Muscle Nutritive Metabolism Changes after Dietary Fishmeal Replaced by Cottonseed Meal in Golden Pompano (Trachinotus ovatus)
Abstract
:1. Introduction
2. Results
2.1. Proximate Composition of Muscle
2.2. Free AAs Profile in Muscle
2.3. Gene Expression Profile Related to Glucose Metabolism in Muscle
2.4. Effects on Muscle Lipid Metabolism by Experimental Diets
2.5. Gene Expression of AA Transporter and Small Peptide Transporter
2.6. The mRNA Expression of the Genes Related to GH-IGF Axis
2.7. Regulations of the TOR and AAR Signaling Pathways
3. Discussion
3.1. CSM Substitution Alter Muscle Nutrient Composition and Free AAs Profile
3.2. CSM Substitution-Modified Glycolipid Metabolism
3.3. CSM Substitution through Nutrient Sensing Signaling Pathways to Regulate Glycolipid Metabolism
4. Materials and Methods
4.1. Experimental Diets
4.2. Fish and Feeding Management
4.3. Sample Collection
4.4. AA Composition of Diet and Proximate Composition; Free AAs of Muscle
4.5. RNA Extraction and cDNA Synthesis
4.6. mRNA Expression Analysis (RT-qPCR)
4.7. Western Blotting
4.8. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Periago, M.J.; Ayala, M.D.; López-Albors, O.; Abdel, I.; Martínez, C.; García-Alcázar, A.; Ros, G.; Gil, F. Muscle cellularity and flesh quality of wild and farmed sea bass, Dicentrarchus labrax L. Aquaculture 2005, 249, 175–188. [Google Scholar] [CrossRef]
- Nemova, N.N.; Kantserova, N.P.; Lysenko, L.A. The traits of protein metabolism in the skeletal muscle of teleost fish. J. Evol. Biochem. Physiol. 2021, 57, 626–645. [Google Scholar] [CrossRef]
- Willora, F.P.; Nadanasabesan, N.; Knutsen, H.R.; Liu, C.; Sørensen, M.; Hagen, Ø. Growth performance, fast muscle development and chemical composition of juvenile lumpfish (Cyclopterus lumpus) fed diets incorporating soy and pea protein concentrates. Aquac. Rep. 2020, 17, 100352. [Google Scholar] [CrossRef]
- Chen, Y.K.; Chi, S.Y.; Zhang, S.; Dong, X.H.; Yang, Q.H.; Liu, H.Y.; Tan, B.P.; Xie, S.W. Evaluation of Methanotroph (Methylococcus capsulatus, Bath) bacteria meal on body composition, lipid metabolism, protein synthesis and muscle metabolites of Pacific white shrimp (Litopenaeus vannamei). Aquaculture 2022, 547, 737517. [Google Scholar] [CrossRef]
- Quillet, E.; Guillou, S.L.; Aubin, J.; Labbé, L.; Fauconneau, B.; Médale, F. Response of a lean muscle and a fat muscle rainbow trout (Oncorhynchus mykiss) line on growth, nutrient utilization, body composition and carcass traits when fed two different diets. Aquaculture 2007, 269, 220–231. [Google Scholar] [CrossRef]
- Oliveira-Júnior, J.C.D.; Aguiar, G.A.C.C.; Carneiro, C.L.D.S.; Ladeira, A.L.F.; Campelo, D.A.V.; Furuya, W.M.; Santos, F.A.C.D.; Zuanon, J.A.S.; Luz, R.K.; Salaro, A.L. Effects of different ratios of crude protein and non-fibrous carbohydrates on growth, metabolism, physiology, nutrient utilization and muscle cellularity of Lophiosilurus alexandri, a carnivorous freshwater fish. Aquaculture 2021, 540, 736685. [Google Scholar] [CrossRef]
- Song, D.Y.; Yun, Y.H.; He, Z.J.; Mi, J.L.; Wang, L.M.; Jin, M.; Zhou, Q.C.; Nie, G.X. Fillet texture, physicochemical indexes, muscle cellularity and molecular expression in muscle of Yellow River carp (Cyprinus carpio haematopterus) in response to dietary hydroxyproline supplementation. Aquaculture 2022, 549, 737783. [Google Scholar] [CrossRef]
- Silva, P.; Valente, L.M.P.; Olmedo, M.; Galante, M.H.; Monteiro, R.A.F.; Rocha, E. Hyperplastic and hypertrophic growth of lateral muscle in blackspot seabream Pagellus bogaraveo from hatching to juvenile. J. Fish Biol. 2009, 74, 37–53. [Google Scholar] [CrossRef] [Green Version]
- Valente, L.M.P.; Moutou, K.A.; Conceição, L.E.C.; Engrola, S.; Fernandes, J.M.O.; Johnston, I.A. What determines growth potential and juvenile quality of farmed fish species? Rev. Aquac. 2013, 5, S168–S193. [Google Scholar] [CrossRef] [Green Version]
- Koganti, P.; Yao, J.B.; Cleveland, B.M. Molecular mechanisms regulating muscle plasticity in fish. Animals 2021, 11, 61. [Google Scholar] [CrossRef]
