Biofluid Metabolomics and Lipidomics of Mice Exposed to External Very High-Dose Rate Radiation
Abstract
:1. Introduction
2. Results and Discussion
2.1. Untargeted Metabolomics: Urine
2.2. Targeted Lipidomics: Serum
3. Material and Methods
3.1. Animal Models and Radiation Exposure
3.2. Chemicals
3.3. Untargeted Metabolite Profiling in Urine
3.4. Targeted Lipid Profiling in Serum
3.5. Data Processing, Statistical Analysis, and Marker Validation
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- DiCarlo, A.L.; Homer, M.J.; Coleman, C.N. United States medical preparedness for nuclear and radiological emergencies. J. Radiol. Prot. 2021, 41, 1420–1434. [Google Scholar] [CrossRef]
- Satyamitra, M.M.; DiCarlo, A.L.; Hollingsworth, B.A.; Winters, T.A.; Taliaferro, L.P. Development of biomarkers for radiation biodosimetry and medical countermeasures research: Current status, utility, and regulatory pathways. Radiat. Res. 2021, 197, 514–532. [Google Scholar] [CrossRef]
- Satyamitra, M.M.; Cassatt, D.R.; Hollingsworth, B.A.; Price, P.W.; Rios, C.I.; Taliaferro, L.P.; Winters, T.A.; DiCarlo, A.L. Metabolomics in radiation biodosimetry: Current approaches and advances. Metabolites 2020, 10, 328. [Google Scholar] [CrossRef] [PubMed]
- Reis, A.; Spickett, C.M. Chemistry of phospholipid oxidation. Biochim. Biophys. Acta 2012, 1818, 2374–2387. [Google Scholar] [CrossRef] [Green Version]
- Ghandhi, S.A.; Sima, C.; Weber, W.M.; Melo, D.R.; Rudqvist, N.; Morton, S.R.; Turner, H.C.; Amundson, S.A. Dose and dose-rate effects in a mouse model of internal exposure to 137Cs. Part 1: Global transcriptomic responses in blood. Radiat. Res. 2020, 196, 478–490. [Google Scholar] [CrossRef]
- Goudarzi, M.; Mak, T.D.; Chen, C.; Smilenov, L.B.; Brenner, D.J.; Fornace, A.J., Jr. The effect of low dose rate on metabolomic response to radiation in mice. Radiat. Environ. Biophys. 2014, 53, 645–657. [Google Scholar] [CrossRef] [Green Version]
- Li, H.H.; Lin, Y.T.; Laiakis, E.C.; Goudarzi, M.; Weber, W.; Fornace, A.J., Jr. Serum metabolomic alterations associated with cesium-137 internal emitter delivered in various dose rates. Metabolites 2020, 10, 270. [Google Scholar] [CrossRef] [PubMed]
- Pannkuk, E.L.; Laiakis, E.C.; Girgis, M.; Garty, G.Y.; Morton, S.R.; Pujol-Canadell, M.; Ghandhi, S.A.; Amundson, S.A.; Brenner, D.J.; Fornace, A.J. Biofluid metabolomics of mice exposed to external low-dose rate radiation in a novel irradiation system, the Variable Dose-Rate External 137Cs Irradiator. J. Proteome Res. 2021, 20, 5145–5155. [Google Scholar] [CrossRef]
- Turner, H.C.; Lee, Y.; Weber, W.; Melo, D.; Kowell, A.; Ghandhi, S.A.; Amundson, S.A.; Brenner, D.J.; Shuryak, I. Effect of dose and dose rate on temporal γ-H2AX kinetics in mouse blood and spleen mononuclear cells in vivo following cesium-137 administration. BMC Mol. Cell Biol. 2019, 20, 13. [Google Scholar] [CrossRef] [PubMed]
- Scenario Working Group Members. National Planning Scenarios; Washington, DC, USA, 2006; Available online: https://info.publicintelligence.net/national_planning_scenarios.pdf (accessed on 8 May 2022).
