The Quantitative Profiling of Oxylipins from Arachidonic Acid by LC-MS/MS in Feces at Birth 3 Days and 21 Days of Piglets
Abstract
:1. Introduction
2. Results
2.1. Oxylipins Profile in Feces of Suckling Piglets
2.2. Differential Oxylipins in Feces of Suckling Piglets
2.3. Arachidonic Acid-Derived Oxylipins in Feces
2.4. Chiral Analysis the S and R Enantiomers of 12-HETE in Feces
3. Discussion
4. Materials and Methods
4.1. Chemicals and Reagent
4.2. Animals and Sampling
4.3. Analytical Condition of LC-MS/MS
4.4. Identification of Differential Oxylipins
4.5. Chiral Analysis of 12-HETEs
4.6. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Caligiuri, S.P.; Parikh, M.; Stamenkovic, A.; Pierce, G.N.; Aukema, H.M. Dietary modulation of oxylipins in cardiovascular disease and aging. Am. J. Physiol.-Heart Circ. Physiol. 2017, 313, H903–H918. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Willenberg, I.; Ostermann, A.I.; Schebb, N.H. Targeted metabolomics of the arachidonic acid cascade: Current state and challenges of LC–MS analysis of oxylipins. Anal. Bioanal. Chem. 2015, 407, 2675–2683. [Google Scholar] [CrossRef] [PubMed]
- Smith, W.L.; Urade, Y.; Jakobsson, P.-J. Enzymes of the cyclooxygenase pathways of prostanoid biosynthesis. Chem. Rev. 2011, 111, 5821–5865. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gabbs, M.; Leng, S.; Devassy, J.G.; Monirujjaman, M.; Aukema, H.M. Advances in our understanding of oxylipins derived from dietary PUFAs. Adv. Nutr. 2015, 6, 513–540. [Google Scholar] [CrossRef] [Green Version]
- Musiek, E.S.; Yin, H.; Milne, G.L.; Morrow, J.D. Recent advances in the biochemistry and clinical relevance of the isoprostane pathway. Lipids 2005, 40, 987–994. [Google Scholar] [CrossRef]
- Mesaros, C.; Blair, I.A. Targeted Chiral Analysis of Bioactive Arachidonic Acid Metabolites Using Liquid-Chromatography-Mass Spectrometry. Metabolites 2012, 2, 337–365. [Google Scholar] [CrossRef] [Green Version]
- Hadley, K.B.; Ryan, A.S.; Forsyth, S.; Gautier, S.; Salem, N., Jr. The essentiality of arachidonic acid in infant development. Nutrients 2016, 8, 216. [Google Scholar] [CrossRef] [Green Version]
- Huang, N.; Wang, M.; Peng, J.; Wei, H. Role of arachidonic acid-derived eicosanoids in intestinal innate immunity. Crit. Rev. Food Sci. Nutr. 2020, 61, 2399–2410. [Google Scholar] [CrossRef]
- Stables, M.J.; Gilroy, D.W. Old and new generation lipid mediators in acute inflammation and resolution. Prog. Lipid Res. 2011, 50, 35–51. [Google Scholar] [CrossRef]
- Stenson, W.F. Prostaglandins and epithelial response to injury. Curr. Opin. Gastroenterol. 2007, 23, 107–110. [Google Scholar] [CrossRef]
- Pluske, J.R. Invited review: Aspects of gastrointestinal tract growth and maturation in the pre- and postweaning period of pigs. J. Anim. Sci. 2016, 94, 399–411. [Google Scholar] [CrossRef] [Green Version]
