Liver and White/Brown Fat Dystrophy Associates with Gut Microbiota and Metabolomic Alterations in 3xTg Alzheimer’s Disease Mouse Model
Abstract
:1. Introduction
2. Results
2.1. Glucose Metabolism
2.2. Tissue Lipid Content
2.3. Liver Inflammation
2.4. Circulating Markers
2.5. Effect of Intranasal Insulin Therapy in 3xTg HFD Mice
2.6. Serum and Fecal Metabolome
2.7. Gut Microbial Profile
3. Discussion
4. Materials and Methods
4.1. Study Design
4.2. PET-CT Scanning and Image Processing
4.3. Liver Histology
4.4. Adipose Tissues Histology
4.5. BAT UCP1 Protein Expression
4.6. Biochemical Analyses
4.7. Gut Microbiota Profile by 16S rRNA Amplicon Sequencing
4.8. Serum and Fecal Metabolites by 1H-NMR Spectroscopy
4.9. Statistical Analysis
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ishii, M.; Iadecola, C. Adipocyte-derived factors in age-related dementia and their contribution to vascular and Alzheimer pathology. Biochim. Biophys. Acta 2016, 1862, 966–974. [Google Scholar] [CrossRef] [PubMed]
- Sanguinetti, E.; Guzzardi, M.A.; Panetta, D.; Tripodi, M.; De Sena, V.; Quaglierini, M.; Burchielli, S.; Salvadori, P.A.; Iozzo, P. Combined Effect of Fatty Diet and Cognitive Decline on Brain Metabolism, Food Intake, Body Weight, and Counteraction by Intranasal Insulin Therapy in 3xTg Mice. Front. Cell. Neurosci. 2019, 13, 188. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pincon, A.; De Montgolfier, O.; Akkoyunlu, N.; Daneault, C.; Pouliot, P.; Villeneuve, L.; Lesage, F.; Levy, B.I.; Thorin-Trescases, N.; Thorin, E.; et al. Non-Alcoholic Fatty Liver Disease, and the Underlying Altered Fatty Acid Metabolism, Reveals Brain Hypoperfusion and Contributes to the Cognitive Decline in APP/PS1 Mice. Metabolites 2019, 9, 104. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, D.G.; Krenz, A.; Toussaint, L.E.; Maurer, K.J.; Robinson, S.A.; Yan, A.; Torres, L.; Bynoe, M.S. Non-alcoholic fatty liver disease induces signs of Alzheimer’s disease (AD) in wild-type mice and accelerates pathological signs of AD in an AD model. J. Neuroinflamm. 2016, 13, 1. [Google Scholar] [CrossRef] [Green Version]
- Bosoi, C.R.; Vandal, M.; Tournissac, M.; Leclerc, M.; Fanet, H.; Mitchell, P.L.; Verreault, M.; Trottier, J.; Virgili, J.; Tremblay, C.; et al. High-Fat Diet Modulates Hepatic Amyloid beta and Cerebrosterol Metabolism in the Triple Transgenic Mouse Model of Alzheimer’s Disease. Hepatol. Commun. 2021, 5, 446–460. [Google Scholar] [CrossRef] [PubMed]
- Ma, J.; Zhang, W.; Wang, H.F.; Wang, Z.X.; Jiang, T.; Tan, M.S.; Yu, J.T.; Tan, L. Peripheral Blood Adipokines and Insulin Levels in Patients with Alzheimer’s Disease: A Replication Study and Meta-Analysis. Curr. Alzheimer Res. 2016, 13, 223–233. [Google Scholar] [CrossRef] [PubMed]
- Ishii, M.; Wang, G.; Racchumi, G.; Dyke, J.P.; Iadecola, C. Transgenic mice overexpressing amyloid precursor protein exhibit early metabolic deficits and a pathologically low leptin state associated with hypothalamic dysfunction in arcuate neuropeptide Y neurons. J. Neurosci. 2014, 34, 9096–9106. [Google Scholar] [CrossRef]