- Garty, G.; Xu, Y.; Elliston, C.; Marino, S.A.; Randers-Pehrson, G.; Brenner, D.J. Mice and the A-bomb: Irradiation systems for realistic exposure scenarios. Radiat. Res. 2017, 187, 465–475. [Google Scholar] [CrossRef] [Green Version]
- Goudarzi, M.; Weber, W.M.; Mak, T.D.; Chung, J.; Doyle-Eisele, M.; Melo, D.R.; Brenner, D.J.; Guilmette, R.A.; Fornace, A.J., Jr. Metabolomic and lipidomic analysis of serum from mice exposed to an internal emitter, cesium-137, using a shotgun LC-MSE approach. J. Proteome Res. 2015, 14, 374–384. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pannkuk, E.L.; Laiakis, E.C.; Gill, K.; Jain, S.; Mehta, K.; Nishita, D.; Bujold, K.; Bakke, J.; Gahagen, J.; Authier, S.; et al. Liquid chromatography—Mass spectrometry based metabolomics of nonhuman primates after 4 Gy total body radiation exposure: Global effects and targeted panels. J. Proteome Res. 2019, 18, 2260–2269. [Google Scholar] [CrossRef]
- Pannkuk, E.L.; Laiakis, E.C.; Authier, S.; Wong, K.; Fornace, A.J., Jr. Global metabolomic identification of longer-term dose dependent urinary biomarkers in nonhuman primates exposed to ionizing radiation. Radiat. Res. 2015, 184, 121–131. [Google Scholar]
- Pannkuk, E.L.; Fornace, A.J., Jr.; Laiakis, E.C. Metabolomic applications in radiation biodosimetry: Exploring radiation effects through small molecules. Int. J. Radiat. Biol. 2017, 93, 1151–1176. [Google Scholar] [CrossRef]
- Vicente, E.; Vujaskovic, Z.; Jackson, I.L. A systematic review of metabolomic and lipidomic candidates for biomarkers in radiation injury. Metabolites 2020, 10, 259. [Google Scholar] [CrossRef] [PubMed]
- Goudarzi, M.; Weber, W.; Mak, T.D.; Chung, J.; Doyle-Eisele, M.; Melo, D.; Brenner, D.J.; Guilmette, R.A.; Fornace, A.J., Jr. Development of urinary biomarkers for internal exposure by cesium-137 using a metabolomics approach in mice. Radiat. Res. 2014, 181, 54–64. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Goudarzi, M.; Weber, W.M.; Mak, T.D.; Chung, J.; Doyle-Eisele, M.; Melo, D.R.; Strawn, S.J.; Brenner, D.J.; Guilmette, R.A.; Fornace, A.J., Jr. A comprehensive metabolomic investigation in urine of mice exposed to strontium-90. Radiat. Res. 2015, 183, 665–674. [Google Scholar] [CrossRef] [Green Version]
- Johnson, C.H.; Patterson, A.D.; Krausz, K.W.; Lanz, C.; Kang, D.W.; Luecke, H.; Gonzalez, F.J.; Idle, J.R. Radiation metabolomics. 4. UPLC-ESI-QTOFMS-Based metabolomics for urinary biomarker discovery in gamma-irradiated rats. Radiat. Res. 2011, 175, 473–484. [Google Scholar] [CrossRef] [Green Version]
- Pannkuk, E.L.; Laiakis, E.C.; Ake, P.; Strawn, S.J.; Wang, Y.W.; Fornace, A.J. Effects of genetic variation on urinary small molecule signatures of mice after exposure to ionizing radiation: A study of p53 deficiency. Metabolites 2020, 10, 234. [Google Scholar] [CrossRef]
- Manna, S.K.; Krausz, K.W.; Bonzo, J.A.; Idle, J.R.; Gonzalez, F.J. Metabolomics reveals aging-associated attenuation of noninvasive radiation biomarkers in mice: Potential role of polyamine catabolism and incoherent DNA damage-repair. J. Proteome Res. 2013, 12, 2269–2281. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Braga-Tanaka, I.; Tanaka, S.; Kohda, A.; Takai, D.; Nakamura, S.; Ono, T.; Tanaka, K.; Komura, J.I. Experimental studies on the biological effects of chronic low dose-rate radiation exposure in mice: Overview of the studies at the Institute for Environmental Sciences. Int. J. Radiat. Biol. 2018, 94, 423–433. [Google Scholar] [CrossRef]
