Wnt Inhibitors and Bone Mineral Density in Patients with Graves’ Disease Treated with Antithyroid Drugs: A Preliminary Prospective Study
Abstract
:1. Introduction
2. Results
3. Discussion
4. Materials and Methods
4.1. Study Design and Patients
4.2. Study Protocol
4.3. GD Diagnosis and Treatment
4.4. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bartalena, L. Diagnosis and management of Graves disease: A global overview. Nat. Rev. Endocrinol. 2013, 9, 724–734. [Google Scholar] [CrossRef] [PubMed]
- Welsh, K.J.; Soldin, S.J. DIAGNOSIS OF ENDOCRINE DISEASE: How reliable are free thyroid and total T3 hormone assays? Eur. J. Endocrinol. 2016, 175, R255–R263. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Smith, T.J.; Hegedüs, L. Graves’ Disease. N. Engl. J. Med. 2016, 375, 1552–1565. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Antonelli, A.; Ferrari, S.M.; Ragusa, F.; Elia, G.; Paparo, S.R.; Ruffilli, I.; Patrizio, A.; Giusti, C.; Gonnella, D.; Cristaudo, A.; et al. Graves’ disease: Epidemiology, genetic and environmental risk factors and viruses. Best Pr. Res. Clin. Endocrinol. Metab. 2020, 34, 101387. [Google Scholar] [CrossRef] [PubMed]
- Subekti, I.; Pramono, L.A. Current Diagnosis and Management of Graves’ Disease. Acta Med. Indones. 2018, 50, 177–182. [Google Scholar] [PubMed]
- Tuchendler, D.; Bolanowski, M. The influence of thyroid dysfunction on bone metabolism. Thyroid Res. 2014, 7, 12. [Google Scholar] [CrossRef] [Green Version]
- Baron, R.; Kneissel, M. WNT signaling in bone homeostasis and disease: From human mutations to treatments. Nat. Med. 2013, 19, 179–192. [Google Scholar] [CrossRef]
- Komiya, Y.; Habas, R. Wnt signal transduction pathways. Organogenesis 2008, 4, 68–75. [Google Scholar] [CrossRef] [Green Version]
- Kim, J.H.; Liu, X.; Wang, J.; Chen, X.; Zhang, H.; Kim, S.H.; Cui, J.; Li, R.; Zhang, W.; Kong, Y.; et al. Wnt signaling in bone formation and its therapeutic potential for bone diseases. Ther. Adv. Musculoskelet. Dis. 2013, 5, 13–31. [Google Scholar] [CrossRef] [Green Version]
- Krishnan, V.; Bryant, H.U.; MacDougald, O. Regulation of bone mass by Wnt signaling. J. Clin. Investig. 2006, 116, 1202–1209. [Google Scholar] [CrossRef]
- Tanaka, S.; Matsumoto, T. Sclerostin: From bench to bedside. J. Bone Miner. Metab. 2021, 39, 332–340. [Google Scholar] [CrossRef]
- Kubota, T.; Michigami, T.; Ozono, K. Wnt signaling in bone metabolism. J. Bone Miner. Metab. 2009, 27, 265–271. [Google Scholar] [CrossRef]
- Delgado-Calle, J.; Bellido, T. Osteocytes and Skeletal Pathophysiology. Curr. Mol. Biol. Rep. 2015, 1, 157–167. [Google Scholar] [CrossRef] [Green Version]
- Sebastian, A.; Loots, G.G. Transcriptional control of Sost in bone. Bone 2017, 96, 76–84. [Google Scholar] [CrossRef] [Green Version]
- Delgado-Calle, J.; Sato, A.Y.; Bellido, T. Role and mechanism of action of sclerostin in bone. Bone 2017, 96, 29–37. [Google Scholar] [CrossRef] [Green Version]
