Adrenal, Gonadal and Peripherally Steroid Changes in Response to Extreme Physical Stress for Characterizing Load Capacity in Athletes
Abstract
:1. Introduction
2. Results
2.1. Evaluation of the Intensity of the Physical Load
2.2. Exploratory Multivariate Statistical Analysis of the Concentrations of Adrenal, Gonadal, and Peripherally Synthesized Steroids
2.3. Univariate Analysis of the Changes in the Concentrations of Endogenous Steroids
3. Discussion
4. Materials and Methods
4.1. Participants
4.2. Ethics
4.3. Study Design
4.4. Exercise Training
4.5. Blood Sampling
4.6. Analysis
4.7. Data Evaluation
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dunlavey, C.J. Introduction to the Hypothalamic-Pituitary-Adrenal Axis: Healthy and Dysregulated Stress Responses, Developmental Stress and Neurodegeneration. J. Undergrad. Neurosci. Educ. 2018, 16, 59–60. [Google Scholar]
- Brooks, K.A.; Carte, J.G. Overtraining, Exercise, and Adrenal Insufficiency. J. Nov. Physiother. 2013, 3, 11717. [Google Scholar]
- Kreher, J.B.; Schwartz, J.B. Overtraining Syndrome-A Practical Guide. Sports Health 2012, 4, 128–138. [Google Scholar] [CrossRef] [Green Version]
- Sato, K.; Iemitsu, M.; Katayama, K.; Ishida, K.; Kana, Y.; Saito, M. Responses of sex steroid hormones to different intensities of exercise in endurance athletes. Exp. Physiol. 2016, 101, 168–175. [Google Scholar] [CrossRef] [Green Version]
- Freitas, C.B.; Aoki, M.S.; Franciscon, C.A.; Arruda, A.F.S.; Carling, C.; Moreira, A. Psychophysiological Responses to Overloading and Tapering Phases in Elite Young Soccer Players. Pediatr. Exerc. Sci. 2014, 26, 195–202. [Google Scholar]
- Tremblay, M.S.; Copeland, J.L.; Van Helder, W. Effect of training status and exercise mode on endogenous steroid hormones in men. J. Appl. Physiol. 2004, 96, 531–539. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mottram, D. Drug testing in sport. Aspetar Sports Med. J. 2013, 2, 276–281. [Google Scholar]
- WADA. Athlete Biological Passport Operating Guidelines—Version 7.1; World Antidoping Agency: Montreal, QC, Canada, 2019. [Google Scholar]
- WADA. Anti-Doping Code—International Standard- Prohibited List 2021; World Antidoping Agency: Montreal, QC, Canada, 2021. [Google Scholar]
- Ács, P.; Stocker, M.; Füge, K.; Paár, D.; Oláh, A.; Kovács, A. Economic and Public Health Benefits: The Result of Increased Regular Physical Activity. Eur. J. Integr. Med. 2016, 8, 8–12. [Google Scholar] [CrossRef]
- Gaddam, K.K.; Pimenta, E.; Husain, S.; Calhoun, D.A. Aldosterone and Cardiovascular Disease. Curr. Probl. Cardiol. 2009, 34, 51–84. [Google Scholar] [CrossRef] [Green Version]
- Giacchetti, G.; Ronconi, V.; Turchi, F.; Agostinellia, L.; Mantero, F.; Rilli, S.; Boscaro, M. Aldosterone as a key mediator of the cardiometabolic syndrome in primary aldosteronism: An observational study. J. Hypertens. 2007, 25, 177–186. [Google Scholar] [CrossRef]
