Antihypertensive Effect of Dietary β-Conglycinin in the Spontaneously Hypertensive Rat (SHR)
Abstract
:1. Introduction
2. Results
2.1. Growth Parameters
2.2. Measurement of Blood Pressure
2.3. Plasma Biochemical Analysis
2.4. Liver Lipids
2.5. Enzyme Activities in the Liver
2.6. Gene Expressions in the Tissues
3. Discussion
4. Materials and Methods
4.1. Animals and Diets
4.2. Measurement of Blood Pressure
4.3. Plasma Analysis
4.4. Liver Lipid Analysis
4.5. Preparation of Hepatic Subcellular Fractions and Measurement of Enzyme Activities
4.6. Total RNA Extraction and Real-Time Polymerase Chain Reaction
4.7. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Grundy, S.M. Metabolic syndrome update. Trends Cardiovasc. Med. 2016, 26, 364–373. [Google Scholar] [CrossRef]
- Wang, H.H.; Lee, D.K.; Liu, M.; Portincasa, P.; Wang, D.Q. Novel insights into the pathogenesis and management of the metabolic syndrome. Pediatr. Gastroenterol. Hepatol. Nutr. 2020, 23, 189–230. [Google Scholar] [CrossRef] [PubMed]
- Grundy, S.M. Metabolic syndrome: A multiplex cardiovascular risk factor. J. Clin. Endocrinol. Metab. 2007, 92, 399–404. [Google Scholar] [CrossRef] [PubMed]
- Bazzano, L.A.; Green, T.; Harrison, T.N.; Reynolds, K. Dietary approaches to prevent hypertension. Curr. Hypertens. Rep. 2013, 15, 694–702. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mellendick, K.; Shanahan, L.; Wideman, L.; Calkins, S.; Keane, S.; Lovelady, C. Diets rich in fruits and vegetables are associated with lower cardiovascular disease risk in adolescents. Nutrients 2018, 10, 136. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vasdev, S.; Stuckless, J. Antihypertensive effects of dietary protein and its mechanism. Int. J. Angiol. 2010, 19, e7–e20. [Google Scholar] [CrossRef] [Green Version]
- Aoyama, T.; Fukui, K.; Takamatsu, K.; Hashimoto, Y.; Yamamoto, T. Soy protein isolate and its hydrolysate reduce body fat of dietary obese rats and genetically obese mice (yellow KK). Nutrition 2000, 16, 349–354. [Google Scholar] [CrossRef]
- Aoyama, T.; Kohno, M.; Saito, T.; Fukui, K.; Takamatsu, K.; Yamamoto, T.; Hashimoto, Y.; Hirotsuka, M.; Kito, M. Reduction by phytate-reduced soybean beta-conglycinin of plasma triglyceride level of young and adult rats. Biosci. Biotechnol. Biochem. 2001, 65, 1071–1075. [Google Scholar] [CrossRef]
- Samoto, M.; Maebuchi, M.; Miyazaki, C.; Kugitani, H.; Kohno, M.; Hirotsuka, M.; Kito, M. Abundant proteins associated with lecithin in soy protein isolate. Food Chem. 2007, 102, 317–322. [Google Scholar] [CrossRef]
- Inoue, N.; Fujiwara, Y.; Kato, M.; Funayama, A.; Ogawa, N.; Tachibana, N.; Kohno, M.; Ikeda, I. Soybean β-conglycinin improves carbohydrate and lipid metabolism in Wistar rats. Biosci. Biotechnol. Biochem. 2015, 79, 1528–1534. [Google Scholar] [CrossRef]