- Bruins, M.J.; Dane, A.D.; Strassburg, K.; Vreeken, R.; Newman, J.; Salem, N.; Tyburczy, C.; Brenna, J.T. Plasma oxylipin profiling identifies polyunsaturated vicinal diols as responsive to arachidonic acid and docosahexaenoic acid intake in growing piglets. J. Lipid Res. 2013, 54, 1598–1607. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Petta, T.; Moraes, L.A.B.; Faccioli, L.H. Versatility of tandem mass spectrometry for focused analysis of oxylipids. Biol. Mass Spectrom. 2015, 50, 879–890. [Google Scholar] [CrossRef]
- Capdevila, J.; Yadagiri, P.; Manna, S.; Falck, J. Absolute configuration of the hydroxyeicosatetraenoic acids (HETEs) formed during catalytic oxygenation of arachidonic acid by microsomal cytochrome P-450. Biochem. Biophys. Res. Commun. 1986, 141, 1007–1011. [Google Scholar] [CrossRef]
- Ferdouse, A.; Leng, S.; Winter, T.; Aukema, H.M. The Brain Oxylipin Profile Is Resistant to Modulation by Dietary n-6 and n-3 Polyunsaturated Fatty Acids in Male and Female Rats. Lipids 2019, 54, 67–80. [Google Scholar] [CrossRef] [Green Version]
- Yuan, J.-J.; Chen, Q.; Xiong, X.-Y.; Zhang, Q.; Xie, Q.; Huang, J.-C.; Yang, G.-Q.; Gong, C.-X.; Qiu, Z.-M.; Sang, H.-F.; et al. Quantitative Profiling of Oxylipins in Acute Experimental Intracerebral Hemorrhage. Front. Neurosci. 2020, 14, 777. [Google Scholar] [CrossRef]
- Llauradó-Calero, E.; Badiola, I.; Delpino-Rius, A.; Lizardo, R.; Torrallardona, D.; Esteve-Garcia, E.; Tous, N. Fish oil rich in eicosapentaenoic acid and docosahexaenoic acid in sow diets modifies oxylipins and immune indicators in colostrum and milk. Animal 2021, 15, 100403. [Google Scholar] [CrossRef]
- Craig-Schmidt, M.C.; Stieh, K.E.; Lien, E.L. Retinal fatty acids of piglets fed docosahexaenoic and arachidonic acids from microbial sources. Lipids 1996, 31, 53–59. [Google Scholar] [CrossRef]
- Lysz, T.W.; Wu, Y.; Brash, A.; Keeting, P.E.; Lin, C.; Fu, S.C.J. Identification of 12(S)-hydroxyeicosatetraenoic acid in the young rat lens. Curr. Eye Res. 1991, 10, 331–337. [Google Scholar] [CrossRef]
- Corey, E.; Niwa, H.; Knolle, J. Total synthesis of (S)-12-hydroxy-5,8,14-cis,-10-trans-eicosatetraenoic acid (Samuelsson’s HETE). J. Am. Chem. Soc. 1978, 100, 1942–1943. [Google Scholar] [CrossRef]
- Fretland, D.J.; Djuric, S.W. 12(R)- and 12(S)-hydroxyeicosatetraenoic acids: Chemistry, biology and pharmacology. Prostaglandins Leukot. Essent. Fat. Acids 1989, 38, 215–228. [Google Scholar] [CrossRef]
- Powell, W.S.; Rokach, J. Biosynthesis, biological effects, and receptors of hydroxyeicosatetraenoic acids (HETEs) and oxoeicosatetraenoic acids (oxo-ETEs) derived from arachidonic acid. Biochim. Et Biophys. Acta (BBA)-Mol. Cell Biol. Lipids 2015, 1851, 340–355. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Murphy, R.C.; Falck, J.; Lumin, S.; Yadagiri, P.; Zirrolli, J.A.; Balazy, M.; Masferrer, J.L.; Abraham, N.G.; Schwartzman, M.L. 12(R)-hydroxyeicosatrienoic acid: A vasodilator cytochrome P-450-dependent arachidonate metabolite from the bovine corneal epithelium. J. Biol. Chem. 1988, 263, 17197–17202. [Google Scholar] [CrossRef]
