A Metabolomics-Based Screening Proposal for Colorectal Cancer
Abstract
:1. Introduction
2. Results
3. Discussion
4. Materials and Methods
4.1. Study Design and Patients Enrollment
4.2. Blood Sampling
4.3. Metabolomics Analysis
4.4. Statistical Analysis
4.5. Machine Learning Models
4.6. Pathway Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global Cancer Statistics 2018: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2018, 68, 394–424. [Google Scholar] [CrossRef] [Green Version]
- Arnold, M.; Sierra, M.S.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Patterns and Trends in Colorectal Cancer Incidence and Mortality. Gut 2017, 66, 683–691. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Henrikson, N.B.; Webber, E.M.; Goddard, K.A.; Scrol, A.; Piper, M.; Williams, M.S.; Zallen, D.T.; Calonge, N.; Ganiats, T.G.; Janssens, A.C.J.W.; et al. Family History and the Natural History of Colorectal Cancer: Systematic Review. Genet. Med. 2015, 17, 702–712. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brenner, H.; Kloor, M.; Pox, C.P. Colorectal Cancer. Lancet 2014, 383, 1490–1502. [Google Scholar] [CrossRef]
- Syngal, S.; Brand, R.E.; Church, J.M.; Giardiello, F.M.; Hampel, H.L.; Burt, R.W. ACG Clinical Guideline: Genetic Testing and Management of Hereditary Gastrointestinal Cancer Syndromes. Am. J. Gastroenterol. 2015, 110, 223–262; quiz 263. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dekker, E.; Tanis, P.J.; Vleugels, J.L.A.; Kasi, P.M.; Wallace, M.B. Colorectal Cancer. Lancet 2019, 394, 1467–1480. [Google Scholar] [CrossRef]
- Jess, T.; Rungoe, C.; Peyrin-Biroulet, L. Risk of Colorectal Cancer in Patients with Ulcerative Colitis: A Meta-Analysis of Population-Based Cohort Studies. Clin. Gastroenterol. Hepatol. 2012, 10, 639–645. [Google Scholar] [CrossRef] [PubMed]
- Fijten, G.H.; Starmans, R.; Muris, J.W.; Schouten, H.J.; Blijham, G.H.; Knottnerus, J.A. Predictive Value of Signs and Symptoms for Colorectal Cancer in Patients with Rectal Bleeding in General Practice. Fam. Pract. 1995, 12, 279–286. [Google Scholar] [CrossRef]
- Siegel, R.; DeSantis, C.; Virgo, K.; Stein, K.; Mariotto, A.; Smith, T.; Cooper, D.; Gansler, T.; Lerro, C.; Fedewa, S.; et al. Cancer Treatment and Survivorship Statistics. CA Cancer J. Clin. 2012, 62, 220–241. [Google Scholar] [CrossRef] [Green Version]
- East, J.E.; Atkin, W.S.; Bateman, A.C.; Clark, S.K.; Dolwani, S.; Ket, S.N.; Leedham, S.J.; Phull, P.S.; Rutter, M.D.; Shepherd, N.A.; et al. British Society of Gastroenterology Position Statement on Serrated Polyps in the Colon and Rectum. Gut 2017, 66, 1181–1196. [Google Scholar] [CrossRef] [Green Version]
