LC-MS Based Metabolomics Analysis of Potato (Solanum tuberosum L.) Cultivars Irrigated with Quicklime Treated Acid Mine Drainage Water
Abstract
:1. Introduction
2. Results
2.1. Metabolome Profile Variations in Two Cultivars of Potato under Irrigation with Treated AMD Water
2.2. Effect of the Quicklime Treatment of AMD on the Two Cultivar Metabolomes Using LC-MS/MS
2.3. Hierarchical Cluster Analysis of Metabolomes in Two Cultivars of Potato under Irrigation with Treated AMD Water
3. Discussion
4. Materials and Methods
4.1. Study Area
4.2. Experimental Design, Irrigation Treatments, Planting and Harvesting of Potato Cultivars
4.3. Metabolomic Analysis
4.3.1. Metabolite Extraction
4.3.2. Metabolite Detection
4.3.3. Data Processing and Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bwapwa, J.K. A Review of Acid Mine Drainage in a Water-Scarce Country: Case of South Africa. Environ. Manag. Sustain. Dev. 2018, 7, 1–20. [Google Scholar] [CrossRef] [Green Version]
- El Chami, D.; El Moujabber, M. Drought, climate change and sustainability of water in agriculture: A roadmap towards the NWRS2. S. Afr. J. Sci. 2016, 112, 1–4. [Google Scholar] [CrossRef] [Green Version]
- Johnson, N.; Revenga, C.; Echeverria, J. Managing Water for People and Nature. Science 2001, 292, 1071–1072. [Google Scholar] [CrossRef] [PubMed]
- Biswas, A.K. Integrated Water Resources Management: A reassessment. A Water Forum Contribution. Water Int. 2004, 29, 248–256. [Google Scholar] [CrossRef]
- Ochieng, G.M.M.; Seanego, E.S.; Nkwonta, O.I. Impacts of mining on water resources in South Africa: A review. Sci. Res. Essays 2010, 5, 3351–3357. [Google Scholar]
- Amer, K.; Samak, A.; Hatfield, J. Effect of Irrigation Method and Non-Uniformity of Irrigation on Potato Performance and Quality. J. Water Resour. Prot. 2016, 8, 277–292. [Google Scholar] [CrossRef] [Green Version]
- Egiebor, N.O.; Oni, B. Acid rock drainage formation and treatment: A review. Asia Pac. J. Chem. Eng. 2007, 2, 47–62. [Google Scholar] [CrossRef]
- Gitari, M.W.; Petrik, L.F.; Etchebers, O.; Key, D.L.; Iwuoha, E.; Okujeni, C. Treatment of acid mine drainage with fly ash: Removal of major contaminants and trace elements. J. Environ. Sci. Health A 2006, 41, 1729–1747. [Google Scholar] [CrossRef]
- Kuyucak, N. Role of microorganisms in mining: Generation of acid rock drainage and its mitigation and treatment. Eur. J. Mineral. 2002, 2, 179–196. [Google Scholar]
- Akcil, A.; Koldas, S. Acid Mine Drainage (AMD): Causes, treatment, and case studies. J. Clean. Prod. 2006, 14, 1139–1145. [Google Scholar] [CrossRef]
- Tyson, G.W.; Lo, I.; Baker, B.J.; Allen, E.E.; Hugenholtz, P.; Banfield, J.F. Genome-directed isolation of the key nitrogen fixer Leptospirillum ferrodiazotrophum sp. Nov. from an acidophilic microbial community. Appl. Environ. Microbiol. 2004, 71, 6319–6324. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, L.; Huang, L.; Méndez-García, C. Microbial communities, processes, and functions in acid mine drainage ecosystems. Curr. Opin. Biotechnol. J. 2016, 38, 150–158. [Google Scholar] [CrossRef] [PubMed]
- Tutu, H.; McCarthy, T.S.; Cukrowska, E. The chemical characteristics of acid mine drainage with reference to sources, distribution, and remediation: The Witwatersrand Basin, South Africa, as a case study. Appl. Geochem. 2008, 23, 3666–3684. [Google Scholar] [CrossRef]