- Kelly, D.M.; Jones, T.H. Testosterone: A vascular hormone in health and disease. J. Endocrinol. 2013, 217, R47–R71. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Savineau, J.P.; Marthan, R.; de la Roque, E.D. Role of DHEA in cardiovascular diseases. Biochem. Pharmacol. 2013, 85, 718–726. [Google Scholar] [CrossRef]
- Shores, M.M.; Biggs, M.L.; Arnold, A.M.; Smith, N.L.; Longstreth, W.T.; Kizer, J.R.; Hirsch, C.H.; Cappola, A.R.; Matsumoto, A.M. Testosterone, Dihydrotestosterone, and Incident Cardiovascular Disease and Mortality in the Cardiovascular Health Study. J. Clin. Endocrinol. Metab. 2014, 99, 2061–2068. [Google Scholar] [CrossRef] [Green Version]
- Angoorani, H.; Haratian, Z.; Halabchi, F. Congenital Adrenal Hyperplasia in an Elite Female Soccer Player; What Sports Medicine Clinicians Should Know about This? Asian J. Sports Med. 2012, 3, 209–213. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bose, H.S.; Rice, A.M.; Marshall, B.; Gebrail, F.; Kupshik, D.; Perry, E.W. Deficient pregnenolone synthesis associated with congenital adrenal hyperplasia and organelle dysfunction. Endocrinol. Diabetes Metab. Case Rep. 2009, v2019, 19-0009. [Google Scholar] [CrossRef] [PubMed]
- Papanicolaou, D.A.; Mullen, M.; Kyrou, I.; Nieman, L.K. Nighttime Salivary Cortisol: A Useful Test for the Diagnosis of Cushing’s Syndrome. J. Clin. Endocrinol. Metab. 2002, 87, 4515–4521. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bermon, S.; Garnier, P.Y.; Hirschberg, A.L.; Robinson, N.; Giraud, S.; Nicoli, R.; Baume, N.; Saugy, M.; Fénichel, P.; Bruce, S.J.; et al. Serum Androgen Levels in Elite Female Athletes. J. Clin. Endocrinol. Metab. 2014, 9, 4328–4335. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Casto, K.V.; Edwards, D.A. Testosterone, cortisol, and human competition. Horm. Behav. 2016, 82, 21–37. [Google Scholar] [CrossRef]
- De Luccia, T.P.B. Use of the Testosterone/Cortisol Ratio Variable in Sports. Open Sports Sci. 2016, 9, 104–113. [Google Scholar] [CrossRef] [Green Version]
- Tsai, C.L.; Wang, C.H.; Pan, C.Y.; Chen, F.C.; Huang, T.H.; Chou, F.Y. Executive function and endocrinological responses to acute resistance exercise. Front. Behav. Neurosci. 2014, 1, 262. [Google Scholar] [CrossRef] [Green Version]
- Cardaci, T.D.; Machek, S.B.; Wilburn, D.T.; Heileson, J.L.; Willoughby, D.S. High-Load Resistance Exercise Augments Androgen Receptor–DNA Binding and Wnt/β-Catenin Signaling without Increases in Serum/Muscle Androgens or Androgen Receptor Content. Nutrients 2020, 12, 3829. [Google Scholar] [CrossRef] [PubMed]
- Cevada, T.; Vasques, P.E.; Moraes, H.; Deslandes, A. Salivary Cortisol Levels in Athletes and Nonathletes: A Systematic Review. Horm. Metab. Res. 2014, 46, 20. [Google Scholar] [CrossRef] [PubMed]