- Stokes, T.; Hector, A.J.; Morton, R.W.; McGlory, C.; Phillips, S.M. Recent perspectives regarding the role of dietary protein for the promotion of muscle hypertrophy with resistance exercise training. Nutrients 2018, 10, 180. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sliva, V.V.; Salomão, R.A.S.; Mareco, E.A.; Pai, M.D.; Santos, V.B. Probiotic additive affects muscle growth of Nile tilapia (Oreochromis niloticus). Aquac. Res. 2020, 52, 2061–2069. [Google Scholar] [CrossRef]
- Montesano, A.; Luzi, L.; Senesi, P.; Mazzocchi, N.; Terruzzi, I. Resveratrol promotes myogenesis and hypertrophy in murine myoblasts. J. Transl. Med. 2013, 11, 310. [Google Scholar] [CrossRef] [Green Version]
- Lyndon, A.R.; Davidson, I.; Houlihan, D.F. Changes in tissue and plasma free amino acid concentrations after feeding in Atlantic cod. Fish Physiol. Biochem. 1993, 5, 365–375. [Google Scholar] [CrossRef]
- Larsen, B.K.; Dalsgaard, J.; Pedersen, P.B. Effects of plant proteins on postprandial, free plasma amino acid concentrations in rainbow trout (Oncorhynchus mykiss). Aquaculture 2012, 326–329, 90–98. [Google Scholar] [CrossRef]
- Wang, W.Q.; Xu, Y.J.; Chi, S.Y.; Yang, P.; Mai, K.S.; Song, F. Lysine regulates body growth performance via the nutrient-sensing signaling pathways in largemouth bass (Micropterus salmoides). Front. Mar. Sci. 2020, 7, 595682. [Google Scholar] [CrossRef]
- Liang, H.L.; Ren, M.C.; Habte-Tsion, H.M.; Ge, X.P.; Xie, J.; Mi, H.F.; Xi, B.W.; Miao, L.H.; Liu, B.; Zhou, Q.L.; et al. Dietary arginine affects growth performance, plasma amino acid contents and gene expressions of the TOR signaling pathway in juvenile blunt snout bream, Megalobrama amblycephala. Aquaculture 2016, 461, 1–8. [Google Scholar] [CrossRef]
- Jiang, H.W.; Bian, F.Y.; Zhou, H.H.; Wang, X.; Wang, K.D.; Mai, K.S.; He, G. Nutrient sensing and metabolic changes after methionine deprivation in primary muscle cells of turbot (Scophthalmus maximus L.). J. Nutr. Biochem. 2017, 50, 74–82. [Google Scholar] [CrossRef]
- Rabanal-Ruiz, Y.; Otten, E.G.; Korolchuk, V.I. mTORC1 as the main gateway to autophagy. Essays Biochem. 2017, 61, 565–584. [Google Scholar] [CrossRef] [Green Version]
- Mommsen, T.P. Paradigns of growth in fish. Comp. Biochem. Physiol. 2001, 129, 207–219. [Google Scholar] [CrossRef]
- Chi, S.Y.; He, Y.F.; Zhu, Y.; Tan, B.P.; Dong, X.H.; Yang, Q.H.; Liu, H.Y.; Zhang, S. Dietary methionine affects growth and the expression of key genes involved in hepatic lipogenesis and glucose metabolism in cobia (Rachycentron canadum). Aquac. Nutr. 2020, 26, 123–133. [Google Scholar] [CrossRef]
- He, Y.F.; Cui, X.; Chi, S.Y.; Tan, B.P.; Dong, X.H.; Yang, Q.H.; Liu, H.Y.; Zhang, S.; Han, F.L. Changes in the PI3K/Akt/TOR signaling pathway after methionine treatment in the primary muscle cells of cobia (Rachycentron canadum). Aquac. Res. 2021, 52, 2783–2790. [Google Scholar] [CrossRef]
- Hevrøy, E.M.; El-Mowafi, A.; Taylor, R.G.; Olsvik, P.A.; Norberg, B.; Espe, M. Lysine intake affects gene expression of anabolic hormones in Atlantic salmon, Salmo salar. Gen. Comp. Endocrinol. 2007, 152, 39–46. [Google Scholar] [CrossRef] [PubMed]
- Azizi, S.; Nematollahi, M.A.; Amiri, B.M.; Vélez, E.J.; Lutfi, E.; Navarro, I.; Capilla, E.; Gutiérrez, J. Lysine and leucine deficiencies affect myocytes development and IGF signaling in gilthead sea bream (Sparus aurata). PLoS ONE 2016, 11, e0147618. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kumar, V.; Lee, S.; Cleveland, B.M.; Romano, N.; Lalgudi, R.S.; Benito, M.R.; McGraw, B.; Hardy, R.W. Comparative evaluation of processed soybean meal (EnzoMealTM) vs. regular soybean meal as a fishmeal replacement in diets of rainbow trout (Oncorhynchus mykiss): Effects on growth performance and growth-related genes. Aquaculture 2020, 516, 734652. [Google Scholar] [CrossRef]