- McCathy, T.S. The impact of acid mine drainage in South Africa. S. Afr. J. Sci. 2011, 107, 7–12. [Google Scholar]
- Simate, G.S.; Ndlovu, S. Acid mine drainage: Challenges and opportunities. J. Environ. Chem. Eng. 2014, 2, 1785–1803. [Google Scholar] [CrossRef]
- Villiers, F.; Ducruix, C.; Hugouvieux, V.; Jarno, N.; Ezan, E.; Garin, J.; Junot, C.; Bourguignon, J. Investigating the plant response to cadmium exposure by proteomic and metabolomic approaches. Proteomics 2011, 11, 1650–1663. [Google Scholar] [CrossRef]
- Nagajyoti, P.C.; Lee, K.D.; Sreekanth, T.V.M. Heavy metals, occurrence, and toxicity for plants: A review. Environ. Chem. Lett. 2010, 8, 199–216. [Google Scholar] [CrossRef]
- Zemanová, V.; Pavlík, M.; Pavlíková, D. Cadmium toxicity induced contrasting patterns of concentrations of free sarcosine, specific amino acids, and selected microelements in two Noccaea species. PLoS ONE 2017, 12, e0177963. [Google Scholar] [CrossRef] [Green Version]
- Jovanovic, N.Z.; Barnard, R.O.; Rethman, N.F.G.; Annandale, J.G. Crops can be irrigated with lime-treated acid mine drainage. Water SA 1998, 24, 113–122. [Google Scholar]
- Annandale, J.G.; Jovanoic, N.Z.; Classen, A.S.; Benade, N.; Lorentz, S.A.; Johnston MATanner, P.D.; Aken, M.E.; Hodgson, F.D.I. The Influence of Irrigation with Gypsiferous Mine Water on Soil Properties and Drainage Water. Water Research Commission Report No. K5/858; Water Research Commission: Pretoria, South Africa, 2001. [Google Scholar]
- Annandale, J.G.; Jovanovic, N.Z.; Hodgson, F.D.I.; Usher, B.; Aken, M.E.; Van Der Westhuizen, A.M.; Bristow, K.L.; Steyn, J.M. Prediction of the environmental impact and sustainability of large-scale irrigation with gypsiferous mine-water on groundwater resources. Water SA 2006, 32, 21–28. [Google Scholar] [CrossRef] [Green Version]
- Van Zyl, H.C.; Maree, J.P.; van Niekerk, A.M.; van Tonder, G.J.; Naidoo, C. Collection, treatment, and re-use of mine water in the Olifants River Catchment. J. S. Afr. Inst. Min. Metall. 2001, 101, 41–46. [Google Scholar]
- Nemutanzhela, M.V.; Modise, D.M.; Siyoko, K.J.; Kanu, S.A. Assessment of Growth, Tuber Elemental Composition, Stomatal Conductance and Chlorophyll Content of Two Potato Cultivars Under Irrigation with Fly Ash-Treated Acid Mine Drainage. Am. J. Potato Res. 2017, 94, 367–378. [Google Scholar] [CrossRef]
- Nevhulaudzi, T.; Kanu, S.A.; Ntushelo, K. Interaction effect of Bacillus subtilis co-inoculation and mine water irrigation on cowpea’s growth, physiology, and nutritional quality. Sci. Afr. 2020, 9, e00541. [Google Scholar] [CrossRef]
- Shabalala, A.N.; Ekolu, S.O. Assessment of the Suitability of Mine Water Treated with Pervious Concrete for Irrigation Use. Mine Water Environ. 2019, 38, 798–807. [Google Scholar] [CrossRef]
- Rambabu, K.; Banat, F.; Pham, Q.M.; Ho, S.H.; Ren, N.Q.; Show, P.L. Biological remediation of acid mine drainage: Review of past trends and current outlook. Environ. Sci. Technol. 2020, 2, 100024. [Google Scholar] [CrossRef]
- Sung, J.; Lee, S.; Lee, Y.; Ha, S.; Song, B.; Kim, T.; Waters, B.M.; Krishnan, H.B. Metabolomic profiling from leaves and roots of tomato (Solanum lycopersicum L.) plants grown under nitrogen, phosphorus, or potassium-deficient condition. Plant Sci. 2015, 241, 55–64. [Google Scholar] [CrossRef] [PubMed]