- McGuire, M.J.; Ishii, M. Leptin Dysfunction and Alzheimer’s Disease: Evidence from Cellular, Animal, and Human Studies. Cell. Mol. Neurobiol. 2016, 36, 203–217. [Google Scholar] [CrossRef] [Green Version]
- Signore, A.P.; Zhang, F.; Weng, Z.; Gao, Y.; Chen, J. Leptin neuroprotection in the CNS: Mechanisms and therapeutic potentials. J. Neurochem. 2008, 106, 1977–1990. [Google Scholar] [CrossRef] [Green Version]
- Coleman, R.A.; Liang, C.; Patel, R.; Ali, S.; Mukherjee, J. Brain and Brown Adipose Tissue Metabolism in Transgenic Tg2576 Mice Models of Alzheimer Disease Assessed Using (18)F-FDG PET Imaging. Mol. Imaging 2017, 16, 1536012117704557. [Google Scholar] [CrossRef] [Green Version]
- Vandal, M.; White, P.J.; Tournissac, M.; Tremblay, C.; St-Amour, I.; Drouin-Ouellet, J.; Bousquet, M.; Traversy, M.T.; Planel, A.M.; Calon, F. Impaired thermoregulation and beneficial effects of thermoneutrality in the 3xTg-AD model of Alzheimer’s disease. Neurobiol. Aging 2016, 43, 47–57. [Google Scholar] [CrossRef] [PubMed]
- Tournissac, M.; Bourassa, P.; Martinez-Cano, R.D.; Vu, T.M.; Hebert, S.S.; Planel, E.; Calon, F. Repeated cold exposures protect a mouse model of Alzheimer’s disease against cold-induced tau phosphorylation. Mol. Metab. 2019, 22, 110–120. [Google Scholar] [CrossRef]
- Mao, Y.F.; Guo, Z.; Zheng, T.; Jiang, Y.; Yan, Y.; Yin, X.; Chen, Y.; Zhang, B. Intranasal insulin alleviates cognitive deficits and amyloid pathology in young adult APPswe/PS1dE9 mice. Aging Cell. 2016, 15, 893–902. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vandal, M.; White, P.J.; Tremblay, C.; St-Amour, I.; Chevrier, G.; Emond, V.; Lefrançois, D.; Virgili, J.; Planel, E.; Giguere, Y.; et al. Insulin reverses the high-fat diet-induced increase in brain Abeta and improves memory in an animal model of Alzheimer disease. Diabetes 2014, 63, 4291–4301. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Craft, S.; Baker, L.D.; Montine, T.J.; Minoshima, S.; Watson, G.S.; Claxton, A.; Arbuckle, M.; Callaghan, M.; Tsai, E.; Plymate, S.R.; et al. Intranasal insulin therapy for Alzheimer disease and amnestic mild cognitive impairment: A pilot clinical trial. Arch. Neurol. 2012, 69, 29–38. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, Y.; Zhao, Y.; Dai, C.L.; Liang, Z.; Run, X.; Iqbal, K.; Liu, F.; Gong, C.X. Intranasal insulin restores insulin signaling, increases synaptic proteins, and reduces Abeta level and microglia activation in the brains of 3xTg-AD mice. Exp. Neurol. 2014, 261, 610–619. [Google Scholar] [CrossRef]
- Iwen, K.A.; Scherer, T.; Heni, M.; Sayk, F.; Wellnitz, T.; Machleidt, F.; Preissl, H.; Häring, H.U.; Fritsche, A.; Lehnert, H.; et al. Intranasal insulin suppresses systemic but not subcutaneous lipolysis in healthy humans. J. Clin. Endocrinol. Metab. 2014, 99, E246–E251. [Google Scholar] [CrossRef] [Green Version]