- Song, F.; Xu, D.D.; Mai, K.S.; Zhou, H.H.; Xu, W.; He, G. Comparative study on the cellular and systemic nutrient sensing and intermediary metabolism after partial replacement of fishmeal by meat and bone meal in the diet of Turbot (Scophthalmus maximus L.). PLoS ONE 2016, 11, e0165708. [Google Scholar] [CrossRef] [Green Version]
- Yuan, X.Y.; Liu, M.Y.; Cheng, H.H.; Huang, Y.Y.; Dai, Y.J.; Liu, W.B.; Jiang, G.Z. Replacing fish meal with cottonseed meal protein hydrolysate affects amino acid metabolism via AMPK/SIRT1 and TOR signaling pathway of Megalobrama amblycephala. Aquaculture 2019, 510, 225–233. [Google Scholar] [CrossRef]
- Wang, Q.; He, G.; Mai, K.S.; Xu, W.; Zhou, H.H. Fishmeal replacement by mixed plant proteins and maggot meal on growth performance, target of rapamycin signaling and metabolism in juvenile turbot (Scophthalmus maximus L.). Aquac. Nutr. 2016, 22, 752–758. [Google Scholar] [CrossRef]
- Valente, L.M.P.; Cabral, E.M.; Sousa, V.; Cunha, L.M.; Fernandes, J.M.O. Plant protein blends in diets for Senegalese sole affect skeletal muscle growth, flesh texture and the expression of related genes. Aquaculture 2016, 453, 77–85. [Google Scholar] [CrossRef] [Green Version]
- Lim, C. Substitution of cottonseed meal for marine animal protein in diets for Penaeus vannamei. J. World Aquac. Soc. 1996, 27, 402–409. [Google Scholar] [CrossRef]
- Sun, H.; Tang, J.W.; Yao, X.H.; Wu, Y.F.; Wang, X.; Liu, Y.; Lou, B. Partial substitution of fish meal with fermented cottonseed meal in juvenile black sea bream (Acanthopagrus schlegelii) diets. Aquaculture 2015, 466, 30–36. [Google Scholar] [CrossRef]
- Huang, Y.J.; Zhang, N.N.; Fan, W.J.; Cui, Y.Y.; Limbu, S.M.; Qiao, F.; Zhao, Y.L.; Chen, L.Q.; Du, Z.Y.; Li, D.L. Soybean and cottonseed meals are good candidates for fishmeal replacement in the diet of juvenile Macrobrachium nipponense. Aquac. Int. 2018, 26, 309–324. [Google Scholar] [CrossRef]
- Xie, S.C.; Zhou, Q.C.; Zhang, X.S.; Zhu, T.T.; Guo, C.; Yang, Z.; Luo, J.X.; Yuan, Y.; Hu, X.Y.; Jiao, L.F.; et al. Effect of dietary replacement of fish meal with low-gossypol cottonseed protein concentrate on growth performance and expressions of genes related to protein metabolism for swimming crab (Portunus trituberculatus). Aquaculture 2022, 549, 737820. [Google Scholar] [CrossRef]
- Liu, H.K.; Yan, Q.G.; Han, D.; Jin, J.Y.; Zhu, X.M.; Yang, Y.X.; Xie, S.Q. Effect of dietary inclusion of cottonseed meal on growth performance and physiological and immune responses in juvenile grass carp, Ctenopharyngodon idellus. Aquac. Nutr. 2019, 25, 414–426. [Google Scholar] [CrossRef]
- Ye, G.L.; Dong, X.H.; Yang, Q.H.; Chi, S.Y.; Liu, H.Y.; Zhang, H.T.; Tan, B.P.; Zhang, S. Low-gossypol cottonseed protein concentrate used as a replacement of fish meal for juvenile hybrid grouper (Epinephelus fuscoguttatus♀ × Epinephelus lanceolatus♂): Effects on growth performance, immune responses and intestinal microbiota. Aquaculture 2020, 524, 735309. [Google Scholar] [CrossRef]
- Anderson, A.D.; Alam, M.S.; Watanabe, W.O.; Carroll, P.M.; Wedegaertner, T.C.; Dowd, M.K. Full replacement of menhaden fish meal protein by low-gossypol cottonseed flour protein in the diet of juvenile black sea bass Centropristis striata. Aquaculture 2016, 464, 618–628. [Google Scholar] [CrossRef]
- Bu, X.Y.; Chen, A.J.; Lian, X.Q.; Chen, F.Y.; Zhang, Y.; Muhammad, I.; Ge, X.P.; Yang, Y.H. An evaluation of replacing fish meal with cottonseed meal in the diet of juvenile Ussuri catfish Pseudobagrusus suriensis: Growth, antioxidant capacity, nonspecific immunity and resistance to Aeromonas hydrophila. Aquaculture 2017, 479, 829–837. [Google Scholar] [CrossRef]
- Guo, L.; Yang, J.W.; Liu, B.S.; Zhang, N.; Zhu, K.C.; Guo, H.Y.; Ma, Q.W.; Li, Y.L.; Jiang, S.G.; Zhang, D.C. Colinearity based sex-specific marker development in the golden pompano (Trachinotus ovatus). Aquaculture 2021, 544, 737044. [Google Scholar] [CrossRef]
- China Golden Pompano Industry Development Report. 2020. Available online: http://www.china-cfa.org/fzjgdt/2020/1222/511.html (accessed on 22 December 2020).