- Kawabeta, K.; Hase-Tamaru, S.; Yuasa, M.; Suruga, K.; Sugano, M.; Koba, K. Dietary β-conglycinin modulates insulin sensitivity, body fat mass, and lipid metabolism in obese Otsuka Long-Evans Tokushima Fatty (OLETF) rats. J. Oleo Sci. 2019, 68, 339–350. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moriyama, T.; Kishimoto, K.; Nagai, K.; Urade, R.; Ogawa, T.; Utsumi, S.; Maruyama, N.; Maebuchi, M. Soybean β-conglycinin diet suppresses serum triglyceride levels in normal and genetically obese mice by induction of β-oxidation, downregulation of fatty acid synthase, and inhibition of triglyceride absorption. Biosci. Biotechnol. Biochem. 2004, 68, 352–359. [Google Scholar] [CrossRef] [PubMed]
- Hajer, G.R.; Van Haeften, T.W.; Visseren, F.L.J. Adipose tissue dysfunction in obesity, diabetes, and vascular diseases. Eur. Heart J. 2008, 29, 2959–2971. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nakajima, S.; Ohashi, J.; Sawada, A.; Noda, K.; Fukumoto, Y.; Shimokawa, H. Essential role of bone marrow for microvascular endothelial and metabolic functions in Mice. Circ. Res. 2012, 111, 87–96. [Google Scholar] [CrossRef] [Green Version]
- Ohashi, K.; Ouchi, N.; Matsuzawa, Y. Adiponectin and hypertension. Am. J. Hypertens. 2011, 24, 263–269. [Google Scholar] [CrossRef] [Green Version]
- Ouchi, N.; Ohishi, M.; Kihara, S.; Funahashi, T.; Nakamura, T.; Nagaretani, H.; Kumada, M.; Ohashi, K.; Okamoto, Y.; Nishizawa, H.; et al. Association of hypoadiponectinemia with impaired vasoreactivity. Hypertension 2003, 42, 231–234. [Google Scholar] [CrossRef] [Green Version]
- Ibrahim, M.M. RAS inhibition in hypertension. J. Hum. Hypertens. 2006, 20, 101–108. [Google Scholar] [CrossRef]
- Anderson, R.J.; Berl, T.; McDonald, K.M.; Schrier, R.W. Prostaglandins: Effects on blood pressure, renal blood flow, sodium and water excretion. Kidney Int. 1976, 10, 205–215. [Google Scholar] [CrossRef] [Green Version]
- Pluchart, H.; Khouri, C.; Blaise, S.; Roustit, M.; Cracowski, J.L. Targeting the prostacyclin pathway: Beyond pulmonary arterial hypertension. Trends Pharmacol. Sci. 2017, 38, 512–523. [Google Scholar] [CrossRef]
- Kuba, M.; Tanaka, K.; Tawata, S.; Takeda, Y.; Yasuda, M. Angiotensin I-converting enzyme inhibitory peptides isolated from tofuyo fermented soybean food. Biosci. Biotechnol. Biochem. 2003, 67, 1278–1283. [Google Scholar] [CrossRef] [Green Version]
- Yang, H.Y.; Wu, L.Y.; Yeh, W.J.; Chen, J.R. Beneficial effects of β-conglycinin on renal function and nephrin expression in early streptozotocin-induced diabetic nephropathy rats. Br. J. Nutr. 2014, 111, 78–85. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, J.; Ding, X. Hypotensive and physiological effect of angiotensin converting enzyme inhibitory peptides derived from soy protein on spontaneously hypertensive rats. J. Agric. Food Chem. 2001, 49, 501–506. [Google Scholar] [CrossRef] [PubMed]