- Hewitson, P.; Glasziou, P.; Watson, E.; Towler, B.; Irwig, L. Cochrane Systematic Review of Colorectal Cancer Screening Using the Fecal Occult Blood Test (Hemoccult): An Update. Am. J. Gastroenterol. 2008, 103, 1541–1549. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.K.; Liles, E.G.; Bent, S.; Levin, T.R.; Corley, D.A. Accuracy of Fecal Immunochemical Tests for Colorectal Cancer: Systematic Review and Meta-Analysis. Ann. Intern. Med. 2014, 160, 171. [Google Scholar] [CrossRef] [PubMed]
- Issa, I.A.; Noureddine, M. Colorectal Cancer Screening: An Updated Review of the Available Options. World J. Gastroenterol. 2017, 23, 5086. [Google Scholar] [CrossRef] [PubMed]
- Atkin, W.S.; Edwards, R.; Kralj-Hans, I.; Wooldrage, K.; Hart, A.R.; Northover, J.M.A.; Parkin, D.M.; Wardle, J.; Duffy, S.W.; Cuzick, J. Once-Only Flexible Sigmoidoscopy Screening in Prevention of Colorectal Cancer: A Multicentre Randomised Controlled Trial. Lancet 2010, 375, 1624–1633. [Google Scholar] [CrossRef] [Green Version]
- Segnan, N.; Armaroli, P.; Bonelli, L.; Risio, M.; Sciallero, S.; Zappa, M.; Andreoni, B.; Arrigoni, A.; Bisanti, L.; Casella, C.; et al. Once-Only Sigmoidoscopy in Colorectal Cancer Screening: Follow-up Findings of the Italian Randomized Controlled Trial--SCORE. J. Natl. Cancer Inst. 2011, 103, 1310–1322. [Google Scholar] [CrossRef] [Green Version]
- Holme, Ø.; Løberg, M.; Kalager, M.; Bretthauer, M.; Hernán, M.A.; Aas, E.; Eide, T.J.; Skovlund, E.; Schneede, J.; Tveit, K.M.; et al. Effect of Flexible Sigmoidoscopy Screening on Colorectal Cancer Incidence and Mortality: A Randomized Clinical Trial. JAMA 2014, 312, 606–615. [Google Scholar] [CrossRef] [Green Version]
- Schoen, R.E.; Pinsky, P.F.; Weissfeld, J.L.; Yokochi, L.A.; Church, T.; Laiyemo, A.O.; Bresalier, R.; Andriole, G.L.; Buys, S.S.; Crawford, E.D.; et al. Colorectal-Cancer Incidence and Mortality with Screening Flexible Sigmoidoscopy. N. Engl. J. Med. 2012, 366, 2345–2357. [Google Scholar] [CrossRef] [Green Version]
- Pickhardt, P.J.; Hassan, C.; Halligan, S.; Marmo, R. Colorectal Cancer: CT Colonography and Colonoscopy for Detection--Systematic Review and Meta-Analysis. Radiology 2011, 259, 393–405. [Google Scholar] [CrossRef] [Green Version]
- Keum, N.; Giovannucci, E. Global Burden of Colorectal Cancer: Emerging Trends, Risk Factors and Prevention Strategies. Nat. Rev. Gastroenterol. Hepatol. 2019, 16, 713–732. [Google Scholar] [CrossRef]
- Dressler, J.; Johnsen, A.T.; Madsen, L.J.; Rasmussen, M.; Jorgensen, L.N. Factors Affecting Patient Adherence to Publicly Funded Colorectal Cancer Screening Programmes: A Systematic Review. Public Health 2021, 190, 67–74. [Google Scholar] [CrossRef]
- Doria-Rose, V.P.; Lansdorp-Vogelaar, I.; McCarthy, S.; Puricelli-Perin, D.M.; Butera, V.; Segnan, N.; Taplin, S.H.; Senore, C. Measures of Longitudinal Adherence to Fecal—Based Colorectal Cancer Screening: Literature Review and Recommended Approaches. Intl. J. Cancer 2021, 149, 316–326. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.-Y.; Lin, T.-W.; Chiu, S.Y.-H.; Lin, W.-Y.; Huang, S.-B.; Hsieh, J.C.-H.; Chen, H.C.; Lu, J.-J.; Wu, M.-H. Novel Toilet Paper–Based Point-Of-Care Test for the Rapid Detection of Fecal Occult Blood: Instrument Validation Study. J. Med. Internet Res. 2020, 22, e20261. [Google Scholar] [CrossRef] [PubMed]