- Ning, L.J.; Gao, L.L.; Zhou, W.; Liu, S.; Chen, X.Y.; Pan, Q. Beneficial effects of dietary mulberry leaf along with multi-enzyme premixon the growth, immune response and disease resistance of golden pompano Trachinotus ovatus. Aquaculture 2021, 535, 736396. [Google Scholar] [CrossRef]
- Qin, Y.W.; He, C.Q.; Wang, W.Q.; Yang, P.; Wang, J.; Qin, Q.B.; Mai, K.S.; Song, F. Changes in growth performance, nutrient metabolism, antioxidant defense and immune response after fishmeal was replaced by low-gossypol cottonseed meal in golden pompano (Trachinotus ovatus). Front. Mar. Sci. 2021, 8, 775575. [Google Scholar] [CrossRef]
- Zhou, F.; Song, W.X.; Shao, Q.J.; Peng, X.; Xiao, J.X.; Hua, Y.; Owari, B.N.; Zhang, T.Z.; Ng, W.-K. Partial replacement of fish meal by fermented soybean meal in diets for black sea bream, Acanthopagrus schlegelii, juveniles. J. World Aquac. Soc. 2011, 42, 184–197. [Google Scholar] [CrossRef]
- Ma, X.Z.; Feng, L.; Wu, P.; Liu, Y.; Kuang, S.Y.; Tang, L.; Zhou, X.Q.; Jiang, W.D. Enhancement of flavor and healthcare substances, mouthfeel parameters and collagen synthesis in the muscle of on-growing grass carp (Ctenopharyngodon idella) fed with graded levels of glutamine. Aquaculture 2020, 528, 735486. [Google Scholar] [CrossRef]
- Zhao, Y.; Li, J.Y.; Yin, L.; Feng, L.; Liu, Y.; Jiang, W.D.; Wu, P.; Zhao, J.; Chen, D.F.; Zhou, X.Q.; et al. Effects of dietary glutamate supplementation on flesh quality, antioxidant defense and gene expression related to lipid metabolism and myogenic regulation in Jian carp (Cyprinus carpio var. Jian). Aquaculture 2019, 502, 212–222. [Google Scholar] [CrossRef]
- Liang, X.F.; Hu, L.; Dong, Y.C.; Wu, X.F.; Qin, Y.C.; Zheng, Y.H.; Shi, D.D.; Xue, M.; Liang, X.F. Substitution of fish meal by fermented soybean meal affects the growth performance and flesh quality of Japanese seabass (Lateolabrax japonicus). Anim. Feed Sci. Technol. 2017, 229, 1–12. [Google Scholar] [CrossRef]
- Bu, X.Y.; Wang, Y.Y.; Chen, F.Y.; Tang, B.B.; Luo, C.Z.; Wang, Y.; Ge, X.P.; Yang, Y.H. An evaluation of replacing fishmeal with rapeseed meal in the diet of Pseudobagrusus suriensis: Growth, feed utilization, nonspecific immunity, and growth-related gene expression. J. World Aquac. Soc. 2018, 49, 1068–1080. [Google Scholar] [CrossRef]
- Alami-Durante, H.; Wrutniak-Cabello, C.; Kaushik, S.J.; Médale, F. Skeletal muscle cellularity and expression of myogenic regulatory factors and myosin heavy chains in rainbow trout (Oncorhynchus mykiss): Effects of changes in dietary plant protein sources and amino acid profiles. Comp. Biochem. Physiol. Part A Mol. Integr. Physiol. 2010, 156, 561–568. [Google Scholar] [CrossRef]
- Xu, D.D.; He, G.; Mai, K.S.; Zhou, H.H.; Xu, W.; Song, F. Postprandial nutrient-sensing and metabolic responses after partial dietary fishmeal replacement by soyabean meal in turbot (Scophthalmus maximus L.). Br. J. Nutr. 2016, 115, 379–388. [Google Scholar] [CrossRef] [Green Version]
- Yang, P.; He, C.Q.; Qin, Y.W.; Wang, W.Q.; Mai, K.S.; Qin, Q.B.; Wei, Z.H.; Song, F. Evaluation of composite mixture of protein sources in replacing fishmeal for Pacific white shrimp (Litopenaeus vannamei): Based on the changing pattern of growth performance, nutrient metabolism and health status. Aquac. Rep. 2021, 21, 100914. [Google Scholar] [CrossRef]
- Villanueva-Gutiérrez, E.; González-Félix, M.L.; Gatlin, D.M.; Perez-Velazquez, M. Use of alternative plant and animal protein blends, in place of fishmeal, in diets for juvenile totoaba, Totoaba macdonaldi. Aquaculture 2020, 529, 735698. [Google Scholar] [CrossRef]
