2.41 | 0.585 | >10 |
Ca (mg/dL) | 9.21 ± 0.44 | 9.13 ± 0.32 | 9.26 ± 0.42 | 9.24 ± 0.58 | 0.531 | 8.60–10.2 |
P (mg/dL) | 3.49 ± 0.50 | 3.25 ± 0.57 a | 3.70 ± 0.36 a | 3.54 ± 0.42 | 0.003 | 2.70–4.50 |
Fe (µg/dL) | 92.6 ± 30.7 | 83.1 ± 31.8 | 100.2 ± 29.0 | 95.7 ± 29.5 | 0.109 | 60.0–170.0 |
Cu (µg/dL) | 101.4 ± 23.0 | 111.8 ± 24.3 b | 101.4 ± 20.6 | 85.3 ± 15.4 b | 0.001 | 85.0–180.0 |
TAC (µmol/L) | 1539.3 ± 483.1 | 1585.0 ± 658.3 | 1405.5 ± 388.1 | 1634.9 ± 264.1 | 0.209 | 1500.0 |
GPX (mU/mL) | 118.2 ± 47.7 | 117.4 ± 43.9 | 116.9 ± 37.6 | 120.7 ± 62.1 | 0.957 | 120.0 |
SOD (U/mL) | 184.4 ± 34.2 | 181.6 ± 33.1 | 184.3 ± 35.2 | 187.8 ± 35.5 | 0.813 | 164.0–240.0 |
Characteristics | Model 0 | Model 1 | ||||
---|---|---|---|---|---|---|
ß | R2 | p Value | ß | R2 | p Value | |
Glucose (mg/dL) | 0.425 | 0.181 | 0.001 | 0.377 | 0.237 | 0.007 |
Creatinine (mg/dL) | 0.298 | 0.089 | 0.009 | 0.273 | 0.100 | 0.072 |
Urea (mg/dL) | 0.307 | 0.094 | 0.007 | 0.169 | 0.133 | 0.252 |
Uric acid (mg/dL) | 0.404 | 0.163 | 0.001 | 0.391 | 0.167 | 0.008 |
Total bilirubin (mg/dL) | 0.292 | 0.085 | 0.011 | 0.162 | 0.186 | 0.260 |
Albumin (mg/dL) | −0.243 | 0.059 | 0.038 | −0.398 | 0.121 | 0.011 |
Cu (µg/dL) | −0.379 | 0.144 | 0.002 | −0.347 | 0.160 | 0.042 |
Osteocalcin (ng/mL) | 0.247 | 0.061 | 0.032 | 0.436 | 0.130 | 0.004 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vázquez-Lorente, H.; Herrera-Quintana, L.; Molina-López, J.; López-González, B.; Planells, E. Sociodemographic, Anthropometric, Body Composition, Nutritional, and Biochemical Factors Influenced by Age in a Postmenopausal Population: A Cross-Sectional Study. Metabolites 2023, 13, 78. https://doi.org/10.3390/metabo13010078
Vázquez-Lorente H, Herrera-Quintana L, Molina-López J, López-González B, Planells E. Sociodemographic, Anthropometric, Body Composition, Nutritional, and Biochemical Factors Influenced by Age in a Postmenopausal Population: A Cross-Sectional Study. Metabolites. 2023; 13(1):78. https://doi.org/10.3390/metabo13010078
Chicago/Turabian StyleVázquez-Lorente, Héctor, Lourdes Herrera-Quintana, Jorge Molina-López, Beatriz López-González, and Elena Planells. 2023. "Sociodemographic, Anthropometric, Body Composition, Nutritional, and Biochemical Factors Influenced by Age in a Postmenopausal Population: A Cross-Sectional Study" Metabolites 13, no. 1: 78. https://doi.org/10.3390/metabo13010078
APA StyleVázquez-Lorente, H., Herrera-Quintana, L., Molina-López, J., López-González, B., & Planells, E. (2023). Sociodemographic, Anthropometric, Body Composition, Nutritional, and Biochemical Factors Influenced by Age in a Postmenopausal Population: A Cross-Sectional Study. Metabolites, 13(1), 78. https://doi.org/10.3390/metabo13010078