- Garcia, C.J.; García-Villalba, R.; Garrido, Y.; Gil, M.I.; Tomás-Barberán, F.A. Untargeted metabolomics approach using UPLC-ESI-QTOF-MS to explore the metabolome of fresh-cut iceberg lettuce. J. Metab. 2016, 12, 138. [Google Scholar] [CrossRef]
- Arbona, V.; Manzi, M.; Ollas, C.D.; Gómez-Cadenas, A. Metabolomics as a tool to investigate abiotic stress tolerance in plants. Int. J. Mol. Sci. 2013, 14, 4885–4911. [Google Scholar] [CrossRef]
- Putri, S.P.; Yamamoto, S.; Tsugawa, H.; Fukusaki, E. Current metabolomics: Technological advances. J. Biosci. Bioeng. 2013, 116, 9–16. [Google Scholar] [CrossRef]
- Komatsu, S.; Han, C.; Nanjo, Y.; Altaf-Un-Nahar, M.; Wang, K.; He, D.; Yang, P. Label-free quantitative proteomic analysis of abscisic acid effect in early-stage soybean under flooding. J. Proteome Res. 2013, 12, 4769–4784. [Google Scholar] [CrossRef]
- Singh, S.; Parihar, P.; Singh, R.; Singh, V.P.; Prasad, S.M. Heavy metal tolerance in plants: Role of transcriptomics, proteomics, metabolomics, and ionomics. Front. Plant. Sci. 2016, 6, 1143. [Google Scholar] [CrossRef] [Green Version]
- Feng, Z.; Ding, C.; Li, W.; Wang, D.; Cui, D. Applications of metabolomics in the research of soybean plant under abiotic stress. Food Chem. 2020, 310, 125914. [Google Scholar] [CrossRef]
- Gowda, G.A.N.; Djukovic, D. Overview of Mass spectrometry-based metabolomics: Opportunities and challenges. Methods Mol. Biol. 2014, 1198, 3–12. [Google Scholar]
- Wang, L.; Sun, X.; Weiszmann, J.; Weckwerth, W. System-level and granger network analysis of integrated proteomic and metabolomic dynamics identifies key points of grape berry development at the interface of primary and secondary metabolism. Front. Plant Sci. 2017, 8, 1066. [Google Scholar] [CrossRef] [Green Version]
- Abreu, A.; Aguilera-Sáez, L.; Peña, A.; García-Valverde, M.; Marín, P.; Valera, D.; Fernández, I. NMR-Based Metabolomics Approach to Study the Influence of Different Conditions of Water Irrigation and Greenhouse Ventilation on Zucchini Crops. J. Agric. Food Chem. 2018, 66, 8422–8432. [Google Scholar] [CrossRef]
- Jiao, Y.; Bai, Z.; Xu, J.; Zhao, M.; Khan, Y.; Hu, Y.; Shi, L. Metabolomics and its physiological regulation process reveal the salt-tolerant mechanism in Glycine soja seedling roots. Plant Physiol. Biochem. 2018, 126, 187–196. [Google Scholar] [CrossRef]
- Tamura, Y.; Mori, T.; Nakabayashi, R.; Kobayashi, M.; Saito, K.; Okazaki, S.; Wang, N.; Kusano, M. Metabolomic Evaluation of the Quality of Leaf Lettuce Grown in Practical Plant Factory to Capture Metabolite Signature. Front. Plant Sci. 2018, 9, 665. [Google Scholar] [CrossRef]
- Liu, Y.; Liu, J.; Liu, M.; Strappe, P.; Sun, H.; Zhou, Z. Comparative non-targeted metabolomic analysis reveals insights into the mechanism of rice yellowing. Food Chem. 2020, 308, 125621. [Google Scholar] [CrossRef]
- Aliferis, K.A.; Jabaji, S. FT-ICR/MS and GC-EI/MS Metabolomics Networking Unravels Global Potato Sprout’s Responses to Rhizoctonia solani Infection. PLoS ONE 2012, 7, e42576. [Google Scholar] [CrossRef]
- Lisec, J.; Schauer, N.; Kopka, J.; Willmitzer, L.; Fernie, A.R. Gas-chromatography mass spectrometry-based metabolite profiling in plants. Nat. Protoc. 2006, 1, 387–396. [Google Scholar] [CrossRef]