- Gancheva, S.; Koliaki, C.; Bierwagen, A.; Nowotny, P.; Heni, M.; Fritsche, A.; Häring, H.U.; Szendroedi, J.; Roden, M. Effects of intranasal insulin on hepatic fat accumulation and energy metabolism in humans. Diabetes 2015, 64, 1966–1975. [Google Scholar] [CrossRef] [Green Version]
- Ley, R.E.; Turnbaugh, P.J.; Klein, S.; Gordon, J.I. Microbial ecology: Human gut microbes associated with obesity. Nature 2006, 444, 1022–1023. [Google Scholar] [CrossRef]
- Larsen, N.; Vogensen, F.K.; van den Berg, F.W.; Nielsen, D.S.; Andreasen, A.S.; Pedersen, B.K.; Al-Soud, W.A.; Sørensen, S.J.; Hansen, L.H.; Jakobsen, M. Gut microbiota in human adults with type 2 diabetes differs from non-diabetic adults. PLoS ONE 2010, 5, e9085. [Google Scholar] [CrossRef]
- Vogt, N.M.; Kerby, R.L.; Dill-McFarland, K.A.; Harding, S.J.; Merluzzi, A.P.; Johnson, S.C.; Carlosson, C.M.; Asthana, S.; Zetterberg, H.; Blennow, K.; et al. Gut microbiome alterations in Alzheimer’s disease. Sci. Rep. 2017, 7, 13537. [Google Scholar] [CrossRef]
- Sanguinetti, E.; Collado, M.C.; Marrachelli, V.G.; Monleon, D.; Selma-Royo, M.; Pardo-Tendero, M.M.; Burchielli, S.; Iozzo, P. Microbiome-metabolome signatures in mice genetically prone to develop dementia, fed a normal or fatty diet. Sci. Rep. 2018, 8, 4907. [Google Scholar] [CrossRef] [Green Version]
- Seo, S.W.; Gottesman, R.F.; Clark, J.M.; Hernaez, R.; Chang, Y.; Kim, C.; Ha, K.H.; Guallar, E.; Lazo, M. Nonalcoholic fatty liver disease is associated with cognitive function in adults. Neurology 2016, 86, 1136–1142. [Google Scholar] [CrossRef] [Green Version]
- Takahashi, A.; Kono, S.; Wada, A.; Oshima, S.; Abe, K.; Imaizumi, H.; Fujita, M.; Hayashi, M.; Okai, K.; Miura, I.; et al. Reduced brain activity in female patients with non-alcoholic fatty liver disease as measured by near-infrared spectroscopy. PLoS ONE 2017, 12, e0174169. [Google Scholar] [CrossRef] [Green Version]
- Nho, K.; Kueider-Paisley, A.; Ahmad, S.; MahmoudianDehkordi, S.; Arnold, M.; Risacher, S.L.; Louise, G.; Blach, C.; Baillie, R.; Han, X.; et al. Association of Altered Liver Enzymes With Alzheimer Disease Diagnosis, Cognition, Neuroimaging Measures, and Cerebrospinal Fluid Biomarkers. JAMA Netw. Open 2019, 2, e197978. [Google Scholar] [CrossRef]
- Bernotiene, E.; Palmer, G.; Gabay, C. The role of leptin in innate and adaptive immune responses. Arthritis Res. Ther. 2006, 8, 217. [Google Scholar] [CrossRef] [Green Version]
- Faggioni, R.; Fantuzzi, G.; Gabay, C.; Moser, A.; Dinarello, C.A.; Feingold, K.R.; Grunfeld, C. Leptin deficiency enhances sensitivity to endotoxin-induced lethality. Am. J. Physiol. 1999, 276, R136–R142. [Google Scholar] [CrossRef]
- Lloret, A.; Monllor, P.; Esteve, D.; Cervera-Ferri, A.; Lloret, M.A. Obesity as a Risk Factor for Alzheimer’s Disease: Implication of Leptin and Glutamate. Front. Neurosci. 2019, 13, 508. [Google Scholar] [CrossRef]