- Smith, A.A.; Toone, R.; Peacock, O.; Drawer, S.; Stokes, K.A.; Cook, C.J. Dihydrotestosterone is elevated following sprint exercise in healthy young men. J. Appl. Physiol. 2013, 114, 1435–1440. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Georgopoulos, N.E.; Rottsteinb, L.; Tsekouras, A.; Theodoropouloub, A.; Koukkouc, E.; Mylonas, P.; Polykarpoub, G.; Lampropouloub, E.; Iconomoub, G.; Leglise, M.; et al. Abolished circadian rhythm of salivary cortisol in elite artistic gymnasts. Steroids 2011, 76, 353–357. [Google Scholar] [CrossRef] [PubMed]
- Cadore, E.L.; Lhullier, F.L.R.; Brentano, M.A.; Da Silva, E.M.; Ambrosini, M.B.; Spinelli, R.; Silva, R.F.; Kruel, L.F.M. Hormonal Responses to Resistance Exercise in Long-Term Trained and Untrained Middle-Aged Men. J. Strength Cond. Res. 2008, 2, 1617–1624. [Google Scholar] [CrossRef] [PubMed]
- Minetto, M.A.; Lanfranco, F.; Baldi, M.; Termine, A.; Kuipers, H.; Ghigo, E.; Rainoldi, A. Corticotroph axis sensitivity after exercise: Comparison between elite athletes and sedentary subjects. J. Endocrinol. Investig. 2007, 30, 215–223. [Google Scholar] [CrossRef]
- Rimmele, U.; Seiler, R.; Marti, B.; Wirtz, P.H.; Ehlert, U.; Heinrichs, M. The level of physical activity affects adrenal and cardiovascular reactivity to psychosocial stress. Psychoneuroendocrinology 2009, 34, 190–198. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Di Luigi, L.; Baldari, C.; Gallotta, M.C.; Perroni, F.; Romanelli, F.; Lenzi, A.; Guidetti, L. Salivary Steroids at Rest and After a Training Load in Young Male Athletes: Relationship with Chronological Age and Pubertal Development. Int J. Sports Med. 2006, 7, 709–717. [Google Scholar] [CrossRef]
- Evans, R.H. An Analysis of Criterion Variable Reliability in Conjoint Analysis. Percept. Mot. Skills. 1996, 82, 988–990. [Google Scholar] [CrossRef]
- Tremblay, M.S.; Copeland, J.L.; Van Helder, W. Influence of exercise duration on post-exercise steroid hormone responses in trained male. Eur. J. Appl. Physiol. 2005, 94, 505–513. [Google Scholar] [CrossRef]
- Hattangady, N.; Olala, L.; Bollag, W.B.; Rainey, W.E. Acute and Chronic Regulation of Aldosterone Production. Mol. Cell Endocrinol. 2012, 24, 151–162. [Google Scholar] [CrossRef] [Green Version]
- Mellon, S.H. Steroids, Overview. Encycl. Neurol. Sci. 2014, 4, 309–311. [Google Scholar]
- McCarthy, J.L.; Waterman, M.R. Co-induction of 17α-hydroxylase and c-17,20-lyase activities in primary cultures of bovine adrenocortical cells in response to ACTH treatment. J. Steroid Biochem. 1988, 29, 307–312. [Google Scholar] [CrossRef]