- Troisi, J.; Cavallo, P.; Colucci, A.; Pierri, L.; Scala, G.; Symes, S.; Jones, C.; Richards, S. Metabolomics in Genetic Testing. Adv. Clin. Chem. 2020, 94, 85–153. [Google Scholar] [PubMed]
- Dunn, W.B.; Broadhurst, D.I.; Atherton, H.J.; Goodacre, R.; Griffin, J.L. Systems Level Studies of Mammalian Metabolomes: The Roles of Mass Spectrometry and Nuclear Magnetic Resonance Spectroscopy. Chem. Soc. Rev. 2011, 40, 387–426. [Google Scholar] [CrossRef]
- Johnson, C.H.; Ivanisevic, J.; Siuzdak, G. Metabolomics: Beyond Biomarkers and towards Mechanisms. Nat. Rev. Mol. Cell Biol. 2016, 17, 451–459. [Google Scholar] [CrossRef] [Green Version]
- Wang, H.; Tso, V.K.; Slupsky, C.M.; Fedorak, R.N. Metabolomics and Detection of Colorectal Cancer in Humans: A Systematic Review. Future Oncol. 2010, 6, 1395–1406. [Google Scholar] [CrossRef]
- Nannini, G.; Meoni, G.; Amedei, A.; Tenori, L. Metabolomics Profile in Gastrointestinal Cancers: Update and Future Perspectives. World J. Gastroenterol. 2020, 26, 2514–2532. [Google Scholar] [CrossRef]
- Gu, J.; Xiao, Y.; Shu, D.; Liang, X.; Hu, X.; Xie, Y.; Lin, D.; Li, H. Metabolomics Analysis in Serum from Patients with Colorectal Polyp and Colorectal Cancer by 1H-NMR Spectrometry. Dis. Markers 2019, 2019, 3491852. [Google Scholar] [CrossRef] [Green Version]
- Jain, M.; Nilsson, R.; Sharma, S.; Madhusudhan, N.; Kitami, T.; Souza, A.L.; Kafri, R.; Kirschner, M.W.; Clish, C.B.; Mootha, V.K. Metabolite Profiling Identifies a Key Role for Glycine in Rapid Cancer Cell Proliferation. Science 2012, 336, 1040–1044. [Google Scholar] [CrossRef] [Green Version]
- Moreno-Sánchez, R.; Marín-Hernández, Á.; Gallardo-Pérez, J.C.; Pacheco-Velázquez, S.C.; Robledo-Cadena, D.X.; Padilla-Flores, J.A.; Saavedra, E.; Rodríguez-Enríquez, S. Physiological Role of Glutamate Dehydrogenase in Cancer Cells. Front. Oncol. 2020, 10, 429. [Google Scholar] [CrossRef]
- Saha, S.K.; Islam, S.; Abdullah-Al-Wadud, M.; Islam, S.; Ali, F.; Park, K.S. Multiomics Analysis Reveals That GLS and GLS2 Differentially Modulate the Clinical Outcomes of Cancer. J. Clin. Med. 2019, 8, 355. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nguyen, T.-L.; Durán, R.V. Glutamine Metabolism in Cancer Therapy. Cancer Drug Resist. 2018, 1, 126–138. [Google Scholar] [CrossRef] [Green Version]
- Ling, H.H.; Pan, Y.-P.; Fan, C.-W.; Tseng, W.-K.; Huang, J.-S.; Wu, T.-H.; Chou, W.-C.; Wang, C.-H.; Yeh, K.-Y.; Chang, P.-H. Clinical Significance of Serum Glutamine Level in Patients with Colorectal Cancer. Nutrients 2019, 11, 898. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, T.; Le, A. Glutamine Metabolism in Cancer. In The Heterogeneity of Cancer Metabolism, 2nd ed.; Springer: Cham, Switzerland, 2019; pp. 17–38. [Google Scholar]