- Antal, O.; Péter, M.; Hackler, L.; Mán, I.; Szebeni, G.; Ayaydin, F.; Hideghéty, K.; Vigh, L.; Kitajka, K.; Balogh, G.; et al. Lipidomic analysis reveals a radiosensitizing role of gamma-linolenic acid in glioma cells. Biochim. Biophys. Acta 2015, 1851, 1271–1282. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Goudarzi, M.; Weber, W.M.; Chung, J.; Doyle-Eisele, M.; Melo, D.R.; Mak, T.D.; Strawn, S.J.; Brenner, D.J.; Guilmette, R.; Fornace, A.J., Jr. Serum dyslipidemia is induced by internal exposure to strontium-90 in mice, lipidomic profiling using a data-independent liquid chromatography-mass spectrometry approach. J. Proteome Res. 2015, 14, 4039–4049. [Google Scholar] [CrossRef] [Green Version]
- Laiakis, E.C.; Wang, Y.W.; Young, E.F.; Harken, A.D.; Xu, Y.; Smilenov, L.; Garty, G.Y.; Brenner, D.J.; Fornace, A.J. Metabolic dysregulation after neutron exposures expected from an improvised nuclear device. Radiat. Res. 2017, 188, 21–34. [Google Scholar] [CrossRef] [Green Version]
- Laiakis, E.C.; Canadell, M.P.; Grilj, V.; Harken, A.D.; Garty, G.Y.; Astarita, G.; Brenner, D.J.; Smilenov, L.; Fornace, A.J. Serum lipidomic analysis from mixed neutron/X-ray radiation fields reveals a hyperlipidemic and pro-inflammatory phenotype. Sci. Rep. 2019, 9, 4539. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pannkuk, E.L.; Laiakis, E.C.; Mak, T.D.; Astarita, G.; Authier, S.; Wong, K.; Fornace, A.J., Jr. A lipidomic and metabolomic serum signature from nonhuman primates exposed to ionizing radiation. Metabolomics 2016, 12, 80. [Google Scholar] [CrossRef]
- Pannkuk, E.L.; Laiakis, E.C.; Singh, V.K.; Fornace, A.J., Jr. Lipidomic signatures of nonhuman primates with radiation-induced hematopoietic syndrome. Sci. Rep. 2017, 7, 9777. [Google Scholar] [CrossRef] [Green Version]
- Cheema, A.K.; Mehta, K.Y.; Fatanmi, O.O.; Wise, S.Y.; Hinzman, C.P.; Wolff, J.; Singh, V.K. A metabolomic and lipidomic serum signature from nonhuman primates administered with a promising radiation countermeasure, gamma-tocotrienol. Int. J. Mol. Sci. 2017, 19, 79. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Laiakis, E.C.; Pannkuk, E.L.; Chauthe, S.K.; Wang, Y.W.; Lian, M.; Mak, T.D.; Barker, C.A.; Astarita, G.; Fornace, A.J., Jr. A serum small molecule biosignature of radiation exposure from total body irradiated patients. J. Proteome Res. 2017, 16, 3805–3815. [Google Scholar] [CrossRef] [PubMed]
- Laiakis, E.C.; Strassburg, K.; Bogumil, R.; Lai, S.; Vreeken, R.J.; Hankemeier, T.; Langridge, J.; Plumb, R.S.; Fornace, A.J., Jr.; Astarita, G. Metabolic phenotyping reveals a lipid mediator response to ionizing radiation. J. Proteome Res. 2014, 13, 4143–4154. [Google Scholar] [CrossRef] [Green Version]
- Pannkuk, E.L.; Laiakis, E.C.; Authier, S.; Wong, K.; Fornace, A.J., Jr. Targeted metabolomics of nonhuman primate serum after exposure to ionizing radiation: Potential tools for high-throughput biodosimetry. RSC Adv. 2016, 6, 51192–51202. [Google Scholar] [CrossRef] [Green Version]
- Kumar, P.; Wang, P.; Farese, A.M.; MacVittie, T.J.; Kane, M.A. Metabolomics of multiorgan radiation injury in non-human primate model reveals system-wide metabolic perturbations. Health Phys. 2021, 121, 395–405. [Google Scholar] [CrossRef]
- Jones, J.W.; Alloush, J.; Sellamuthu, R.; Chua, H.L.; MacVittie, T.J.; Orschell, C.M.; Kane, M.A. Effect of sex on biomarker response in a mouse model of the hematopoietic acute radiation syndrome. Health Phys. 2019, 116, 484–502. [Google Scholar] [CrossRef] [PubMed]