- Kusano, M.; Yang, Z.; Okazaki, Y.; Nakabayashi, R.; Fukushima, A.; Saito, K. Using metabolomic approaches to explore chemical diversity in rice. Mol. Plant 2014, 8, 58–67. [Google Scholar] [CrossRef] [Green Version]
- Das, A.; Rushton, P.J.; Rohila, J.S. Metabolomic profiling of soybeans (Glycine max L.) reveals the importance of sugar and nitrogen metabolism under drought and heat stress. Plants 2017, 6, 21. [Google Scholar] [CrossRef] [Green Version]
- Díaz, S.; Hodgson, J.G.; Thompson, K.; Cabido, M.; Cornelissen, J.H.C.; Jalili, A. The plant traits that drive ecosystems: Evidence from three continents. J. Veg. Sci. 2004, 15, 295–304. [Google Scholar] [CrossRef] [Green Version]
- Koch, K. Sucrose metabolism: Regulatory mechanisms and pivotal roles in sugar sensing and plant development. Curr. Opin. Plant Biol. 2004, 7, 235–246. [Google Scholar] [CrossRef]
- Levy, D.; Tai., G.C.C. Differential response of potatoes (Solanum tuberosum L.) to salinity in an arid environment and field performance of the seed tubers grown with fresh water in the following season. Agric. Water Manag. 2013, 116, 122–127. [Google Scholar] [CrossRef]
- Roessner, U.; Wagner, C.; Kopka, J.; Trethewey, R.N.; Willmitzer, L. Technical advance: Simultaneous analysis of metabolites in potato tuber by gas chromatography-mass spectrometry. Plant J. 2000, 23, 131–142. [Google Scholar] [CrossRef]
- Chaparro, J.M.; Holm, D.G.; Broeckling, C.D.; Prenni, J.E.; Heuberger, A.L. Metabolomics and Ionomics of Potato Tuber Reveals an Influence of Cultivar and Market Class on Human Nutrients and Bioactive Compounds. Front. Nutr. 2018, 5, 36. [Google Scholar] [CrossRef]
- Kelsey, L.B.; Sarah, E.P.; Robert, E.S. Chapter 7—Advanced Data Handling in Comprehensive Two-Dimensional Gas Chromatography; Snow, N.H., Ed.; Separation Science and Technology; Academic Press: Cambridge, MA, USA, 2020; Volume 12, pp. 229–268. ISBN 9780128137451. [Google Scholar]
- Bi, Y.; Wu, J.; Zhai, X.; Shen, S.; Tang, L.; Huang, K.; Zhang, D. Application of Partial Least Squares-Discriminate Analysis Model Based on Water Chemical Compositions in Identifying Water Inrush Sources from Multiple Aquifers in Mines. Geofluids 2021, 2021, 6663827. [Google Scholar] [CrossRef]
- Barker, M.L. Partial least squares for discrimination in fMRI data. Magn. Reson. Imaging 2012, 30, 446–452. [Google Scholar]
- Demirel, U.; Morris, W.L.; Ducreux, L.J.M.; Yavuz, C.; Asim, A.; Ilknur, T.; Campbell, R.; Morris, J.A.; Verrall, S.R.; Hedley, P.E.; et al. Physiological, Biochemical, and Transcriptional Responses to Single and Combined Abiotic Stress in Stress-Tolerant and Stress-Sensitive Potato Genotypes. Front. Plant Sci. 2020, 11, 1–21. [Google Scholar] [CrossRef]
- Toubiana, D.; Cabrera, R.; Salas, E.; Maccera, C.; Franco Dos Santos, G.; Cevallos, D.; Lindqvist-Kreuze, H.; Lopez, J.M.; Maruenda, H. Morphological and metabolic profiling of a tropical-adapted potato association panel subjected to water recovery treatment reveals new insights into plant vigor. Plant Mol. Biol. 2020, 103, 2193–2210. [Google Scholar] [CrossRef] [PubMed]
- Khan, N.; Ali, S.; Shahid, M.A.; Kharabian-Masouleh, A. Advances in detection of stress tolerance in plants through metabolomics approaches. Plant Omics 2017, 10, 153–163. [Google Scholar] [CrossRef]