- Wang, L.; Yin, N.; Sagada, G.; Hua, Y.; Li, H.; Zhang, J.Z.; Shao, Q.J. Partial replacement of fishmeal with corn gluten meal, pea protein isolate and their mixture in diet of black sea bream (Acanthopagrus schlegelii) juveniles: Effects on growth performance, feed utilization and haematological parameters. Aquac. Res. 2020, 51, 2071–2083. [Google Scholar] [CrossRef]
- Zhou, J.S.; Liu, S.S.; Ji, H.; Yu, H.B. Effect of replacing dietary fish meal with black soldier fly larvae meal on growth and fatty acid composition of Jian carp (Cyprinus carpio var. Jian). Aquac. Nutr. 2018, 24, 424–433. [Google Scholar] [CrossRef]
- Wang, W.Q.; Yang, P.; He, C.Q.; Chi, S.Y.; Li, S.L.; Mai, K.S.; Song, F. Effects of dietary methionine on growth performance and metabolism through modulating nutrient-related pathways in largemouth bass (Micropterus salmoides). Aquac. Rep. 2021, 20, 100642. [Google Scholar] [CrossRef]
- Xue, S.Q.; Chen, S.M.; Ge, Y.X.; Guan, T.; Han, Y. Regulation of glutathione on growth performance, biochemical parameters, non-specific immunity, and related genes of common carp (Cyprinus carpio) exposed to ammonia. Aquaculture 2022, 546, 737241. [Google Scholar] [CrossRef]
- Venugopal, V.; Shahidi, F. Structure and composition of fish muscle. Food Rev. Int. 1996, 12, 175–197. [Google Scholar] [CrossRef]
- Knutsen, H.R.; Ottesen, O.H.; Palihawadana, A.M.; Sandaa, W.; Sørensen, M.; Hagen, Ø. Muscle growth and changes in chemical composition of spotted wolffish juveniles (Anarhichas minor) fed diets with and without microalgae (Scenedesmus obliquus). Aquac. Res. 2019, 13, 100175. [Google Scholar] [CrossRef]
- Herath, S.S.; Haga, Y.; Satoh, S. Effects of long-term feeding of corn co-product-based diets on growth, fillet color, and fatty acid and amino acid composition of Nile tilapia, Oreochromis niloticus. Aquaculture 2016, 464, 205–212. [Google Scholar] [CrossRef] [Green Version]
- Lee, S.; Masagounder, K.; Hardy, R.W.; Small, B.C. Effects of lowering dietary fishmeal and crude protein levels on growth performance, body composition, muscle metabolic gene expression, and chronic stress response of rainbow trout (Oncorhynchus mykiss). Aquaculture 2019, 513, 7374435. [Google Scholar] [CrossRef]
- Decken, V.D.; Lied, E. Metabolic effects on growth and muscle of soya-bean protein feeding in cod (Gadus morhua). Br. J. Nutr. 1993, 69, 689–697. [Google Scholar] [CrossRef] [Green Version]
- Li, J.; Liang, X.F.; Alam, M.S.; Luo, H.C.; Zhang, Y.P.; Peng, B.B.; Xiao, Q.Q.; Zhang, Z.L.; Liu, L.W.; He, S. Adaptation of AMPK-mTOR-signal pathways and lipid metabolism in response to low- and high-level rapeseed meal diet in Chinese perch (Siniperca chuatsi). J. Comp. Physiol. B 2021, 191, 881–894. [Google Scholar] [CrossRef]
- Yang, P.; Wang, W.Q.; Chi, S.Y.; Mai, K.S.; Song, F.; Wang, L. Effects of dietary lysine on regulating GH-IGF system, intermediate metabolism and immune response in largemouth bass (Micropterussalmoides). Aquac. Rep. 2020, 17, 100323. [Google Scholar] [CrossRef]
- Bellaloui, N.; Turley, R.B. Effects of fuzzless cottonseed pheno-type on cottonseed nutrient composition in near isogenic cotton (Gossypium hirsutum L.) mutant lines under well-watered and water stress conditions. Front. Plant. Sci. 2013, 4, 516–529. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kuo, Y.H.; Lin, C.H.; Shih, C.C. Ergostatrien-3β-ol from Antrodia camphorata inhibits diabetes and hyperlipidemia in high-fat-diet treated mice via regulation of hepatic related genes, glucose transporter 4, and AMP-activated protein kinase phosphorylation. J. Agric. Food Chem. 2015, 63, 2479–2489. [Google Scholar] [CrossRef]
- Xu, C.; Liu, W.B.; Zhang, D.D.; Cao, X.F.; Shi, H.J.; Li, X.F. Interactions between dietary carbohydrate and metformin: Implications on energy sensing, insulin signaling pathway, glycolipid metabolism and glucose tolerance in blunt snout bream Megalobrama amblycephala. Aquaculture 2018, 483, 183–195. [Google Scholar] [CrossRef]