- Schaffler, M.B.; Kennedy, O.D. Osteocyte Signaling in Bone. Curr. Osteoporos. Rep. 2012, 10, 118–125. [Google Scholar] [CrossRef] [Green Version]
- Sutherland, M.K.; Geoghegan, J.C.; Yu, C.; Turcott, E.; Skonier, J.E.; Winkler, D.G.; Latham, J.A. Sclerostin promotes the apoptosis of human osteoblastic cells: A novel regulation of bone formation. Bone 2004, 35, 828–835. [Google Scholar] [CrossRef]
- Hu, Y.; Liu, M.; Xu, S.; Li, S.; Yang, M.; Su, T.; Yuan, Z.; Peng, H. The Clinical Significance of Dickkopf Wnt Signaling Pathway Inhibitor Gene Family in Head and Neck Squamous Cell Carcinoma. Med. Sci. Monit. 2020, 26, e927368-1–e927368-13. [Google Scholar] [CrossRef]
- Huang, Y.; Liu, L.; Liu, A. Dickkopf-1: Current knowledge and related diseases. Life Sci. 2018, 209, 249–254. [Google Scholar] [CrossRef]
- Ke, H.Z.; Richards, W.G.; Li, X.; Ominsky, M.S. Sclerostin and Dickkopf-1 as Therapeutic Targets in Bone Diseases. Endocr. Rev. 2012, 33, 747–783. [Google Scholar] [CrossRef] [Green Version]
- Li, J.; Sarosi, I.; Cattley, R.C.; Pretorius, J.; Asuncion, F.; Grisanti, M.; Morony, S.; Adamu, S.; Geng, Z.; Qiu, W.; et al. Dkk1-mediated inhibition of Wnt signaling in bone results in osteopenia. Bone 2006, 39, 754–766. [Google Scholar] [CrossRef] [PubMed]
- Paik, J.; Scott, L.J. Romosozumab: A Review in Postmenopausal Osteoporosis. Drugs Aging 2020, 37, 845–855. [Google Scholar] [CrossRef] [PubMed]
- Tsourdi, E.; Rijntjes, E.; Köhrle, J.; Hofbauer, L.C.; Rauner, M. Hyperthyroidism and Hypothyroidism in Male Mice and Their Effects on Bone Mass, Bone Turnover, and the Wnt Inhibitors Sclerostin and Dickkopf-1. Endocrinology 2015, 156, 3517–3527. [Google Scholar] [CrossRef] [PubMed]
- Tsourdi, E.; Colditz, J.; Lademann, F.; Rijntjes, E.; Köhrle, J.; Niehrs, C.; Hofbauer, L.C.; Rauner, M. The Role of Dickkopf-1 in Thyroid Hormone–Induced Changes of Bone Remodeling in Male Mice. Endocrinology 2019, 160, 664–674. [Google Scholar] [CrossRef] [Green Version]
- Skowrońska-Jóźwiak, E.; Krawczyk-Rusiecka, K.; Lewandowski, K.C.; Adamczewski, Z.; Lewiński, A. Successful treatment of thyrotoxicosis is accompanied by a decrease in serum sclerostin levels. Thyroid Res. 2012, 5, 14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Skowrońska-Jóźwiak, E.; Lewandowski, K.; Adamczewski, Z.; Krawczyk-Rusiecka, K.; Lewiński, A. Mechanisms of Normalisation of Bone Metabolism during Recovery from Hyperthyroidism: Potential Role for Sclerostin and Parathyroid Hormone. Int. J. Endocrinol. 2015, 2015, 948384. [Google Scholar] [CrossRef] [Green Version]
- Sarıtekin, İ.; Açıkgöz, Ş.; Bayraktaroğlu, T.; Kuzu, F.; Can, M.; Güven, B.; Mungan, G.; Büyükuysal, Ç.; Sarıkaya, S. Sclerostin and bone metabolism markers in hyperthyroidism before treatment and interrelations between them. Acta Biochim. Pol. 2017, 64, 597–602. [Google Scholar] [CrossRef] [Green Version]