- Jones, J.W.; Clifford, Z.; Li, F.; Tudor, G.L.; Farese, A.M.; Booth, C.; MacVittie, T.J.; Kane, M.A. Targeted metabolomics reveals metabolomic signatures correlating gastrointestinal tissue to plasma in a mouse total-body irradiation model. Health Phys. 2019, 116, 473–483. [Google Scholar] [CrossRef]
- Xi, C.; Zhao, H.; Lu, X.; Cai, T.J.; Li, S.; Liu, K.H.; Tian, M.; Liu, Q.J. Screening of lipids for early triage and dose estimation after acute radiation exposure in rat plasma based on targeted lipidomics analysis. J. Proteome Res. 2021, 20, 576–590. [Google Scholar] [CrossRef] [PubMed]
- Ogretmen, B. Sphingolipid metabolism in cancer signalling and therapy. Nat. Rev. Cancer 2018, 18, 33–50. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.Y.; Patwardhan, G.A.; Bhinge, K.; Gupta, V.; Gu, X.; Jazwinski, S.M. Suppression of glucosylceramide synthase restores p53-dependent apoptosis in mutant p53 cancer cells. Cancer Res. 2011, 71, 2276–2285. [Google Scholar] [CrossRef] [Green Version]
- Ferreira, M.R.; Sands, C.J.; Li, J.V.; Andreyev, J.N.; Chekmeneva, E.; Gulliford, S.; Marchesi, J.; Lewis, M.R.; Dearnaley, D.P. Impact of pelvic radiation therapy for prostate cancer on global metabolic profiles and microbiota-driven gastrointestinal late side effects: A longitudinal observational study. Int. J. Radiat. Oncol Biol. Phys. 2021, 111, 1204–1213. [Google Scholar] [CrossRef]
- Gonen, A.; Miller, Y.I. From inert storage to biological activity-In wearch of identity for oxidized cholesteryl esters. Front. Endocrinol. 2020, 11, 602252. [Google Scholar] [CrossRef]
- Zhao, H.; Xi, C.; Tian, M.; Lu, X.; Cai, T.J.; Li, S.; Tian, X.L.; Gao, L.; Liu, H.X.; Liu, K.H.; et al. Identification of potential radiation responsive metabolic biomarkers in plasma of rats exposed to different doses of cobalt-60 gamma rays. Dose Response 2020, 18, 1559325820979570. [Google Scholar] [CrossRef]
- Kolesnick, R.; Fuks, Z. Radiation and ceramide-induced apoptosis. Oncogene 2003, 22, 5897–5906. [Google Scholar] [CrossRef] [Green Version]
- Garty, G.; Deoli, N.; Royba, E.; Brenner, D.J.; Kachnic, L. The FLASH irradiator at the radiological research accelerator facility. Phys. Med. Eur. J. Med. Phys. 2022, 94, S78. [Google Scholar] [CrossRef]
- Pannkuk, E.L.; Laiakis, E.C.; Garcia, M.; Fornace, A.J., Jr.; Singh, V.K. Nonhuman primates with acute radiation syndrome: Results from a global serum metabolomics study after 7.2 Gy total-body irradiation. Radiat. Res. 2018, 190, 576–583. [Google Scholar] [CrossRef] [PubMed]
- Wishart, D.S.; Feunang, Y.D.; Marcu, A.; Guo, A.C.; Liang, K.; Vázquez-Fresno, R.; Sajed, T.; Johnson, D.; Li, C.; Karu, N.; et al. HMDB 4.0: The human metabolome database for 2018. Nucleic Acids Res. 2018, 46, D608–D617. [Google Scholar] [CrossRef]
- Smith, C.A.; O’Maille, G.; Want, E.J.; Qin, C.; Trauger, S.A.; Brandon, T.R.; Custodio, D.E.; Abagyan, R.; Siuzdak, G. METLIN: A metabolite mass spectral database. Ther. Drug Monit. 2005, 27, 747–751. [Google Scholar] [CrossRef]
- Mak, T.D.; Laiakis, E.C.; Goudarzi, M.; Fornace, A.J., Jr. MetaboLyzer: A novel statistical workflow for analyzing postprocessed LC-MS metabolomics data. Anal. Chem. 2014, 86, 506–513. [Google Scholar] [CrossRef] [Green Version]