- Khan, N.; Bano, A.; Rahman, M.A.; Rathinasabapathi, B.; Babar, M.A. UPLC-HRMS-based untargeted metabolic profiling reveals changes in chickpea (Cicer arietinum) metabolome following long-term drought stress. Plant Cell Environ. 2019, 42, 115–132. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mahale, N.K.; Patil, S.D.; Sarode, D.B.; Attarde, S.B. Effect of Fly Ash as an Admixture in Agriculture and the Study of Heavy Metal Accumulation in Wheat (Triticum aestivum), Mung Bean (Vigna radiata), and Urad Beans (Vigna mungo). Pol. J. Environ. Stud. 2012, 21, 1713–1719. [Google Scholar]
- Sato, M.; Ikram, M.M.M.; Pranamuda, H.; Agusta, W.; Putri, S.P.; Fukusaki, E. Characterization of five Indonesian mangoes using gas chromatography–mass spectrometry-based metabolic profiling and sensory evaluation. J. Biosci. Bioeng. 2021, 132, 613–620. [Google Scholar] [CrossRef]
- Yusuf, M.A.; Kumar, D.; Rajwanshi, R. Overexpression of γ-tocopherol methyl transferase gene in transgenic Brassica juncea plants alleviates abiotic stress: Physiological and chlorophyll a fluorescence measurement. Biochim. Biophys. Acta Bioenerg. BBA Bioenerg. 2010, 1797, 1428–1438. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Benzarti, M.; Rejeb, K.B.; Messedi, D. Effect of high salinity on Atriplex portulacoides: Growth, leaf water relations and solute accumulation in relation with osmotic adjustment. S. Afr. J. Bot. 2014, 95, 70–77. [Google Scholar] [CrossRef]
- Iqbal, N.; Umar, S.; Khan, N.A. Nitrogen availability regulates proline and ethylene production and alleviates salinity stress in mustard (Brassica juncea). J. Plant Physiol. 2015, 178, 84–91. [Google Scholar] [CrossRef] [PubMed]
- Reddy, P.S.; Jogeswar, G.; Rasineni, G.K. Proline over-accumulation alleviates salt stress and protects photosynthetic and antioxidant enzyme activities in transgenic sorghum [Sorghum bicolor (L.) Moench]. Plant Physiol. Biochem. 2015, 94, 104–113. [Google Scholar] [CrossRef] [Green Version]
- Tan, P.; Zeng, C.; Wan, C.; Liu, Z.; Dong, X.; Peng, J.; Lin, H.; Li, M.; Liu, Z.; Yan, M. Metabolic Profiles of Brassica juncea Roots in Response to Cadmium Stress. Metabolites 2021, 11, 383. [Google Scholar] [CrossRef]
- Feng, Z.; Ji, S.; Ping, J.; Cui, D. Recent advances in metabolomics for studying heavy metal stress in plants. Trends Analyt. Chem. 2021, 143, 116402. [Google Scholar] [CrossRef]
- Shanmugaraj, B.M.; Chandra, H.M.; Srinivasan, B.; Ramalingam, S. Cadmium induced physio-biochemical and molecular response in Brassica juncea. Int. J. Phytoremediation 2013, 15, 206–218. [Google Scholar] [CrossRef]
- Ježek, P.; Hlušek, J.; Lošák, T.; Jůzl, M.; Elzner, P.; Kráčmar, S.; Buňka, F.; Martensson, A.M. Effect of foliar application of selenium on the content of selected amino acids in potato tubers (Solanum tuberosum L.). Plant Soil Environ. 2011, 57, 315–320. [Google Scholar] [CrossRef] [Green Version]
- Xu, J.; Sun, J.; Du, L.; Liu, X. Comparative transcriptome analysis of cadmium responses in Solanum nigrum and Solanum torvum. New Phytol. 2012, 196, 110–124. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.; Zhu, Y.; Ge, Q.; Li, Y.; Sun, J.; Zhang, Y. Comparative physiological responses of Solanum nigrum and Solanum torvum to cadmium stress. New Phytol. 2021, 196, 125–138. [Google Scholar] [CrossRef]