- Mihaljević, O.B.; Živančević-Simonović, S.; Lučić-Tomić, A.; Živković, I.; Minić, R.; Mijatović-Teodorović, L.; Jovanović, Z.; Anđelković, M.; Stanojević-Pirković, M. The association of circulating sclerostin level with markers of bone metabolism in patients with thyroid dysfunction. J. Med. Biochem. 2020, 39, 436–443. [Google Scholar] [CrossRef]
- Vestergaard, P.; Mosekilde, L. Hyperthyroidism, Bone Mineral, and Fracture Risk—A Meta-Analysis. Thyroid 2003, 13, 585–593. [Google Scholar] [CrossRef]
- Nicolaisen, M.P.; Obling, M.M.L.; Winther, K.H.; Hansen, S.; Hermann, A.P.; Hegedüs, L.; Bonnema, S.J.; Brix, T.H. Consequences of Hyperthyroidism and Its Treatment for Bone Microarchitecture Assessed by High-Resolution Peripheral Quantitative Computed Tomography. Thyroid 2020, 31, 208–216. [Google Scholar] [CrossRef]
- Lin, C.; Jiang, X.; Dai, Z.; Guo, X.; Weng, T.; Wang, J.; Li, Y.; Feng, G.; Gao, X.; He, L. Sclerostin Mediates Bone Response to Mechanical Unloading Through Antagonizing Wnt/β-Catenin Signaling. J. Bone Miner. Res. 2009, 24, 1651–1661. [Google Scholar] [CrossRef] [PubMed]
- Qiang, Y.-W.; Barlogie, B.; Rudikoff, S.; Shaughnessy, J.D. Dkk1-induced inhibition of Wnt signaling in osteoblast differentiation is an underlying mechanism of bone loss in multiple myeloma. Bone 2008, 42, 669–680. [Google Scholar] [CrossRef] [PubMed]
- Maeda, K.; Kobayashi, Y.; Koide, M.; Uehara, S.; Okamoto, M.; Ishihara, A.; Kayama, T.; Saito, M.; Marumo, K. The Regulation of Bone Metabolism and Disorders by Wnt Signaling. Int. J. Mol. Sci. 2019, 20, 5525. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Witcher, P.C.; Miner, S.E.; Horan, D.J.; Bullock, W.A.; Lim, K.E.; Kang, K.S.; Adaniya, A.L.; Ross, R.D.; Loots, G.G.; Robling, A.G. Sclerostin neutralization unleashes the osteoanabolic effects of Dkk1 inhibition. JCI Insight 2018, 3. [Google Scholar] [CrossRef]
- El Hadidy, E.H.M.; Ghonaim, M.; El Gawad, S.S.A.; El Atta, M.A. Impact of severity, duration, and etiology of hyperthyroidism on bone turnover markers and bone mineral density in men. BMC Endocr. Disord. 2011, 11, 15. [Google Scholar] [CrossRef] [Green Version]
- Akalin, A.; Colak, O.; Alatas, O.; Efe, B. Bone remodelling markers and serum cytokines in patients with hyperthyroidism. Clin. Endocrinol. 2002, 57, 125–129. [Google Scholar] [CrossRef]
- Barsal, G.; Taneli, F.; Atay, A.; Hekimsoy, Z.; Erciyas, F. Serum osteocalcin levels in hyperthyroidism before and after antithyroid therapy. Tohoku J. Exp. Med. 2004, 203, 183–188. [Google Scholar] [CrossRef] [Green Version]
- Pantazi, H.; Papapetrou, P.D. Changes in parameters of bone and mineral metabolism during therapy for hyperthyroidism. J. Clin. Endocrinol. Metab. 2000, 85, 1099–1106. [Google Scholar] [CrossRef] [PubMed]
- Krølner, B.; Jørgensen, J.V.; Nielsen, S.P. Spinal bone mineral content in myxoedema and thyrotoxicosis. Effects of thyroid hormone(s) and antithyroid treatment. Clin. Endocrinol. 1983, 18, 439–446. [Google Scholar] [CrossRef]