- Troisi, J.; Colucci, A.; Cavallo, P.; Richards, S.; Symes, S.; Landolfi, A.; Scala, G.; Maiorino, F.; Califano, A.; Fabiano, M. A Serum Metabolomic Signature for the Detection and Grading of Bladder Cancer. Appl. Sci. 2021, 11, 2835. [Google Scholar] [CrossRef]
- Vanhove, K.; Derveaux, E.; Graulus, G.-J.; Mesotten, L.; Thomeer, M.; Noben, J.-P.; Guedens, W.; Adriaensens, P. Glutamine Addiction and Therapeutic Strategies in Lung Cancer. Int. J. Mol. Sci. 2019, 20, 252. [Google Scholar] [CrossRef] [Green Version]
- Márquez, J.; Alonso, F.J.; Matés, J.M.; Segura, J.A.; Martín-Rufián, M.; Campos-Sandoval, J.A. Glutamine Addiction in Gliomas. Neurochem. Res. 2017, 42, 1735–1746. [Google Scholar] [CrossRef]
- Ni, Y.; Xie, G.; Jia, W. Metabonomics of Human Colorectal Cancer: New Approaches for Early Diagnosis and Biomarker Discovery. J. Proteome Res. 2014, 13, 3857–3870. [Google Scholar] [CrossRef]
- Nishiumi, S.; Kobayashi, T.; Ikeda, A.; Yoshie, T.; Kibi, M.; Izumi, Y.; Okuno, T.; Hayashi, N.; Kawano, S.; Takenawa, T.; et al. A Novel Serum Metabolomics-Based Diagnostic Approach for Colorectal Cancer. PLoS ONE 2012, 7, e40459. [Google Scholar] [CrossRef]
- Brown, D.G.; Rao, S.; Weir, T.L.; O’Malia, J.; Bazan, M.; Brown, R.J.; Ryan, E.P. Metabolomics and Metabolic Pathway Networks from Human Colorectal Cancers, Adjacent Mucosa, and Stool. Cancer Metab. 2016, 4, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Zagato, E.; Pozzi, C.; Bertocchi, A.; Schioppa, T.; Saccheri, F.; Guglietta, S.; Fosso, B.; Melocchi, L.; Nizzoli, G.; Troisi, J. Endogenous Murine Microbiota Member Faecalibaculum Rodentium and Its Human Homologue Protect from Intestinal Tumour Growth. Nat. Microbiol. 2020, 5, 511–524. [Google Scholar] [CrossRef]
- Gagnière, J.; Raisch, J.; Veziant, J.; Barnich, N.; Bonnet, R.; Buc, E.; Bringer, M.-A.; Pezet, D.; Bonnet, M. Gut Microbiota Imbalance and Colorectal Cancer. World J. Gastroenterol. 2016, 22, 501. [Google Scholar] [CrossRef] [PubMed]
- Louis, P.; Hold, G.L.; Flint, H.J. The Gut Microbiota, Bacterial Metabolites and Colorectal Cancer. Nat. Rev. Microbiol. 2014, 12, 661–672. [Google Scholar] [CrossRef] [PubMed]
- Sánchez-Alcoholado, L.; Ramos-Molina, B.; Otero, A.; Laborda-Illanes, A.; Ordóñez, R.; Medina, J.A.; Gómez-Millán, J.; Queipo-Ortuño, M.I. The Role of the Gut Microbiome in Colorectal Cancer Development and Therapy Response. Cancers 2020, 12, 1406. [Google Scholar] [CrossRef] [PubMed]
- Goedert, J.J.; Sampson, J.N.; Moore, S.C.; Xiao, Q.; Xiong, X.; Hayes, R.B.; Ahn, J.; Shi, J.; Sinha, R. Fecal Metabolomics: Assay Performance and Association with Colorectal Cancer. Carcinogenesis 2014, 35, 2089–2096. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Laschke, M.W.; Vorsterman van Oijen, A.E.; Körbel, C.; Scheuer, C.; Menger, M.D. 4-Hydroxybenzyl Alcohol: A Novel Inhibitor of Tumor Angiogenesis and Growth. Life Sci. 2013, 93, 44–50. [Google Scholar] [CrossRef]