- Gu, Z.X.; Mu, H.; Shen, H.H.; Deng, K.Y.; Liu, D.; Yang, M.X.; Zhang, Y.; Zhang, W.B.; Mai, K.S. High level of dietary soybean oil affects the glucose and lipid metabolism in large yellow croaker Larimichthys crocea through the insulin-mediated PI3K/AKT signaling pathway. Comp. Biochem. Physiol. B 2019, 231, 34–41. [Google Scholar] [CrossRef] [PubMed]
- Zoncu, R.; Bar-Peled, L.; Efeyan, A.; Wang, S.Y.; Sancak, Y.; Sabatini, D.M. mTORC1 senses lysosomal amino acids through an inside-out mechanism that requires the Vacuolar H+-ATPase. Science 2011, 334, 678–683. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhou, Q.L.; Habte-Tsion, H.M.; Ge, X.; Xie, J.; Ren, M.; Liu, B.; Miao, L.; Pan, L. Graded replacing fishmeal with canola meal in diets affects growth and target of rapamycin pathway gene expression of juvenile blunt snout bream, Megalobrama amblycephala. Aquac. Nutr. 2017, 24, 300–309. [Google Scholar] [CrossRef]
- Song, F.; Xu, D.D.; Zhou, H.H.; Xu, W.; Mai, K.S.; He, G. The differences in postprandial free amino acid concentrations and the gene expression of PepT1 and amino acid transporters after fishmeal partial replacement by meat and bone meal in juvenile turbot (Scophthalmus maximus L.). Aquac. Res. 2017, 48, 3766–3781. [Google Scholar] [CrossRef]
- Poncet, N.; Taylor, P.M. The role of amino acid transporters in nutrition. Curr. Opin. Clin. Nutr. Metab. Care 2013, 16, 57–65. [Google Scholar] [CrossRef]
- Yang, X.Y.; Wang, G.H.; Zhao, X.M.; Dong, X.H.; Chi, S.Y.; Tan, B.P. Addition of hydrolysed porcine mucosa to low-fishmeal feed improves intestinal morphology and the expressions of intestinal amino acids and small peptide transporters in hybrid groupers (Epinephelus fuscoguttatus♀ × E. lanceolatus♂). Aquaculture 2021, 535, 736389. [Google Scholar] [CrossRef]
- Tremblay, F.; Marette, A. Amino acid and insulin signaling via the mTOR/p70 S6 kinase pathway. J. Biol. Chem. 2001, 276, 38052–38060. [Google Scholar] [CrossRef]
- Kim, J.; Guan, K.-L. Amino acid signaling in TOR activation. Annu. Rev. Biochem. 2011, 80, 1001–1032. [Google Scholar] [CrossRef] [PubMed]
- Jansson, T.; Aye, I.L.M.H.; Goberdhan, D.C.I. The emerging role of mTORC1 signaling in placental nutrient-sensing. Placenta 2012, 33, e23–e29. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shehab, M.A.; Biggar, K.; Kakadia, J.H.; Dhruv, M.; Jain, B.; Nandi, P.; Nygard, K.; Jansson, T.; Gupta, M.P. Inhibition of decidual IGF-1 signaling in response to hypoxia and leucine deprivation is mediated by mTOR and AAR pathways and increased IGFBP-1 phosphorylation. Mol. Cell. Endocrinol. 2020, 512, 110865. [Google Scholar] [CrossRef] [PubMed]
- Bower, N.I.; Johnston, I.A. Transcriptional regulation of the IGF signaling pathway by amino acids and insulin-like growth factors during myogenesis in Atlantic salmon. PLoS ONE 2010, 5, e11100. [Google Scholar] [CrossRef] [Green Version]
- Asaduzzaman, M.; Sofia, E.; Shakil, A.; Haque, N.F.; Khan, M.N.A.; Ikeda, D.; Kinoshita, S.; Abol-Munafi, A.B. Host gut-derived probiotic bacteria promote hypertrophic muscle progression and upregulate growth-related gene expression of slow-growing Malaysian Mahseer Tor tambroides. Aquac. Rep. 2018, 9, 37–45. [Google Scholar] [CrossRef]
- Park, S.-J.; Moon, J.-S.; Seo, J.-S.; Nam, T.-J.; Lee, K.-J.; Lim, S.-G.; Kim, K.-W.; Lee, B.-J.; Hur, S.-W.; Choi, Y.H. Effect of fish meal replacement on insulin-like growth factor-I expression in the liver and muscle and implications for the growth of Olive Flounder Paralichthys olivaceus. Korean J. Fish. Aquat. Sci. 2019, 52, 141–148. [Google Scholar]