- Wakasugi, M.; Wakao, R.; Tawata, M.; Gan, N.; Inoue, M.; Koizumi, K.; Onaya, T. Change in Bone Mineral Density in Patients with Hyperthyroidism after Attainment of Euthyroidism by Dual Energy X-Ray Absorptiometry. Thyroid 1994, 4, 179–182. [Google Scholar] [CrossRef]
- Belsing, T.Z.; Tofteng, C.; Langdahl, B.L.; Charles, P.; Feldt-Rasmussen, U. Can bone loss be reversed by antithyroid drug therapy in premenopausal women with Graves’ disease? Nutr. Metab. 2010, 7, 72. [Google Scholar] [CrossRef] [Green Version]
- Ock, S.Y.; Chung, Y.-S.; Choi, Y.J. Changes in bone mineral density and trabecular bone score in Graves’ disease patients after anti-thyroid therapy. Osteoporos. Sarcopenia 2016, 2, 175–179. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yoshihara, A.; Noh, J.Y.; Mukasa, K.; Watanabe, N.; Iwaku, K.; Ohye, H.; Suzuki, M.; Matsumoto, M.; Kunii, Y.; Suzuki, N.; et al. The characteristics of osteoporotic patients in Graves’ disease patients newly diagnosed after menopause: A prospective observational study. Endocr. J. 2016, 63, 1113–1122. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wakasugi, M.; Wakao, R.; Tawata, M.; Gan, N.; Koizumi, K.; Onaya, T. Bone mineral density in patients with hyperthyroidism measured by dual energy X-ray absorptiometry. Clin. Endocrinol. 1993, 38, 283–286. [Google Scholar] [CrossRef]
- Lee, M.S.; Kim, S.Y.; Lee, M.C.; Cho, B.Y.; Lee, H.K.; Koh, C.-S.; Min, H.K. Negative Correlation between the Change in Bone Mineral Density and Serum Osteocalcin in Patients with Hyperthyroidism. J. Clin. Endocrinol. Metab. 1990, 70, 766–770. [Google Scholar] [CrossRef] [PubMed]
- Zou, J.; Li, X.L.; Yang, F. Association between sclerostin, serum bone turnover markers and bone density in postmenopausal women with fragility fracture. Int. J. Clin. Exp. Med. 2016, 9, 12984–12991. [Google Scholar]
- Kuo, T.-H.; Lin, W.-H.; Chao, J.-Y.; Wu, A.-B.; Tseng, C.-C.; Chang, Y.-T.; Liou, H.-H.; Wang, M.-C. Serum sclerostin levels are positively related to bone mineral density in peritoneal dialysis patients: A cross-sectional study. BMC Nephrol. 2019, 20, 266. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Garnero, P.; Sornay-Rendu, E.; Munoz, F.; Borel, O.; Chapurlat, R.D. Association of serum sclerostin with bone mineral density, bone turnover, steroid and parathyroid hormones, and fracture risk in postmenopausal women: The OFELY study. Osteoporos. Int. 2013, 24, 489–494. [Google Scholar] [CrossRef] [PubMed]
- Bartalena, L.; Baldeschi, L.; Boboridis, K.; Eckstein, A.; Kahaly, G.J.; Marcocci, C.; Perros, P.; Salvi, M.; Wiersinga, W.M.; on behalf of the European Group on Graves’ Orbitopathy (EUGOGO). The 2016 European Thyroid Association/European Group on Graves’ Orbitopathy Guidelines for the Management of Graves’ Orbitopathy. Eur. Thyroid J. 2016, 5, 9–26. [Google Scholar] [CrossRef] [Green Version]
Median (Interquartile Range) | Minimum–Maximum | |
---|---|---|
Age (year) | 47 (33–58) | 22–74 |