- Ren, C.; Jin, J.; Wang, X.; Zhang, Y.; Jin, Q. Evaluation of fatty acid profile of colostrum and milk fat of different sow breeds. Int. Dairy J. 2021, 126, 105250. [Google Scholar] [CrossRef]
- Chen, L.; Xu, Y.; Chen, X.; Fang, C.; Zhao, L.; Chen, F. The Maturing Development of Gut Microbiota in Commercial Piglets during the Weaning Transition. Front. Microbiol. 2017, 8, 1688. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stokes, C.R.; Bailey, M.; Haverson, K.; Harris, C.; Jones, P.; Inman, C.; Pié, S.; Oswald, I.P.; Williams, B.A.; Akkermans, A.D.; et al. Postnatal development of intestinal immune system in piglets: Implications for the process of weaning. Anim. Res. 2004, 53, 325–334. [Google Scholar] [CrossRef] [Green Version]
- Tallima, H.; El Ridi, R. Arachidonic acid: Physiological roles and potential health benefits—A review. J. Adv. Res. 2018, 11, 33–41. [Google Scholar] [CrossRef]
- Calder, P.C. Polyunsaturated fatty acids, inflammation, and immunity. Eur. J. Clin. Nutr. 2001, 36, 1007–1024. [Google Scholar] [CrossRef]
- Cheng, C.; Wei, H.; Xu, C.; Xie, X.; Jiang, S.; Peng, J. Maternal Soluble Fiber Diet during Pregnancy Changes the Intestinal Microbiota, Improves Growth Performance, and Reduces Intestinal Permeability in Piglets. Appl. Environ. Microbiol. 2018, 84, e01047-18. [Google Scholar] [CrossRef] [Green Version]
- Council, N.R. Nutrient Requirements of Swine, 11th Revised ed.; National Academies Press: Washington, DC, USA, 2012. [Google Scholar]
- Neilson, A.P.; Ren, J.; Hong, Y.H.; Sen, A.; Smith, W.L.; Brenner, D.E.; Djuric, Z. Effect of Fish Oil on Levels ofR- andS-Enantiomers of 5-, 12-, and 15-Hydroxyeicosatetraenoic Acids in Mouse Colonic Mucosa. Nutr. Cancer 2012, 64, 163–172. [Google Scholar] [CrossRef] [Green Version]
- Chen, W.; Gong, L.; Guo, Z.; Wang, W.; Zhang, H.; Liu, X.; Yu, S.; Xiong, L.; Luo, J. A Novel Integrated Method for Large-Scale Detection, Identification, and Quantification of Widely Targeted Metabolites: Application in the Study of Rice Metabolomics. Mol. Plant 2013, 6, 1769–1780. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, D.; Shen, Z.; Yu, C.; Cheng, L.; Chen, D.; Yuan, Z. Quantitative Profiling of Differentially Produced Oxylipins in Human Adipose Derived Mesenchymal Stem Cells Under Proinflammatory Stimulation. 2021. [Google Scholar] [CrossRef]
- Gomolka, B.; Siegert, E.; Blossey, K.; Schunck, W.-H.; Rothe, M.; Weylandt, K.H. Analysis of omega-3 and omega-6 fatty acid-derived lipid metabolite formation in human and mouse blood samples. Prostaglandins Other Lipid Mediat. 2011, 94, 81–87. [Google Scholar] [CrossRef] [PubMed]
- Huang, D.; Ming, R.; Yao, S.; Li, L.; Huang, R.; Tan, Y. Identification of anthocyanins in the fruits of Kadsura coccinea using UPLC-MS/MS-based metabolomics. Biochem. Syst. Ecol. 2021, 98, 104324. [Google Scholar] [CrossRef]