- Guardiola, J.J.; Hardesty, J.E.; Beier, J.I.; Prough, R.A.; McClain, C.J.; Cave, M.C. Plasma Metabolomics Analysis of Polyvinyl Chloride Workers Identifies Altered Processes and Candidate Biomarkers for Hepatic Hemangiosarcoma and Its Development. Int. J. Mol. Sci. 2021, 22, 5093. [Google Scholar] [CrossRef]
- Luo, L.; Kim, S.-W.; Lee, H.-K.; Kim, I.-D.; Lee, H.; Lee, J.-K. Anti-Oxidative Effects of 4-Hydroxybenzyl Alcohol in Astrocytes Confer Protective Effects in Autocrine and Paracrine Manners. PLoS ONE 2017, 12, e0177322. [Google Scholar] [CrossRef] [Green Version]
- Notarnicola, M.; Caruso, M.G.; Tutino, V.; De Nunzio, V.; Gigante, I.; De Leonardis, G.; Veronese, N.; Rotolo, O.; Reddavide, R.; Stasi, E.; et al. Nutrition and Lipidomic Profile in Colorectal Cancers. Acta Biomed. 2018, 89, 87–96. [Google Scholar] [CrossRef]
- Li, F.; Qin, X.; Chen, H.; Qiu, L.; Guo, Y.; Liu, H.; Chen, G.; Song, G.; Wang, X.; Li, F.; et al. Lipid Profiling for Early Diagnosis and Progression of Colorectal Cancer Using Direct-Infusion Electrospray Ionization Fourier Transform Ion Cyclotron Resonance Mass Spectrometry. Rapid Commun. Mass Spectrom. 2013, 27, 24–34. [Google Scholar] [CrossRef]
- Boger, D.L.; Henriksen, S.J.; Cravatt, B.F. Oleamide: An Endogenous Sleep-Inducing Lipid and Prototypical Member of a New Class of Biological Signaling Molecules. Curr. Pharm. Des. 1998, 4, 303–314. [Google Scholar]
- Luo, C.-K.; Chou, P.-H.; Ng, S.-K.; Lin, W.-Y.; Wei, T.-T. Cannabinoids Orchestrate Cross-Talk between Cancer Cells and Endothelial Cells in Colorectal Cancer. Cancer Gene Ther. 2021, 1–5. [Google Scholar] [CrossRef] [PubMed]
- Farshidfar, F.; Weljie, A.M.; Kopciuk, K.A.; Hilsden, R.; McGregor, S.E.; Buie, W.D.; MacLean, A.; Vogel, H.J.; Bathe, O.F. A Validated Metabolomic Signature for Colorectal Cancer: Exploration of the Clinical Value of Metabolomics. Br. J. Cancer 2016, 115, 848–857. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Riboli, E. Nutrition and Cancer: Background and Rationale of the European Prospective Investigation into Cancer and Nutrition (EPIC). Ann. Oncol 1992, 3, 783–791. [Google Scholar] [CrossRef] [PubMed]
- Margetts, B.M.; Pietinen, P. European Prospective Investigation into Cancer and Nutrition: Validity Studies on Dietary Assessment Methods. Int. J. Epidemiol. 1997, 26 (Suppl. 1), S1. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Troisi, J.; Sarno, L.; Martinelli, P.; Di Carlo, C.; Landolfi, A.; Scala, G.; Rinaldi, M.; D’Alessandro, P.; Ciccone, C.; Guida, M. A Metabolomics-Based Approach for Non-Invasive Diagnosis of Chromosomal Anomalies. Metabolomics 2017, 13, 140. [Google Scholar] [CrossRef]