- Sanborn, V.; Preis, S.R.; Ang, A.; Devine, S.; Mez, J.; DeCarli, C.; Au, R.; Alosco, M.L.; Gunstad, J. Association Between Leptin, Cognition, and Structural Brain Measures Among “Early” Middle-Aged Adults: Results from the Framingham Heart Study Third Generation Cohort. J. Alzheimers Dis. 2020, 77, 1279–1289. [Google Scholar] [CrossRef]
- Farr, S.A.; Banks, W.A.; Morley, J.E. Effects of leptin on memory processing. Peptides 2006, 27, 1420–1425. [Google Scholar] [CrossRef]
- Rajasekaran, M.; Sul, O.J.; Choi, E.K.; Kim, J.E.; Suh, J.H.; Choi, H.S. MCP-1 deficiency enhances browning of adipose tissue via increased M2 polarization. J. Endocrinol. 2019, 242, 91–101. [Google Scholar] [CrossRef] [PubMed]
- Alessi, M.C.; Bastelica, D.; Mavri, A.; Morange, P.; Berthet, B.; Grino, M.; Juhan-Vague, I. Plasma PAI-1 levels are more strongly related to liver steatosis than to adipose tissue accumulation. Arterioscler. Thromb. Vasc. Biol. 2003, 23, 1262–1268. [Google Scholar] [CrossRef] [Green Version]
- Angulo, P.; Kleiner, D.E.; Dam-Larsen, S.; Adams, L.A.; Bjornsson, E.S.; Charatcharoenwitthaya, P.; Millis, P.R.; Keach, J.; Lafferty, H.D.; Stahler, A.; et al. Liver Fibrosis, but No Other Histologic Features, Is Associated With Long-term Outcomes of Patients With Nonalcoholic Fatty Liver Disease. Gastroenterology 2015, 149, 389–397. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oh, J.; Lee, H.J.; Song, J.H.; Park, S.I.; Kim, H. Plasminogen activator inhibitor-1 as an early potential diagnostic marker for Alzheimer’s disease. Exp. Gerontol. 2014, 60, 87–91. [Google Scholar] [CrossRef] [PubMed]
- Liu, R.M.; van Groen, T.; Katre, A.; Cao, D.; Kadisha, I.; Ballinger, C.; Wang, L.; Carroll, S.L.; Li, L. Knockout of plasminogen activator inhibitor 1 gene reduces amyloid beta peptide burden in a mouse model of Alzheimer’s disease. Neurobiol. Aging 2011, 32, 1079–1089. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gerenu, G.; Martisova, E.; Ferrero, H.; Carracedo, M.; Rantamaki, T.; Ramirez, M.J.; Gil-Bea, F.J. Modulation of BDNF cleavage by plasminogen-activator inhibitor-1 contributes to Alzheimer’s neuropathology and cognitive deficits. Biochim. Biophys. Acta Mol. Basis Dis. 2017, 1863, 991–1001. [Google Scholar] [CrossRef] [PubMed]
- Heni, M.; Wagner, R.; Kullmann, S.; Gancheva, S.; Roden, M.; Peter, A.; Stefan, N.; Preissl, H.; Häring, H.U.; Fritsche, A. Hypothalamic and Striatal Insulin Action Suppresses Endogenous Glucose Production and May Stimulate Glucose Uptake During Hyperinsulinemia in Lean but Not in Overweight Men. Diabetes 2017, 66, 1797–1806. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wieckowska-Gacek, A.; Mietelska-Porowska, A.; Chutoranski, D.; Wydrych, M.; Dlugosz, J.; Wojda, U. Western Diet Induces Impairment of Liver-Brain Axis Accelerating Neuroinflammation and Amyloid Pathology in Alzheimer’s Disease. Front. Aging Neurosci. 2021, 13, 654509. [Google Scholar] [CrossRef]