- Li, S.L.; Dai, M.; Qiu, H.J.; Chen, N.S. Effects of fishmeal replacement with composite mixture of shrimp hydrolysate and plant proteins on growth performance, feed utilization, and target of rapamycin pathway in largemouth bass, Micropterus salmoides. Aquaculture 2021, 533, 736185. [Google Scholar] [CrossRef]
Diet Groups (% Wet Weight) | p-Value | ||||
---|---|---|---|---|---|
CSM0 | CSM20 | CSM40 | CSM60 | ||
Moisture | 69.34 ± 0.080 b | 69.47 ± 0.32 ab | 70.24 ± 0.26 ab | 70.51 ± 0.21 a | 0.018 |
CP | 20.03 ± 0.17 | 20.72 ± 0.51 | 19.84 ± 0.88 | 20.51 ± 0.23 | 0.208 |
CF | 8.91 ± 0.65 a | 7.21 ± 0.026 ab | 7.21 ± 0.57 ab | 6.83 ± 0.23 b | 0.044 |
Ash | 1.26 ± 0.027 | 1.33 ± 0.026 | 1.25 ± 0.018 | 1.31 ± 0.058 | 0.407 |
Diet Groups (ng/mg) | p-Value | ||||
---|---|---|---|---|---|
CSM0 | CSM20 | CSM40 | CSM60 | ||
Met | 43.71 ± 0.93 a | 44.84 ± 1.13 ab | 40.89 ± 1.33 ab | 33.22 ± 1.96 b | 0.001 |
Phe | 43.62 ± 3.19 a | 33.38 ± 1.77 ab | 31.61 ± 0.37 b | 30.93 ± 2.96 b | 0.017 |
Val | 167.53 ± 10.73 a | 139.53 ± 11.59 ab | 141.54 ± 2.90 ab | 112.07 ± 10.51 b | 0.023 |
Ile | 127.65 ± 10.40 a | 106.72 ± 7.35 ab | 104.23 ± 1.03 ab | 83.89 ± 7.86 b | 0.022 |
Leu | 205.13 ± 18.18 | 172.39 ± 12.98 | 166.00 ± 1.41 | 148.16 ± 13.30 | 0.07 |
Thr | 178.37 ± 6.70 | 148.73 ± 16.26 | 141.79 ± 2.33 | 137.10 ± 8.44 | 0.067 |
Lys | 319.69 ± 20.04 | 368.12 ± 8.13 | 335.26 ± 27.18 | 309.99 ± 3.01 | 0.174 |
His | 63.99 ± 1.81 ab | 67.40 ± 1.08 a | 58.14 ± 5.29 ab | 50.96 ± 2.85 b | 0.029 |
Arg | 62.77 ± 2.20 | 66.22 ± 0.27 | 60.94 ± 5.15 | 62.51 ± 1.96 | 0.655 |
EAA | 1212.48 ± 40.76 a | 1147.33 ± 58.05 ab | 1080.40 ± 31.39 ab | 968.84 ± 38.64 b | 0.021 |
Glu | 400.00 ± 38.53 | 405.77 ± 30.42 | 413.25 ± 20.72 | 446.68 ± 7.68 | 0.632 |
Gly | 1866.44 ± 86.41 a | 1854.01 ± 18.75 a | 1564.49 ± 46.94 ab | 1349.20 ± 119.88 b | 0.004 |
Pro | 96.91 ± 7.27 a | 81.52 ± 0.47 ab | 76.64 ± 0.59 b | 71.41 ± 3.19 b | 0.01 |
Ala | 449.77 ± 11.61 | 439.88 ± 2.36 | 429.38 ± 17.31 | 461.63 ± 4.09 | 0.251 |
Asp | 15.11 ± 0.84 | 16.11 ± 1.04 | 12.72 ± 0.80 | 12.36 ± 0.86 | 0.046 |
Tyr | 38.81 ± 2.47 a | 29.87 ± 0.98 ab | 29.04 ± 0.12 b | 28.90 ± 2.80 b | 0.021 |
Ser | 187.81 ± 3.59 | 180.68 ± 5.42 | 177.38 ± 10.78 | 174.06 ± 8.75 | 0.64 |
Tau | 1738.72 ± 59.66 | 1762.94 ± 46.02 | 1776.66 ± 8.59 | 1550.36 ± 85.14 | 0.072 |
NEAA | 4793.57 ± 62.88 a | 4771.29 ± 67.07 a | 4479.57 ± 27.84 b | 4094.60 ± 46.06 b | 0 |
Total AA | 6006.05 ± 93.11 a | 5918.42 ± 80.25 a | 5559.97 ± 24.53 b | 5063.44 ± 74.82 c | 0 |
Ingredients | Diets (% Dry Weight) | |||
---|---|---|---|---|
CSM0 | CSM20 | CSM40 | CSM60 | |
Fishmeal | 25.00 | 20.00 | 15.00 | 10.00 |
Cottonseed meal (CSM) | 0.00 | 5.00 | 10.00 | 15.00 |
Corn gluten meal | 13.00 | 13.00 | 13.00 | 13.00 |
Poultry by-product meal | 11.00 | 11.00 | 11.00 | 11.00 |
Soybean meal | 8.50 | 8.50 | 8.50 | 8.50 |
Peanut meal | 6.50 | 6.50 | 6.50 | 6.50 |
Wheat meal | 17.50 | 17.50 | 17.50 | 17.50 |
Fish oil | 1.50 | 2.00 | 2.40 | 2.80 |
Soybean oil | 5.00 | 5.00 | 5.00 | 5.00 |
Soybean lecithin | 2.50 | 2.50 | 2.50 | 2.50 |
Monocalcium phosphate | 1.50 | 1.70 | 1.90 | 2.10 |
Lysine | 0.28 | 0.45 | 0.60 | 0.75 |
Methionine | 0.10 | 0.15 | 0.20 | 0.25 |
Threonine | 0.01 | 0.03 | 0.05 | 0.07 |
Squid paste | 1.50 | 1.50 | 1.50 | 1.50 |
Mineral premix 1 | 1.50 | 1.50 | 1.50 | 1.50 |
Vitamin premix 2 | 0.50 | 0.50 | 0.50 | 0.50 |
Chromium trioxide | 0.10 | 0.10 | 0.10 | 0.10 |
Lutein | 0.10 | 0.10 | 0.10 | 0.10 |
Antioxidant | 0.05 | 0.05 | 0.05 | 0.05 |
Mold inhibitor | 0.10 | 0.10 | 0.10 | 0.10 |
Cellulose | 3.76 | 2.82 | 2.00 | 1.18 |
Proximate composition | ||||
DM (%) | 90.24 | 89.98 | 89.91 | 90.12 |
Crude protein (%) | 42.42 | 42.51 | 42.58 | 42.66 |