- Haydon, M.J.; Cobbett, C.S. Transporters of ligands for essential metal ions in plants. New Phytol. 2007, 174, 499–506. [Google Scholar] [CrossRef]
- Massalha, H.; Korenblum, E.; Tholl, D.; Aharoni, A. Small molecules below-ground: The role of specialized metabolites in the rhizosphere. Plant J. 2017, 90, 788–807. [Google Scholar] [CrossRef] [Green Version]
- Kim, H.K.; Choi, Y.H.; Verpoorte, R. NMR-based metabolomic analysis of plants. Nat. Protoc. 2010, 5, 536–549. [Google Scholar] [CrossRef]
- Djami-Tchatchou, A.T.; Bame, L.; Matsaunyane, T.; Kalu, C.M.; Ntushelo, K. Gene expression and evidence of coregulation of the production of some metabolites of chili peper inoculated with Pectobacterium carotovarum spp. Carotovorum. Funct. Plant Biol. 2018, 46, 1114–1122. [Google Scholar] [CrossRef] [PubMed]
- Pang, Z.; Chong, J.; Zhou, G.; de Lima Morais, D.A.; Chang, L.; Barrette, M.; Gauthier, C.; Jacques, P.; Li, S.; Xia, J. MetaboAnalyst 5.0: Narrowing the gap between raw spectra and functional insights. Nucleic Acids Res. 2021, 49, 388–396. [Google Scholar] [CrossRef]
- Koh, Y.; Pasikanti, K.K.; Yap, C.W.; Chan, E.C. Comparative evaluation of software for retention time alignment of gas chromatography/time-of-flight mass spectrometry-based metabonomic data. J. Chromatogr. A 2010, 1217, 8308–8316. [Google Scholar] [CrossRef] [PubMed]
- Sysi-Aho, M.; Katajamaa, M.; Yetukuri, L.; Oresic, M. Normalization method for metabolomics data using optimal selection of multiple internal standards. BMC Bioinform. 2007, 8, 93. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van den Berg, R.A.; Hoefsloot, H.C.J.; Westerhuis, J.A.; Smilde, A.K.; van der Werf, M.J. Centering, scaling, and transformations: Improving the biological information content of metabolomics data. BMC Genom. 2006, 7, 142. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Veselkov, K.A.; Vingara, L.K.; Masson, P.; Robinette, S.L.; Want, E.; Li, J.V. Optimized preprocessing of ultra-performance liquid chromatography/mass spectrometry urinary metabolic profiles for improved information recovery. Anal. Chem. 2011, 83, 5864–5872. [Google Scholar] [CrossRef]
Irrigation Treatments Used | Metabolites | ||
---|---|---|---|
Amino Acids | Organic Acids | Aromatic Amines | |
Marykies | |||
Treatment 1 (T1) | Acetylcarnitine, Acetylcholine, Adenosine monophosphate, Adenine, Allantoin, Asparagine, Aspartic acid, Carnitine, Creatinine, Cytidine, Cytosine, Dimethylglycine, Epinephrine, Glutamic acid, Glycine, Guanosine 3′,5′-cyclic monophosphate, Histamine, Hypoxanthine, Inosine, Methionine sulfone, Methionine sulfide, Niacinamide, Norepinephrine, Serine, Threonine, Uridine, Xanthine, 4-Aminobutyric acid, 4-Hydroxyproline | Cholic acid, Fumaric acid, Isocitric acid, Lactic acid, Malic acid, Nicotinic acid, Orotic acid, Pyruvic acid, and 2-Morpholinoethanesulfonic acid | Dopa |
Treatment 2 (T2) | Acetylcarnitine, Acetylcholine, Adenine, Alanine, Asparagine, Aspartic acid, Carnitine, Creatinine, Histamine, Histidine, Hypoxanthine, Niacinamide, Norepinephrine, Serine, 4-Aminobutyric acid, 4-Hydroxyproline | Fumaric acid, Nicotinic acid | |
Treatment 3 (T3) | Acetylcarnitine, Adenine, Alanine, Asparagine, Aspartic acid, Carnitine, Creatinine, Dimethylglycine, Dimethylglycine, Histamine, Niacinamide, Norepinephrine, Serine, Xanthine, 4-Aminobutyric acid, 4-Hydroxyproline | Fumaric acid, Nicotinic acid | |