- Honda, T.; Ishigami, M.; Luo, F.; Lingyun, M.; Ishizu, Y.; Kuzuya, T.; Hayashi, K.; Nakano, I.; Ishikawa, T.; Feng, G.G.; et al. Branched-chain amino acids alleviate hepatic steatosis and liver injury in choline-deficient high-fat diet induced NASH mice. Metabolism 2017, 69, 177–187. [Google Scholar] [CrossRef]
- Yoneshiro, T.; Wang, Q.; Tajima, K.; Matsushita, M.; Maki, H.; Igarashi, K.; Dai, Z.; White, P.J.; McGarrah, R.W.; Ilkayeva, O.R.; et al. BCAA catabolism in brown fat controls energy homeostasis through SLC25A44. Nature 2019, 572, 614–619. [Google Scholar] [CrossRef]
- Arias, N.; Arboleya, S.; Allison, J.; Kaliszewska, A.; Higarza, S.G.; Gueimonde, M.; Arias, J.L. The Relationship between Choline Bioavailability from Diet, Intestinal Microbiota Composition, and Its Modulation of Human Diseases. Nutrients 2020, 12, 2340. [Google Scholar] [CrossRef]
- Yamaguchi, K.; Yang, L.; McCall, S.; Huang, J.; Yu, X.X.; Pandey, S.K.; Bhanot, S.; Monia, B.P.; Li, Y.X.; Diehl, A.M. Inhibiting triglyceride synthesis improves hepatic steatosis but exacerbates liver damage and fibrosis in obese mice with nonalcoholic steatohepatitis. Hepatology 2007, 45, 1366–1374. [Google Scholar] [CrossRef]
- Granado-Serrano, A.B.; Martin-Gari, M.; Sanchez, V.; Riart Solans, M.; Berdun, R.; Ludwig, I.A.; Rubió, L.; Vilaprinyó, E.; Portero-Otín, M.; Serrano, J.C.E. Faecal bacterial and short-chain fatty acids signature in hypercholesterolemia. Sci. Rep. 2019, 9, 1772. [Google Scholar] [CrossRef]
- Zietak, M.; Kovatcheva-Datchary, P.; Markiewicz, L.H.; Stahlman, M.; Kozak, L.P.; Backhed, F. Altered Microbiota Contributes to Reduced Diet-Induced Obesity upon Cold Exposure. Cell Metab. 2016, 23, 1216–1223. [Google Scholar] [CrossRef] [Green Version]
- Harach, T.; Marungruang, N.; Duthilleul, N.; Cheatham, V.; Mc Coy, K.D.; Frisoni, G.; Neher, J.J.; Fåk, F.; Jucker, M.; Lasser, T.; et al. Reduction of Abeta amyloid pathology in APPPS1 transgenic mice in the absence of gut microbiota. Sci. Rep. 2017, 7, 41802. [Google Scholar] [CrossRef]
- Kadooka, Y.; Sato, M.; Imaizumi, K.; Ogawa, A.; Ikuyama, K.; Akai, Y.; Okano, M.; Kagoshima, M.; Tsuchida, T. Regulation of abdominal adiposity by probiotics (Lactobacillus gasseri SBT2055) in adults with obese tendencies in a randomized controlled trial. Eur. J. Clin. Nutr. 2010, 64, 636–643. [Google Scholar] [CrossRef] [Green Version]
- Woting, A.; Pfeiffer, N.; Loh, G.; Klaus, S.; Blaut, M. Clostridium ramosum promotes high-fat diet-induced obesity in gnotobiotic mouse models. mBio 2014, 5, e01530-14. [Google Scholar] [CrossRef] [Green Version]
- Moreno-Fernandez, M.E.; Sharma, V.; Stankiewicz, T.E.; Oates, J.R.; Doll, J.R.; Damen, M.S.M.S.A.; Almanan, M.A.T.A.; Chougnet, C.A.; Hildeman, D.A.; Divanovic, S. Aging mitigates the severity of obesity-associated metabolic sequelae in a gender independent manner. Nutr. Diabetes 2021, 11, 15. [Google Scholar] [CrossRef]