- Simard, J.; Ricketts, M.L.; Gingras, S.; Soucy, P.; Feltus, F.A.; Melner, M.H. Molecular biology of the 3beta-hydroxysteroid dehydrogenase/delta5-delta4 isomerase gene family. Endocr. Rev. 2005, 26, 525–582. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hofland, J.; Delhanty, P.J.; Steenbergen, J.; Hofland, L.J.; van Koetsveld, P.M.; van Nederveen, F.H.; de Herder, W.W.; Feelders, R.A.; de Jong, F.H. Melanocortin 2 Receptor-Associated Protein (MRAP) and MRAP2 in Human Adrenocortical Tissues: Regulation of Expression and Association with ACTH Responsiveness. J. Clin. Endocrinol. Metab. 2012, 97, 747–754. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Turcu, A.; Auchus, R.J. Adrenal Steroidogenesis and Congenital Adrenal Hyperplasia. Endocrinol. Metab. Clin. N. Am. 2015, 44, 275–296. [Google Scholar] [CrossRef] [Green Version]
- Uchida, M.C.; Bacurau, R.F.P.; Navarro, F.; Pontes, F.L., Jr.; Tessuti, V.D.; Moreau, R.L.; Costa Rosa, L.F.B.P.; Aoki, M.S. Alteration of testosterone:cortisol ratio induced by resistance training in women. Rev. Bras. Med. Esporte. 2004, 10, 3. [Google Scholar]
- Heaney, J.L.J.; Carroll, D.; Phillips, A.C. DHEA, DHEA-S and cortisol responses to acute exercise in older adults in relation to exercise training status and sex. Age 2013, 35, 395–405. [Google Scholar] [CrossRef] [Green Version]
- Judelson, D.A.; Maresh, C.M.; Yamamoto, L.M.; Farrell, M.J.; Armstrong, L.E.; Kraemer, W.J.; Volek, J.S.; Spiering, B.A.; Casa, D.J.; Anderson, J.M. Effect of hydration state on resistance exercise-induced endocrine markers of anabolism, catabolism, and metabolism. J. Appl. Physiol. 2008, 105, 816–824. [Google Scholar] [CrossRef]
- Komka, Z.; Szilágyi, B.; Molnár, D.; Sipos, B.; Tóth, M.; Elek, J.; Szász, M. High-Resolution Dynamics of Hemodilution After Exercise-Related Hemoconcentration. Int. J. Sports Physiol. Perform. 2021. [Google Scholar]
- Karvaly, G.; Kovács, K.; Mészáros, K.; Kocsis, I.; Patócs, A.; Vásárhelyi, B. The comprehensive characterization of adrenocortical steroidogenesis using two-dimensional ultra-performance liquid chromatography–electrospray ionization tandem mass spectrometry. J. Pharm. Biomed. Anal. 2018, 153, 274–283. [Google Scholar] [CrossRef] [PubMed]
- Poole, D.C.; Jones, A.M. Measurement of the maximum oxygen uptake o2max: o2peak is no longer acceptable. J. Appl. Physiol. 2017, 122, 997–1002. [Google Scholar] [CrossRef]
Physiological Parameters | Observed Median (IQR) |
---|---|
HR-baseline (bpm) | 68.5 (60.7–76.5) |
HR-peak (bpm) | 187.0 (183.7–191.2) |
HR-recovery (bpm) | 84.0 (74.5–90.5) |
Lactate, baseline (mmol/L) | 0.92 (0.67–1.2) |
Lactate, peak (mmol/L) | 10.9 (9.7–13.5) |
Lactate, recovery (mmol/L) | 4.2 (3.1–4.8) |
Rel.VO2 max. (mL/kg/min) | 51.3 (47.3–57.5) |
Max. RQ | 1.4 (1.3–1.45) |
Baseline-Peak | Baseline-Recovery | Peak-Recovery | Median (IQR) (pmol/mL) | ||||||
---|---|---|---|---|---|---|---|---|---|
Response | p-Value | Response | p-Value | Response | p-Value | Baseline | Peak | Recovery | |
ALDO | ↑ | <0.001 | ↑ | <0.001 | ↑ | 0.010 | 0.08 (0.08–0.10) | 0.14 (0.08–0.32) | 0.18 (0.08–0.40) |