- Guijas, C.; Montenegro-Burke, J.R.; Domingo-Almenara, X.; Palermo, A.; Warth, B.; Hermann, G.; Koellensperger, G.; Huan, T.; Uritboonthai, W.; Aisporna, A.E.; et al. METLIN: A technology platform for identifying knowns and unknowns. Anal. Chem. 2018, 90, 3156–3164. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sumner, L.W.; Amberg, A.; Barrett, D.; Beale, M.H.; Beger, R.; Daykin, C.A.; Fan, T.W.; Fiehn, O.; Goodacre, R.; Griffin, J.L.; et al. Proposed minimum reporting standards for chemical analysis Chemical Analysis Working Group (CAWG) Metabolomics Standards Initiative (MSI). Metabolomics 2007, 3, 211–221. [Google Scholar] [CrossRef] [Green Version]
- Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef] [Green Version]
- Chong, J.; Soufan, O.; Li, C.; Caraus, I.; Li, S.; Bourque, G.; Wishart, D.S.; Xia, J. MetaboAnalyst 4.0: Towards more transparent and integrative metabolomics analysis. Nucleic Acids Res. 2018, 46, W486–W494. [Google Scholar] [CrossRef] [Green Version]
- Pang, Z.; Chong, J.; Zhou, G.; de Lima Morais, D.A.; Chang, L.; Barrette, M.; Gauthier, C.; Jacques, P.É.; Li, S.; Xia, J. MetaboAnalyst 5.0: Narrowing the gap between raw spectra and functional insights. Nucleic Acids Res. 2021, 49, W388–W396. [Google Scholar] [CrossRef] [PubMed]
- Satyamitra, M.; Reyes Turcu, F.E.; Pantoja-Galicia, N.; Wathen, L. Challenges and strategies in the development of radiation biodosimetry tests for patient management. Radiat. Res. 2021, 196, 455–467. [Google Scholar] [CrossRef] [PubMed]
Metabolite | Adduct | RT | Experimental (m/z) | Calculated (m/z) | Mass Error | HMDB | Formula | MS/MS Fragments | ||
---|---|---|---|---|---|---|---|---|---|---|
(ppm) | Fragment 1 | Fragment 2 | Fragment 3 | |||||||
Spermine | H+ | 0.22 | 203.2234 | 203.2236 | 0.8 | 0001256 | C10H26N4 | 129.1377 | 112.1148 | 84.0854 |
TML | H+ | 0.27 | 189.1605 | 189.1603 | 1.1 | 0001325 | C9H20N2O2 | 130.0874 | 84.0812 | 60.0791 |
Hex-V-I | H+ | 1.31 | 393.2247 | 393.2234 | 3.3 | 162421477 * | C17H32N2O8 | 309.1785 | 216.1211 | 150.0859 |
Carnitine | H+ | 0.29 | 162.1128 | 162.1130 | 1.2 | 0000062 | C7H16NO3 | 103.0402 | 85.0286 | 60.0815 |
Xanthurenic acid | H+ | 0.89 | 206.0453 | 204.0297 | 0.2 | 0000881 | C10H7NO4 | 178.0499 | 160.0394 | 132.0447 |
Trigonelline | H+ | 0.29 | 138.0556 | 138.0555 | 0.7 | 0000875 | C7H7NO2 | 110.0610 | 94.0646 | 92.0509 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pannkuk, E.L.; Laiakis, E.C.; Garty, G.; Bansal, S.; Ponnaiya, B.; Wu, X.; Ghandhi, S.A.; Amundson, S.A.; Brenner, D.J.; Fornace, A.J., Jr. Biofluid Metabolomics and Lipidomics of Mice Exposed to External Very High-Dose Rate Radiation. Metabolites 2022, 12, 520. https://doi.org/10.3390/metabo12060520
Pannkuk EL, Laiakis EC, Garty G, Bansal S, Ponnaiya B, Wu X, Ghandhi SA, Amundson SA, Brenner DJ, Fornace AJ Jr. Biofluid Metabolomics and Lipidomics of Mice Exposed to External Very High-Dose Rate Radiation. Metabolites. 2022; 12(6):520. https://doi.org/10.3390/metabo12060520
Chicago/Turabian StylePannkuk, Evan L., Evagelia C. Laiakis, Guy Garty, Shivani Bansal, Brian Ponnaiya, Xuefeng Wu, Shanaz A. Ghandhi, Sally A. Amundson, David J. Brenner, and Albert J. Fornace, Jr. 2022. "Biofluid Metabolomics and Lipidomics of Mice Exposed to External Very High-Dose Rate Radiation" Metabolites 12, no. 6: 520. https://doi.org/10.3390/metabo12060520
APA StylePannkuk, E. L., Laiakis, E. C., Garty, G., Bansal, S., Ponnaiya, B., Wu, X., Ghandhi, S. A., Amundson, S. A., Brenner, D. J., & Fornace, A. J., Jr. (2022). Biofluid Metabolomics and Lipidomics of Mice Exposed to External Very High-Dose Rate Radiation. Metabolites, 12(6), 520. https://doi.org/10.3390/metabo12060520