- Tachibana, N.; Iwaoka, Y.; Hirotsuka, M.; Horio, F.; Kohno, M. β-conglycinin lowers very low density lipoprotein triglyceride levels by increasing adiponectin and insulin sensitivity in rats. Biosci. Biotechnol. Biochem. 2010, 74, 1250–1255. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maeda, N.; Takahashi, M.; Funahashi, T.; Kihara, S.; Nishizawa, H.; Kishida, K.; Nagaretani, H.; Matsuda, M.; Komuro, R.; Ouchi, N.; et al. PPARγ ligands increase expression and plasma concentrations of adiponectin, an adipose-derived protein. Diabetes 2001, 50, 2094–2099. [Google Scholar] [CrossRef] [Green Version]
- Tousoulis, D.; Kampoli, A.-M.; Tentolouris Nikolaos Papageorgiou, C.; Stefanadis, C. The role of nitric oxide on endothelial function. Curr. Vasc. Pharmacol. 2011, 10, 4–18. [Google Scholar] [CrossRef]
- Chen, H.; Montagnani, M.; Funahashi, T.; Shimomura, I.; Quon, M.J. Adiponectin stimulates production of nitric oxide in vascular endothelial cells. J. Biol. Chem. 2003, 278, 45021–45026. [Google Scholar] [CrossRef] [Green Version]
- Stroth, U.; Unger, T. The renin-angiotensin system and its receptors. J. Cardiovasc. Pharmacol. 1999, 33 (Suppl. S1), S21–S28. [Google Scholar] [CrossRef]
- Ran, J.; Hirano, T.; Fukui, T.; Saito, K.; Kageyama, H.; Okada, K.; Adachi, M. Angiotensin II infusion decreases plasma adiponectin level via its type 1 receptor in rats: An implication for hypertension-related insulin resistance. Metabolism 2006, 55, 478–488. [Google Scholar] [CrossRef]
- Das, E.; Moon, J.H.; Lee, J.H.; Thakkar, N.; Pausova, Z.; Sung, H.K. Adipose tissue and modulation of hypertension. Curr. Hypertens. Rep. 2018, 20, 96. [Google Scholar] [CrossRef]
- Reagan-Shaw, S.; Nihal, M.; Ahmad, N. Dose translation from animal to human studies revisited. FASEB J. 2008, 22, 659–661. [Google Scholar] [CrossRef] [Green Version]
- Reckelhoff, J.F. Gender differences in the regulation of blood pressure. Hypertension 2001, 37, 1199–1208. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reeves, P.G.; Nielsen, F.H.; Fahey, G.C. AIN-93 purified diets for laboratory rodents: Final report of the American Institute of Nutrition ad hoc writing committee on the reformulation of the AIN-76A rodent diet. J. Nutr. 1993, 123, 1939–1951. [Google Scholar] [CrossRef] [PubMed]
- Folch, J.; Lees, M.; Stanley, G.S. A simple method for the isolation and purification of total lipides from animal tissues. J. Biol. Chem. 1957, 226, 497–509. [Google Scholar] [CrossRef]
- Carr, T.P.; Andresen, C.J.; Rudel, L.L. Enzymatic determination of triglyceride, free cholesterol, and total cholesterol in tissue lipid extracts. Clin. Biochem. 1993, 26, 39–42. [Google Scholar] [CrossRef]