- Thie, J.A. Clarification of a fractional uptake concept. J. Nucl. Med. 1995, 36, 711–712. [Google Scholar]
- Kleiner, D.E.; Brunt, E.M.; Van Natta, M.; Behling, C.; Contos, M.J.; Cummings, O.W.; Ferrell, L.D.; Liu, Y.C.; Torbenson, M.S.; Unalp-Arida, A.; et al. Design and validation of a histological scoring system for nonalcoholic fatty liver disease. Hepatology 2005, 41, 1313–1321. [Google Scholar] [CrossRef]
n (for Each Group) | WT-ND | WT-HFD | 3xTg-ND | 3xTg-HFD | 3xTg-HFD-INI | |
---|---|---|---|---|---|---|
8 months | ||||||
Body weight (g) | 9-9-8-7-11 | 41.2 ± 1.4 | 47.4 ± 2.7 ^ | 34.5 ± 0.5 *** | 37.4 ± 1.6 **,^ | 30.4 ± 1.2 ###,°° |
Glycaemia (mmol/L) | 7-9-8-7-11 | 4.9 ± 0.4 | 10.4 ± 1.1 ^^^ | 6.7 ± 0.6 | 12.6 ± 1.9 ###,***,^^^ | 7.6 ± 0.3 #,°° |
Triglycerides (mg/dL) | 9-9-8-6-10 | 106 ± 11 | 160 ± 8 ^ | 94 ± 5 | 115 ± 19 | 85 ± 7 # |
ALT (U/L) | 8-9-7-6-10 | 72 ± 28 | 176 ± 37 ^ | 85 ± 16 | 53 ± 3 * | 39 ± 6 |
AST (U/L) | 8-9-8-6-10 | 280 ± 159 | 313 ± 128 | 678 ± 216 * | 667 ± 160 # | 657 ± 155 # |
Leptin (ng/mL) | 8-7-8-7-11 | 4.7 ± 1.3 | 6.9 ± 2.4 | 0.3 ± 0.1 *** | 1.8 ± 0.7 ^^ | 0.9 ± 0.3 ## |
Insulin (ng/mL) | 7-7-8-7-11 | 2.9 ± 1.1 | 4.2 ± 1.2 | 4.1 ± 1.2 | 2.3 ± 0.8 | 1.3 ± 0.2 |
IL-6 (pg/mL) | 9-9-8-6-10 | 124 ± 37 | 114 ± 23 | 63 ± 13 | 62 ± 21 * | 148 ± 37 ° |
MCP-1 (pg/mL) | 9-9-8-7-10 | 40 ± 11 | 37 ± 10 | 16 ± 2 ** | 22 ± 5 * | 41 ± 8 ° |
PAI-1 (ng/mL) | 9-8-6-7-10 | 5.5 ± 1.2 | 6.1 ± 1.4 | 10.0 ± 1.2 * | 17.7 ± 3.9 ###,** | 14.6 ± 3.3 ## |
Resistin (pg/mL) | 9-9-8-7-11 | 278 ± 87 | 346 ± 68 | 180 ± 40 | 374 ± 30 ^ | 382 ± 69 |
14 months | ||||||
Body weight (g) | 10-12-9-6-7 | 51.3 ± 1.9 $ | 58.5 ± 2.6 ^,$ | 38.7 ± 0.8 ***,$ | 51.2 ± 6.8 ^^ | 41.2 ± 3.9 #,°,$ |
Glucose (mmol/L) | 10-12-8-6-7 | 7.4 ± 1.2 | 6.9 ± 0.7 $ | 8.3 ± 0.6 | 7.9 ± 2.2 $ | 11.2 ± 1.4 # |
Triglycerides (md/dL) | 9-11-9-5-7 | 95 ± 9 | 91 ± 6 $ | 73 ± 3 *,$ | 79 ± 6 $ | 87 ± 10 |
ALT (U/L) | 7-11-8-5-6 | 110 ± 28 | 138 ± 25 | 51 ± 10 | 192 ± 98 | 71 ± 13 |
AST (U/L) | 9-11-8-3-7 | 578 ± 133 | 560 ± 131 | 485 ± 92 | 131 ± 25 | 480 ± 88 |
Leptin (ng/mL) | 10-11-9-6-7 | 14.4 ± 2.4 $ | 20.7 ± 3.1 $ | 0.5 ± 0.1 ***,$ | 2.7 ± 0.9 ###,***,^ | 2.3 ± 0.9 ###,$ |
Insulin (ng/mL) | 10-11-9-6-7 | 3.8 ± 0.8 | 10.1 ± 2.2 | 2.9 ± 0.8 | 3.1 ± 1.2 * | 2.5 ± 1.1 |
IL-6 (pg/mL) | 8-10-8-6-7 | 1618 ± 472 | 1247 ± 571 $ | 145 ± 90 *** | 606 ± 318 # | 311 ± 229 ### |
MCP-1 (pg/mL) | 9-10-9-6-7 | 97 ± 22 $ | 71 ± 16 $ | 45 ± 24 * | 35 ± 11 # | 20 ± 2 ## |
PAI-1 (ng/mL) | 10-12-9-5-7 | 9.8 ± 2.4 | 12.6 ± 2.9 | 15.7 ± 3.8 * | 16.8 ± 2.7 | 10.4 ± 2.0 |
Resistin (pg/mL) | 10-12-9-6-7 | 874 ± 244 $ | 957 ± 127 $ | 279 ± 124 * | 854 ± 209 ^^ | 296 ± 58 ° |
8 Months | 14 Months | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
TG (mg/dL) | Leptin (pg/mL) | PAI-1 (pg/mL) | TG (mg/dL) | Leptin (pg/mL) | PAI-1 (pg/mL) | IL6 (pg/mL) | MCP-1 (pg/mL) | Insulin (pg/mL) | Resistin (pg/mL) | |
Liver GE | 0.271 | −0.061 | 0.172 | 0.304 | 0.409 ** | −0.112 | 0.478 ** | 0.471 ** | 0.278 | 0.542 ** |