Treatment 4 (T4) | Acetylcarnitine, Adenine, Asparagine, Aspartic acid, Carnitine, Creatinine, Dimethylglycine, Glycine, Histamine, Niacinamide, Norepinephrine, Serine, Threonine, 4-Aminobutyric acid, 4-Hydroxyproline | Fumaric acid, Isocitric acid, Nicotinic acid, Orotic acid, Pyruvic acid | Dopa |
Treatment 5 (T5) | Acetylcarnitine, Adenine, Asparagine, Aspartic acid, Carnitine, Creatinine, Dimethylglycine, Glycine, Histamine, Norepinephrine, Serine, Threonine, Xanthine, 4-Aminobutyric acid, 4-Hydroxyproline | Isocitric acid, Nicotinic acid, Orotic acid, Pyruvic acid | Dopa |
Royal | |||
Treatment 1 (T1) | Acetylcarnitine, Ace-tylcholine, Adenine, Allantoin, Asparagine, Aspartic acid, Carnitine, Creatinine, Cytosine, Dimethylglycine, Epinephrine, Glutamic acid, Glycine, Guanosine 3′,5′-cyclic monophosphate, Histamine, Hypoxanthine, Inosine, Methionine sulfone, Me-thionine sulfide, Niacinamide, Norepinephrine, Serine, Threonine, Uridine, 4-Aminobutyric acid, 4-Hydroxyproline | Cholic acid, Fumaric acid, Malic acid, Nicotinic acid, Orotic acid, Pyruvic acid, Succinic acid and 2-Morpholinoethanesulfonic acid | Dopa |
Treatment 2 (T2) | Acetylcarnitine, Acetylcholine, Adenine, Asparagine, Aspartic acid, Carnitine, Creatinine, Dimethylglycine, Histamine, Histidine, Hypoxanthine, Niacinamide, Norepinephrine, Serine, 4-Aminobutyric acid, 4-Hydroxyproline | Fumaric acid, Nicotinic acid | |
Treatment 3 (T3) | Acetylcarnitine, Adenine, Alanine, Asparagine, Aspartic acid, Carnitine, Creatinine, Dimethylglycine, Histamine, Niacinamide, Norepinephrine, Serine, 4-Aminobutyric acid, 4-Hydroxyproline | Fumaric acid, Nicotinic acid | |
Treatment 4 (T4) | Acetylcarnitine, Adenine, Asparagine, Aspartic acid, Carnitine, Creatinine, Dimethylglycine, Glycine, Histamine, Niacinamide, Norepinephrine, Serine, Threonine, 4-Aminobutyric acid, 4-Hydroxyproline | Fumaric acid, Nicotinic acid, Pyruvic acid, Succinic acid | Dopa |
Treatment 5 (T5) | Acetylcarnitine, Adenine, Carnitine, Creatinine, Dimethylglycine, Glycine, Histamine, Niacinamide, Norepinephrine, Serine, Threonine, 4-Aminobutyric acid, 4-Hydroxyproline | Nicotinic acid, Pyruvic acid | Dopa |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Munyai, R.; Raletsena, M.V.; Modise, D.M. LC-MS Based Metabolomics Analysis of Potato (Solanum tuberosum L.) Cultivars Irrigated with Quicklime Treated Acid Mine Drainage Water. Metabolites 2022, 12, 221. https://doi.org/10.3390/metabo12030221
Munyai R, Raletsena MV, Modise DM. LC-MS Based Metabolomics Analysis of Potato (Solanum tuberosum L.) Cultivars Irrigated with Quicklime Treated Acid Mine Drainage Water. Metabolites. 2022; 12(3):221. https://doi.org/10.3390/metabo12030221
Chicago/Turabian StyleMunyai, Rabelani, Maropeng Vellry Raletsena, and David Mxolisi Modise. 2022. "LC-MS Based Metabolomics Analysis of Potato (Solanum tuberosum L.) Cultivars Irrigated with Quicklime Treated Acid Mine Drainage Water" Metabolites 12, no. 3: 221. https://doi.org/10.3390/metabo12030221
APA StyleMunyai, R., Raletsena, M. V., & Modise, D. M. (2022). LC-MS Based Metabolomics Analysis of Potato (Solanum tuberosum L.) Cultivars Irrigated with Quicklime Treated Acid Mine Drainage Water. Metabolites, 12(3), 221. https://doi.org/10.3390/metabo12030221