- Xiao, J.; Gu, C.; He, S.; Zhu, D.; Huang, Y.; Zhou, Q. Widely targeted metabolomics analysis reveals new biomarkers and mechanistic insights on chestnut (Castanea mollissima Bl.) calcification process. Food Res. Int. 2021, 141, 110128. [Google Scholar] [CrossRef] [PubMed]
Class | Number of Compounds |
---|---|
Arachidonic acid | 21 |
Eicosapentaenoic acid | 7 |
Docosahexaenoic acid | 7 |
Linoleic acid | 6 |
α-Linolenic acid | 3 |
Dihomo-γ-Linolenic acid | 2 |
γ-Linolenic acid | 1 |
Mead acid | 1 |
Oxylipins | Class | Fold Change | Log2FC | VIP |
---|---|---|---|---|
(±)5-HETE | ARA | 0.16747 | −2.57804 | 1.12796 |
(±)15-HETE | ARA | 0.10813 | −3.2092 | 1.12241 |
(±)12-HETE | ARA | 0.05080 | −4.29915 | 1.12629 |
11(S)-HETE | ARA | 0.07390 | −3.75832 | 1.19574 |
(±)9-HETE | ARA | 0.09101 | −3.45781 | 1.14467 |
11,12-EET | ARA | 0.43841 | −1.18963 | 1.09487 |
8,9-EET | ARA | 0.38334 | −1.38329 | 1.13316 |
LTB4 | ARA | 0.04309 | −4.53647 | 1.12884 |
5-oxoETE | ARA | 0.36316 | −1.46131 | 1.09839 |
15-oxoETE | ARA | 0.12029 | −3.05542 | 1.17088 |
5,6-DiHETrE | ARA | 0.40526 | −1.30309 | 1.07919 |
DHA | DHA | 0.34762 | −1.52444 | 1.07157 |
(±)4-HDHA | DHA | 0.13570 | −2.88148 | 1.33369 |
(±)7-HDHA | DHA | 0.05934 | −4.07489 | 1.38459 |
14(S)-HDHA | DHA | 0.02108 | −5.56816 | 1.39682 |
(±)17-HDHA | DHA | 0.01129 | −6.46862 | 1.46415 |
PDX | DHA | 0.23765 | −2.07306 | 1.45008 |
16(17)-EpDPE | DHA | 0.17971 | −2.47626 | 1.14812 |
(±)5-HEPE | EPA | 0.24632 | −2.02137 | 1.05805 |
PGF3α | EPA | 2.70297 | −1.43454 | 1.17604 |
13-oxoODE | LA | 0.16795 | −2.57390 | 1.10934 |
Compound | Retention Time (Min) | [M-H]− (m/z) |
---|---|---|
12-(S)-HETE | 2.40 | 319.3 > 179.2 |
12-(S)-HETE-d8 | 2.39 | 327.3 > 184.3 |
12-(R)-HETE | 1.87 | 319.3 > 179.2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, N.; Liu, X.; Pei, X.; Peng, J.; Wei, H. The Quantitative Profiling of Oxylipins from Arachidonic Acid by LC-MS/MS in Feces at Birth 3 Days and 21 Days of Piglets. Metabolites 2022, 12, 702. https://doi.org/10.3390/metabo12080702
Huang N, Liu X, Pei X, Peng J, Wei H. The Quantitative Profiling of Oxylipins from Arachidonic Acid by LC-MS/MS in Feces at Birth 3 Days and 21 Days of Piglets. Metabolites. 2022; 12(8):702. https://doi.org/10.3390/metabo12080702
Chicago/Turabian StyleHuang, Ningning, Xiangchen Liu, Xiaoqi Pei, Jian Peng, and Hongkui Wei. 2022. "The Quantitative Profiling of Oxylipins from Arachidonic Acid by LC-MS/MS in Feces at Birth 3 Days and 21 Days of Piglets" Metabolites 12, no. 8: 702. https://doi.org/10.3390/metabo12080702
APA StyleHuang, N., Liu, X., Pei, X., Peng, J., & Wei, H. (2022). The Quantitative Profiling of Oxylipins from Arachidonic Acid by LC-MS/MS in Feces at Birth 3 Days and 21 Days of Piglets. Metabolites, 12(8), 702. https://doi.org/10.3390/metabo12080702