Liver GU | 0.493 ** | 0.067 | 0.174 | 0.315 * | 0.239 | −0.295 | 0.035 | 0.192 | −0.051 | 0.100 |
Liver radiodensity | −0.436 ** | −0.598 ** | 0.199 | −0.577 ** | −0.885 ** | 0.321 * | −0.420 * | −0.615 ** | −0.507 ** | −0.500 ** |
Liver macrovescicular steatosis | 0.558 ** | 0.496 * | −0.037 | 0.364 | 0.601 ** | −0.505 * | 0.263 | 0.469 * | 0.131 | 0.343 |
Liver total steatosis | 0.550 ** | 0.578 ** | −0.187 | 0.437 * | 0.560 ** | −0.588 ** | 0.050 | 0.080 | 0.008 | 0.189 |
Liver portal inflammation | −0.518 * | −0.433 * | 0.489 * | −0.314 | −0.449 * | 0.347 | −0.260 | −0.386 | −0.497 * | −0.402 |
Liver ballooning | 0.649 ** | 0.405 | −0.285 | 0.008 | 0.363 | −0.272 | 0.214 | 0.398 | 0.212 | 0.333 |
Liver steatoinflammatory score | 0.522 * | 0.590 ** | −0.264 | 0.232 | 0.370 | −0.369 | −0.058 | 0.422 * | −0.048 | 0.185 |
WAT radiodensity | −0.530 ** | −0.536 ** | 0.350 * | −0.516 ** | −0.781 ** | 0.243 | −0.545 ** | −0.604 ** | −0.394 * | −0.436 ** |
WAT cell count | −0.634 ** | −0.700 ** | 0.223 | −0.323 | −0.493 * | 0.579 ** | −0.205 | −0.272 | −0.013 | −0.136 |
BAT radiodensity | −0.603 ** | −0.758 ** | 0.437 ** | −0.582 ** | −0.822 ** | 0.354 * | −0.468 ** | −0.546 ** | −0.506 ** | −0.452 ** |
BAT lipid droplets | 0.622 ** | 0.643 ** | −0.382 | 0.614 ** | 0.647 ** | −0.559 ** | 0.474 * | 0.369 | 0.245 | 0.522 ** |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guzzardi, M.A.; La Rosa, F.; Campani, D.; Collado, M.C.; Monleon, D.; Cacciato Insilla, A.; Tripodi, M.; Zega, A.; Dattilo, A.; Brunetto, M.R.; et al. Liver and White/Brown Fat Dystrophy Associates with Gut Microbiota and Metabolomic Alterations in 3xTg Alzheimer’s Disease Mouse Model. Metabolites 2022, 12, 278. https://doi.org/10.3390/metabo12040278
Guzzardi MA, La Rosa F, Campani D, Collado MC, Monleon D, Cacciato Insilla A, Tripodi M, Zega A, Dattilo A, Brunetto MR, et al. Liver and White/Brown Fat Dystrophy Associates with Gut Microbiota and Metabolomic Alterations in 3xTg Alzheimer’s Disease Mouse Model. Metabolites. 2022; 12(4):278. https://doi.org/10.3390/metabo12040278
Chicago/Turabian StyleGuzzardi, Maria Angela, Federica La Rosa, Daniela Campani, Maria Carmen Collado, Daniel Monleon, Andrea Cacciato Insilla, Maria Tripodi, Alessandro Zega, Alessia Dattilo, Maurizia Rossana Brunetto, and et al. 2022. "Liver and White/Brown Fat Dystrophy Associates with Gut Microbiota and Metabolomic Alterations in 3xTg Alzheimer’s Disease Mouse Model" Metabolites 12, no. 4: 278. https://doi.org/10.3390/metabo12040278
APA StyleGuzzardi, M. A., La Rosa, F., Campani, D., Collado, M. C., Monleon, D., Cacciato Insilla, A., Tripodi, M., Zega, A., Dattilo, A., Brunetto, M. R., Maffei, M., Bonino, F., & Iozzo, P. (2022). Liver and White/Brown Fat Dystrophy Associates with Gut Microbiota and Metabolomic Alterations in 3xTg Alzheimer’s Disease Mouse Model. Metabolites, 12(4), 278. https://doi.org/10.3390/metabo12040278