Height (cm) | 165 (160–170) | 147–184 |
Weight (kg) BMI (kg/m2) | 67 (54.5–71) 24.4 (20.25–26.95) | 50–92 17.9–33.9 |
Vitamin D ug/L | 18 (10.9–18.3) |
Median (Interquartile Range) | Difference (95% Reliability Range) | p * | ||
---|---|---|---|---|
Baseline Point | Control Point | |||
FT4 pmol/L | 31.85 (29.27–39.41) | 11.45 (10.73–12.76) | −21.9 (−24.2 to −19.2) | <0.001 |
FT3 pmol/L | 16.3 (12.72–26.85) | 3.98 (3.61–4.47) | −15.3 (−19.7 to −11.2) | <0.001 |
TSH mIU/L | 0.01 (0.01–0.01) | 1.76 (1.06–3.02) | 1.99 (1.47 to 2.68) | <0.001 |
Anti-TSH-R U/L | 8.7 (4.15–13.45) | 1.1 (0.45–2.4) | −8.25 (−10.25 to −5.2) | <0.001 |
Median (Interquartile Range) | Difference (95% Reliability Range) | p * | ||
---|---|---|---|---|
Baseline Point | Control Point | |||
β-CTX μg/L | 1.21 (0.79–1.7) | 0.37 (0.24–0.51) | −0.89 (−1.11 to −0.67) | <0.001 |
OC μg/L | 58.5 (47.5–87.5) | 26 (20.5–35.5) | −35.3 (−45 to −25.5) | <0.001 |
DPD nmol | 19.35 (12.3–25.5) | 4.05 (3–4.95) | −14.9 (−18.5 to −11.6) | <0.001 |
Sclerostin pg/mL | 134.68 (30.3–306.9) | 65.82 (27.7–177.7) | −34.3 (−86.7 to −6.5) | <0.001 |
DKK1 pg/mL | 0.403 (0.265–0.595) | 0.604 (0.410–0.889) | 0.181 (0.036 to 0.321) | 0.01 |
Participants DXA Results | Median (Interquartile Range) | Difference (95% Reliability Range) | p * | |
---|---|---|---|---|
Baseline Point | Control Point | |||
T-score L1–L4 | −1.3 (−1.9 to 0.3) | −0.7 (−1.4 to 0.7) | 0.4 (0.2 to 0.65) | 0.001 |
T-score of the hip | −0.6 (−1.3 to −0.10) | −0.3 (−1.025 to 1.25) | 0.5 (0.3 to 0.7) | <0.001 |
T-score of the femoral neck | −0.7 (−1.63 to 0.23) | −0.4 (−1.03 to 0.425) | 0.35 (0.2 to 0.5) | <0.001 |
L1–L4 BMD g/cm2 | 1.016 (0.946 to 1.21) | 1.095 (1.01 to 1.27) | 0.067 (0.04 to 0.105) | <0.001 |
Hip BMD g/cm2 | 0.915 (0.84 to 0.963) | 0.963 (0.879 to 1.148) | 0.079 (0.049 to 0.115) | <0.001 |
Femoral neck BMD g/cm2 | 0.894 (0.78 to 0.946) | 0.935 (0.852 to 1.032) | 0.062 (0.036 to 0.089) | <0.001 |
Participants Number (%) | p | |||||
---|---|---|---|---|---|---|
DXA Results According to T-Score at Baseline Point | ||||||
Normal | Osteopenia | Osteoporosis | Total | |||
Lumbar spine | ||||||
Participants number (%) Control Point | Normal bone density | 15 | 10 | 0 | 25 (68) | 0.007 * |
Osteopenia | 1 | 10 | 0 | 11 (30) | ||
Osteoporosis | 0 | 0 | 1 | 1 (3) | ||
Total | 16 (43) | 20 (54) | 1 (3) | 37 (100) | ||
Hip | ||||||
Participants number (%) Control point | Normal | 23 | 4 | 0 | 27 (73) | 0.10 ** |
Osteopenia | 1 | 8 | 1 | 10 (27) | ||
Osteoporosis | 0 | 0 | 0 | 0 | ||
Total | 24 (65) | 12 (32) | 1 (3) | 37 (100) |
Baseline Point | Spearman’s Correlations Coefficient Rho (p-Value) | ||||
---|---|---|---|---|---|
OC μg/L | DPD nmol | β-CTX μg/L | Sclerostin pg/mL | DKK 1 pg/mL | |
FT4 pmol/L | 0.377 (0.02) | 0.581 (<0.001) | 0.360 (0.03) | 0.271 (0.10) | 0.208 (0.22) |
FT3 pmol/L | 0.355 (0.04) | 0.694 (<0.001) | 0.394 (0.02) | 0.226 (0.19) | 0.259 (0.13) |
TSH mIU/L | |||||