ADRN | ↑ | 0.037 | ↑ | <0.001 | - | 0.342 | 1.9 (1.1–2.7) | 2.3 (1.4–3.2) | 2.4 (1.7–3.4) |
DHEA | - | 0.114 | ↑ | <0.001 | ↑ | <0.001 | 10.3 (5.4–14.9) | 11.7 (7.9–18.3) | 18.7 (12.0–28.7) |
DHES | - | 0.114 | ↑ | <0.001 | ↓ | <0.001 | 6268 (5393–8622) | 6702 (5895–9118) | 6635 (5827–9348) |
DC11 | - | 0.075 | ↑ | 0.003 | - | 0.758 | 0.14 (0.14–0.96) | 0.32 (0.14–0.15) | 0.46 (0.14–1.22) |
OHPE | - | 0.110 | ↑ | 0.001 | ↑ | 0.023 | 2.3 (1.7–4.8) | 3.2 (1.9–5.2) | 5.2 (1.9–8.5) |
OHPG | ↑ | 0.051 | - | 0.952 | ↓ | 0.002 | 1.9 (0.0–5.5) | 2.5 (0.0–7.6) | 1.8 (0.0–5.2) |
CCON | - | 0.304 | ↑ | <0.001 | ↑ | <0.001 | 9.5 (5.8–14.8) | 10.7 (5.3–20.1) | 26.9 (18.3–34.9) |
CTOL | - | 0.829 | ↑ | <0.001 | ↑ | <0.001 | 404 (325–484) | 387 (293–483) | 504 (415–567) |
CTON | ↑ | <0.001 | ↑ | <0.001 | ↓ | 0.048 | 82.2 (66.1–92.2) | 100.2 (80.1–116.6) | 84.4 (75.4–106.8) |
TEST | ↑ | <0.001 | ↑ | 0.004 | ↓ | 0.003 | 19.8 (17.3–23.4) | 5.1 (20.5–30.1) | 21.9 (17.4–25.6) |
DHTT | ↑ | <0.001 | ↑ | 0.002 | - | 0.077 | 2.3 (1.5–3.7) | 2.6 (1.7–3.9) | 2.6 (1.6–4.0) |
TEST/CTOL | ↑ | <0.001 | ↓ | 0.008 | ↓ | <0.001 | 0.05 (0.04–0.06) | 0.06 (0.05–0.09) | 0.04 (0.04–0.06) |
DHEA/CTOL | ↑ | 0.032 | ↑ | <0.001 | ↑ | 0.044 | 0.03 (0.02–0.04) | 0.04 (0.02–0.04) | 0.04 (0.02–0.05) |
CCON/CTOL | - | 0.265 | ↑ | <0.001 | ↑ | <0.001 | 0.02 (0.02–0.04) | 0.03 (0.02–0.04) | 0.05 (0.04–0.07) |
CCON/DHEA | - | 0.166 | - | 0.197 | ↑ | <0.001 | 0.91 (0.54–1.6) | 0.90 (0.49–1.3) | 1.4 (0.88–1.9) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Csöndör, É.; Karvaly, G.; Ligetvári, R.; Kovács, K.; Komka, Z.; Móra, Á.; Stromájer-Rácz, T.; Oláh, A.; Tóth, M.; Ács, P. Adrenal, Gonadal and Peripherally Steroid Changes in Response to Extreme Physical Stress for Characterizing Load Capacity in Athletes. Metabolites 2022, 12, 91. https://doi.org/10.3390/metabo12020091
Csöndör É, Karvaly G, Ligetvári R, Kovács K, Komka Z, Móra Á, Stromájer-Rácz T, Oláh A, Tóth M, Ács P. Adrenal, Gonadal and Peripherally Steroid Changes in Response to Extreme Physical Stress for Characterizing Load Capacity in Athletes. Metabolites. 2022; 12(2):91. https://doi.org/10.3390/metabo12020091
Chicago/Turabian StyleCsöndör, Éva, Gellért Karvaly, Roland Ligetvári, Krisztián Kovács, Zsolt Komka, Ákos Móra, Tímea Stromájer-Rácz, András Oláh, Miklós Tóth, and Pongrác Ács. 2022. "Adrenal, Gonadal and Peripherally Steroid Changes in Response to Extreme Physical Stress for Characterizing Load Capacity in Athletes" Metabolites 12, no. 2: 91. https://doi.org/10.3390/metabo12020091
APA StyleCsöndör, É., Karvaly, G., Ligetvári, R., Kovács, K., Komka, Z., Móra, Á., Stromájer-Rácz, T., Oláh, A., Tóth, M., & Ács, P. (2022). Adrenal, Gonadal and Peripherally Steroid Changes in Response to Extreme Physical Stress for Characterizing Load Capacity in Athletes. Metabolites, 12(2), 91. https://doi.org/10.3390/metabo12020091