- Rouser, G.; Siakotos, A.N.; Fleischer, S. Quantitative analysis of phospholipids by thin-layer chromatography and phosphorus analysis of spots. Lipids 1966, 1, 85–86. [Google Scholar] [CrossRef]
- Kelley, D.S.; Nelson, G.J.; Hunt, J.E. Effect of prior nutritional status on the activity of lipogenic enzymes in primary monolayer cultures of rat hepatocytes. Biochem. J. 1986, 235, 87–90. [Google Scholar] [CrossRef] [Green Version]
- Kelley, D.S.; Kletzien, R.F. Ethanol modulation of the hormonal and nutritional regulation of glucose 6-phosphate dehydrogenase activity in primary cultures of rat hepatocytes. Biochem. J. 1984, 217, 543–549. [Google Scholar] [CrossRef] [Green Version]
- Ochoa, S. Malic enzyme. Methods Enzymol. 1955, 1, 739–753. [Google Scholar]
- Surette, M.E.; Whelan, J.; Broughton, K.S.; Kinsella, J.E. Evidence for mechanisms of the hypotriglyceridemic effect of n-3 polyunsaturated fatty acids. Biochim. Biophys. Acta 1992, 1126, 199–205. [Google Scholar] [CrossRef]
- Bieber, L.L.; Abraham, T.; Helmrath, T. A rapid spectrophotometric assay for carnitine palmitoyltransferase. Anal. Biochem. 1972, 50, 509–518. [Google Scholar] [CrossRef]
- Lowry, O.H.; Rosebrough, N.J.; Farr, A.L.; Randall, R.J. Protein measurement with the Folin phenol reagent. J. Biol. Chem. 1951, 193, 265–275. [Google Scholar] [CrossRef]
- Altschul, S.F.; Gish, W.; Miller, W.; Myers, E.W.; Lipman, D.J. Basic local alignment search tool. J. Mol. Biol. 1990, 215, 403–410. [Google Scholar] [CrossRef]
- Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef] [PubMed]
Groups | |||
---|---|---|---|
Control | SOY | β-CON | |
Body weight (g) | |||
Initial | 172 ± 6 | 171 ± 6 | 172 ± 9 |
Final | 328 ± 12 | 328 ± 19 | 337 ± 14 |
Food intake (g/day) | 19.0 ± 0.9 | 19.3 ± 0.7 | 19.7 ± 0.6 |
Total β-conglycinin consumption (g) | 0.0 ± 0.0 a | 20.9 ± 0.8 b | 92.4 ± 3.7 c |
Food efficiency (g body weight gain/g diet) | 0.179 ± 0.013 | 0.177 ± 0.014 | 0.182 ± 0.006 |
Tissue weights (g/100 g body weight) | |||
Liver | 3.63 ± 0.16 | 3.55 ± 0.17 | 3.71 ± 0.23 |
White adipose tissue | |||
Epididymal | 1.74 ± 0.14 | 1.81 ± 0.08 | 1.80 ± 0.22 |
Perirenal | 1.97 ± 0.28 | 2.00 ± 0.26 | 2.00 ± 0.30 |
Mesenteric | 1.21 ± 0.14 | 1.21 ± 0.18 | 1.24 ± 0.18 |
Interscapular brown adipose tissue | 0.102 ± 0.010 a | 0.110 ± 0.017 a,b | 0.123 ± 0.013 b |
Groups | |||
---|---|---|---|
Control | SOY | β-CON | |
Triglyceride (mg/dL) | 66.7 ± 18.1 | 54.1 ± 14.7 | 70.4 ± 24.9 |
Phospholipid (mg/dL) | 117 ± 13 | 104 ± 9 | 116 ± 7 |
Cholesterol (mg/dL) | 65.1 ± 4.8 a | 57.2 ± 4.7 b | 59.1 ± 2.9 a,b |
Free fatty acid (mmol/L) | 1.06 ± 0.08 a | 0.940 ± 0.040 a,b | 0.880 ± 0.069 b |
Glucose (mg/dL) | 172 ± 23 | 158 ± 15 | 169 ± 10 |