Crude lipid (%) | 14.00 | 14.09 | 14.07 | 14.05 |
Amino Acids | Diets (% Dry Weight) | |||
---|---|---|---|---|
CSM0 | CSM20 | CSM40 | CSM60 | |
Lys | 1.90 | 1.92 | 1.92 | 1.91 |
Met | 0.70 | 0.70 | 0.70 | 0.70 |
Thr | 0.88 | 0.88 | 0.88 | 0.88 |
Arg | 1.29 | 1.51 | 1.73 | 1.95 |
His | 0.47 | 0.49 | 0.51 | 0.53 |
Ile | 0.84 | 0.81 | 0.79 | 0.77 |
Leu | 1.51 | 1.48 | 1.45 | 1.42 |
Phe | 0.89 | 0.94 | 0.99 | 1.04 |
Val | 1.02 | 1.01 | 0.99 | 0.97 |
Cys | 0.15 | 0.18 | 0.20 | 0.23 |
Tyr | 0.66 | 0.65 | 0.65 | 0.64 |
Target Gene | Forward Sequence (5′–3′) | Reverse Sequence (5′–3′) |
---|---|---|
g6pdh | CTGTGGCAAAAGTTGGTGTG | CCTGATGATGTGAGGGATGA |
hk | CCTTCCTCGTCTTTGTCATTT | TGTCCGTCTCATCCTGGTG |
pk | TTTGCCAGTTTCATCCGCT | CCATCACGCCATCGCTCT |
pfk-1 | TGGGTGGGACCGTGATT | AGGTTGGTGATGCCTTTCTT |
pepck | TGGAGTGTTTGTTGGAGCAG | CGAAGTTGTAGCCGAAGAAG |
glut2 | TCCTGTTTGCTGTGCTGCTT | GTTTTCCGTCCCTTGCG |
glut4 | AATGGCTGTGGCTGGCTT | AGGTTTTTCCCCGTGTTTCT |
irs1 | GCTCCACCCCTCTATTATCTCCT | GTACCTCCCACAGTTCCTCAGTC |
igf-i r | TTCTGCTGTGCTCTTGTCT | GATGTTTTTGGTGTGGCT |
glp-1 r | GGCAATCTCTCCTGTTCCC | AGCCTCTGCTTTTATTCGTG |
FAS | GATGGATACAAAGAGCAAGG | GTGGAGCCGATAAGAAGA |
ACC | GTTGTCAATCCCAGCCGATC | ATCCACAATGTAGGCCCCAA |
AGPAT3 | CTTCCTGTTTTGGGCCACTC | GTCGCCATAACTTGAGCCTG |
FAD | GAACAATCCCACTTCAACG | AGGAATCCCATACTTCTCACA |
elovl5 | TACATGGTCACGCTCATTATCC | CCGTTCTGATGCTCCTTCTTTA |
SREBP1 | GAGCCAAGACAGAGGAGTGT | GTCCTCTTGTCTCCCAGCTT |
PPARα | AATCTCAGCGTGTCGTCTT | GGAAATGCTTCGGATACTTG |
PPARγ | TCAGGGTTTCACTATGGCGT | CTGGAAGCGACAGTATTGGC |
LPL | TTTGTCCTTCCTCGTCACCA | AAGACAGCATCCTCTCCACC |
HSL | TCATACCTCCACACCAACCC | GTCTCGCAGTTTCTTGGCAA |
CPT1 | CTTTAGCCAAGCCCTTCATC | CACGGTTACCTGTTCCCTCT |
FABP1 | CCAAGGACATCAAGCCAATTAC | TGGTGATTTCAGCCTCCTTAC |
APROB100 | AAAAGCCACAAGACGAAAGCA | GAAGCAGCAAAAGGCAGAGC |
LAT2 | CTCCCAGCAGCTTCTCACCAAAC | CTCGTGCCATCTTCATCTCCATC |
SNAT2 | CTGCTGGCTGCCCTTTTCGGATA | AGGACAGGTGCTGGTTGATGGAG |
PEPT1 | AACTGGTCTCCTCCAAACGC | GTTGGAGCCATTCCCACTGT |
GH | CGGAGCAGTCAGAGTCTTCTACCT | TTCCACAGTAAAACAGTCATCATCAT |
IGF-1 | CGCAATGGAACAAAGTCGG | AGGAGATACAGCACATCGCACT |
IGF-2 | GCAAAGACACGGACCCCACT | CGAGGCCATTTCCACAACG |
TOR | GGGTCTTATGAGCCAGTGCCAGG | CTTCAGGGTTGTCAGCGGATTGT |
S6 | GCACTGTCCCTCGCCGTCTT | CTGGGCTTCTTGCCTTCTTT |
4E-BP1 | ACACCCCAGCAGGAACTTT | GTGACCATCAACGACGCAG |
eIF2α | TGTATTCCAGCACCTCAGCC | CGTGGTCGTCATCCGAGTAGA |
ATF4 | CTGCGTCACCCCTCAACTCC | CATTCGCTCCATCCACAACC |
CHOP | CGGAGTTTCTGGATGTTTTGGA | AGGAGGAGGAAGAGGAGGATGA |
REDD1 | AGCCAAAGACTCAGAATGCG | TGAAAGGTGGGGACAAGGTA |
β-actin | TACGAGCTGCCTGACGGACA | GGCTGTGATCTCCTTCTGC |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qin, Y.; He, C.; Geng, H.; Wang, W.; Yang, P.; Mai, K.; Song, F. Muscle Nutritive Metabolism Changes after Dietary Fishmeal Replaced by Cottonseed Meal in Golden Pompano (Trachinotus ovatus). Metabolites 2022, 12, 576. https://doi.org/10.3390/metabo12070576
Qin Y, He C, Geng H, Wang W, Yang P, Mai K, Song F. Muscle Nutritive Metabolism Changes after Dietary Fishmeal Replaced by Cottonseed Meal in Golden Pompano (Trachinotus ovatus). Metabolites. 2022; 12(7):576. https://doi.org/10.3390/metabo12070576
Chicago/Turabian StyleQin, Yawen, Chaoqun He, Haoyu Geng, Wenqiang Wang, Peng Yang, Kangsen Mai, and Fei Song. 2022. "Muscle Nutritive Metabolism Changes after Dietary Fishmeal Replaced by Cottonseed Meal in Golden Pompano (Trachinotus ovatus)" Metabolites 12, no. 7: 576. https://doi.org/10.3390/metabo12070576
APA StyleQin, Y., He, C., Geng, H., Wang, W., Yang, P., Mai, K., & Song, F. (2022). Muscle Nutritive Metabolism Changes after Dietary Fishmeal Replaced by Cottonseed Meal in Golden Pompano (Trachinotus ovatus). Metabolites, 12(7), 576. https://doi.org/10.3390/metabo12070576