Anti-TSH-R U/L | 0.166 (0.33) | 0.404 (0.01) | −0.002 (0.99) | 0.138 (0.42) | 0.284 (0.09) |
L1–L4 T-score | −0.447 (0.006) | −0.058 (0.73) | −0.396 (0.02) | −0.158 (0.35) | −0.235 (0.16) |
Hip T-score | −0.496 (0.002) | −0.106 (0.53) | −0.393 (0.02) | −0.090 (0.60) | −0.270 (0.11) |
Femoral neck T-score | −0.406 (0.01) | −0.119 (0.48) | −0.374 (0.03) | −0.262 (0.12) | −0.244 (0.15) |
L1–L4 BMD g/cm2 | −0.407 (0.01) | −0.034 (0.84) | −0.385 (0.02) | −0.114 (0.50) | −0.300 (0.07) |
Hip BMD g/cm2 | −0.439 (0.007) | −0.103 (0.54) | −0.391 (0.02) | −0.072 (0.67) | −0.229 (0.17) |
Femoral neck BMD g/cm2 | −0.379 (0.02) | −0.153 (0.37) | −0.348 (0.04) | −0.193 (0.25) | −0.308 (0.06) |
Control Point | Spearman’s Correlations Coefficient Rho (p-Value) | ||||
---|---|---|---|---|---|
OC μg/L | DPD nmol | β-CTX μg/L | Sclerostin pg/mL | DKK 1 pg/mL | |
FT4 pmol/L | 0.023 (0.89) | 0.478 (0.003) | 0.042 (0.81) | −0.246 (0.14) | 0.319 (0.05) |
FT3 pmol/L | −0.064 (0.71) | 0.178 (0.30) | −0.017 (0.92) | −0.034 (0.84) | 0.480 (0.003) |
TSH mIU/L | 0.121 (0.48) | −0.325 (0.05) | 0.117 (0.49) | 0.136 (0.42) | −0.335 (0.04) |
Anti-TSH-R U/L | −0.122 (0.47) | −0.248 (0.14) | −0.111 (0.51) | 0.261 (0.12) | −0.219 (0.19) |
L1–L4 T-score | −0.354 (0.03) | −0.134 (0.43) | −0.445 (0.006) | 0.142 (0.40) | −0.257 (0.12) |
Hip T-score | −0.449 (0.002) | 0.135 (0.43) | −0.239 (0.15) | −0.091 (0.59) | −0.157 (0.35) |
Femoral neck T-score | −0.484 (0.002) | 0.095 (0.58) | −0.318 (0.05) | −0.143 (0.40) | −0.111 (0.51) |
L1–L4 BMD g/cm2 | −0.290 (0.08) | −0.117 (0.5) | −0.391 (0.02) | 0.025 (0.88) | −0.223 (0.18) |
Hip BMD g/cm2 | −0.461 (0.004) | 0.073 (0.67) | −0.269 (0.11) | −0.099 (0.56) | −0.197 (0.24) |
Femoral neck BMD g/cm2 | −0.524 (0.001) | 0.02 (0.91) | −0.354 (0.03) | −0.185 (0.27) | −0.179 (0.29) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mudri, D.; Kizivat, T.; Mihaljević, I.; Bilić Ćurčić, I. Wnt Inhibitors and Bone Mineral Density in Patients with Graves’ Disease Treated with Antithyroid Drugs: A Preliminary Prospective Study. Metabolites 2022, 12, 711. https://doi.org/10.3390/metabo12080711
Mudri D, Kizivat T, Mihaljević I, Bilić Ćurčić I. Wnt Inhibitors and Bone Mineral Density in Patients with Graves’ Disease Treated with Antithyroid Drugs: A Preliminary Prospective Study. Metabolites. 2022; 12(8):711. https://doi.org/10.3390/metabo12080711
Chicago/Turabian StyleMudri, Dunja, Tomislav Kizivat, Ivica Mihaljević, and Ines Bilić Ćurčić. 2022. "Wnt Inhibitors and Bone Mineral Density in Patients with Graves’ Disease Treated with Antithyroid Drugs: A Preliminary Prospective Study" Metabolites 12, no. 8: 711. https://doi.org/10.3390/metabo12080711
APA StyleMudri, D., Kizivat, T., Mihaljević, I., & Bilić Ćurčić, I. (2022). Wnt Inhibitors and Bone Mineral Density in Patients with Graves’ Disease Treated with Antithyroid Drugs: A Preliminary Prospective Study. Metabolites, 12(8), 711. https://doi.org/10.3390/metabo12080711