Insulin (ng/mL) | 3.75 ± 1.36 | 4.03 ± 1.22 | 2.40 ± 1.33 |
Adiponectin (μg/mL) | 6.06 ± 0.81 a | 6.77 ± 0.50 a,b | 7.34 ± 0.89 b |
Leptin (ng/mL) | 6.98 ± 0.79 | 6.82 ± 1.12 | 6.12 ± 0.45 |
NOx (μmol/mL) | 5.15 ± 1.15 | 5.74 ± 0.88 | 6.62 ± 1.20 |
ACE (IU/L) | 21.7 ± 2.0 | 21.5 ± 1.5 | 20.8 ± 1.5 |
Groups | |||
---|---|---|---|
Control | SOY | β-CON | |
Triglyceride (mg/g liver) | 17.6 ± 7.3 a | 10.8 ± 1.2 b | 12.6 ± 2.1 a,b |
Cholesterol (mg/g liver) | 3.33 ± 0.55 | 3.36 ± 0.37 | 3.29 ± 0.76 |
Phospholipid (mg/g liver) | 30.0 ± 1.7 | 28.3 ± 2.5 | 27.5 ± 2.6 |
Groups | |||
---|---|---|---|
Control | SOY | β-CON | |
nmol/min/mg protein | |||
Cytosolic FAS | 10.0 ± 0.8 a | 8.17 ± 0.68 b | 8.77 ± 1.05 a,b |
Cytosolic malic enzyme | 31.4 ± 7.9 | 30.2 ± 3.1 | 24.7 ± 7.2 |
Cytosolic G6PDH | 45.7 ± 9.5 | 38.9 ± 4.0 | 38.6 ± 2.0 |
Microsomal PAP | 4.91 ± 1.23 | 5.00 ± 0.95 | 5.43 ± 1.12 |
Mitochondrial CPT | 2.00 ± 0.60 | 2.50 ± 0.63 | 2.41 ± 0.50 |
Groups | |||
---|---|---|---|
Control | SOY | β-CON | |
Casein | 200 | 100 | 100 |
Soy protein isolate | - | 100 | - |
β-Conglycinin | - | - | 100 |
Cornstarch | 200 | 200 | 200 |
Pregelatinized cornstarch | 132 | 132 | 132 |
Sucrose | 300 | 300 | 300 |
Soybean oil | 70 | 70 | 70 |
Cellulose | 50 | 50 | 50 |
Mineral mixture (AIN-93G) [32] | 35 | 35 | 35 |
Vitamin mixture (AIN-93) [32] | 10 | 10 | 10 |
Choline bitartrate | 2.5 | 2.5 | 2.5 |
t-Butylhydroquinone | 0.014 | 0.014 | 0.014 |
Names of Genes | Forward Primers (5′ to 3′) | Reverse Primers (5′ to 3′) |
---|---|---|
Ang | CACCTACGTTCACTTCCAAGG | GTGCTGTTGTCCACCCAGAA |
Ren | TGTAGCTTCAGTCTCCCGACA | GCACTGATCCTGGTCATGTCTAC |
Ace | ATTGCTTTGGGTGTGGAAGA | GCATCAGAGTAGCCGTTGAG |
Adipoq | AATCCTGCCCAGTCATGAAG | CATCTCCTGGGTCACCCTTA |
Pparg | CCCTTTACCACGGTTGATTTCTC | GCAGGCTCTACTTTGATCGCACT |
Rplp0 | GGTGTTTGACAATGGCAGCAT | ATTGCGGACACCCTCTAGGA |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kawabeta, K.; Yuasa, M.; Sugano, M.; Koba, K. Antihypertensive Effect of Dietary β-Conglycinin in the Spontaneously Hypertensive Rat (SHR). Metabolites 2022, 12, 422. https://doi.org/10.3390/metabo12050422
Kawabeta K, Yuasa M, Sugano M, Koba K. Antihypertensive Effect of Dietary β-Conglycinin in the Spontaneously Hypertensive Rat (SHR). Metabolites. 2022; 12(5):422. https://doi.org/10.3390/metabo12050422
Chicago/Turabian StyleKawabeta, Koji, Masahiro Yuasa, Michihiro Sugano, and Kazunori Koba. 2022. "Antihypertensive Effect of Dietary β-Conglycinin in the Spontaneously Hypertensive Rat (SHR)" Metabolites 12, no. 5: 422. https://doi.org/10.3390/metabo12050422
APA StyleKawabeta, K., Yuasa, M., Sugano, M., & Koba, K. (2022). Antihypertensive Effect of Dietary β-Conglycinin in the Spontaneously Hypertensive Rat (SHR). Metabolites, 12(5), 422. https://doi.org/10.3390/metabo12050422