- Troisi, J.; Sarno, L.; Landolfi, A.; Scala, G.; Martinelli, P.; Venturella, R.; Di Cello, A.; Zullo, F.; Guida, M. Metabolomic Signature of Endometrial Cancer. J. Proteome Res. 2018, 17, 804–812. [Google Scholar] [CrossRef]
- Sumner, L.W.; Amberg, A.; Barrett, D.; Beale, M.H.; Beger, R.; Daykin, C.A.; Fan, T.W.-M.; Fiehn, O.; Goodacre, R.; Griffin, J.L.; et al. Proposed Minimum Reporting Standards for Chemical Analysis Chemical Analysis Working Group (CAWG) Metabolomics Standards Initiative (MSI). Metabolomics 2007, 3, 211–221. [Google Scholar] [CrossRef] [Green Version]
- Kovats, E.S. Gas—Chromatographische Charakterisierung Organischer Verbindungen. Teil 1: Retentionsindices Aliphatischer Halogenide, Alkohole, Aldehyde Und Ketone. Hel. Chim. Acta 1958, 41, 1915–1932. [Google Scholar] [CrossRef]
- Wehrens, R.; Bloemberg, T.G.; Eilers, P.H.C. Fast Parametric Time Warping of Peak Lists. Bioinformatics 2015, 31, 3063–3065. [Google Scholar] [CrossRef] [Green Version]
- Lex, A.; Gehlenborg, N.; Strobelt, H.; Vuillemot, R.; Pfister, H. UpSet: Visualization of Intersecting Sets. IEEE T Vis. Comput. Gr. 2014, 20, 1983–1992. [Google Scholar] [CrossRef]
- Troisi, J.; Raffone, A.; Travaglino, A.; Belli, G.; Belli, C.; Anand, S.; Giugliano, L.; Cavallo, P.; Scala, G.; Symes, S.; et al. Development and Validation of a Serum Metabolomic Signature for Endometrial Cancer Screening in Postmenopausal Women. JAMA Netw. Open 2020, 3, e2018327. [Google Scholar] [CrossRef] [PubMed]
- Troisi, J.; Landolfi, A.; Sarno, L.; Richards, S.; Symes, S.; Adair, D.; Ciccone, C.; Scala, G.; Martinelli, P.; Guida, M. A Metabolomics-Based Approach for Non-Invasive Screening of Fetal Central Nervous System Anomalies. Metabolomics 2018, 14, 77. [Google Scholar] [CrossRef] [PubMed]
- Troisi, J.; Cavallo, P.; Richards, S.; Symes, S.; Colucci, A.; Sarno, L.; Landolfi, A.; Scala, G.; Adair, D.; Ciccone, C.; et al. Non-Invasive Screening for Congenital Heart Defects Using a Serum Metabolomics Approach. Prenat. Diagn. 2021, 41, 743–753. [Google Scholar] [CrossRef] [PubMed]
- Cavallo, A.U.; Troisi, J.; Forcina, M.; Mari, P.-V.; Forte, V.; Sperandio, M.; Pagano, S.; Cavallo, P.; Floris, R.; Garaci, F. Texture Analysis in the Evaluation of Covid-19 Pneumonia in Chest X-Ray Images: A Proof of Concept Study. Curr. Med. Imaging 2021, 17, 1094–1102. [Google Scholar] [CrossRef]
- DeLong, E.R.; DeLong, D.M.; Clarke-Pearson, D.L. Comparing the Areas under Two or More Correlated Receiver Operating Characteristic Curves: A Nonparametric Approach. Biometrics 1988, 44, 837–845. [Google Scholar] [CrossRef]
- Xia, J.; Wishart, D.S. MetPA: A Web-Based Metabolomics Tool for Pathway Analysis and Visualization. Bioinformatics 2010, 26, 2342–2344. [Google Scholar] [CrossRef] [Green Version]
HS (n = 50) | BCRT (n = 50) | CRC (n = 100) | |
---|---|---|---|
Age (years) | 61.6 ± 7.0 | 62.8 ± 7.1 | 66.2 ± 11.3 * |
Men (%) | 56 | 59 | 64 |
Weight (kg) | 76.4 ± 15.5 | 80.0 ± 16.9 | 72.8 ± 15.1 § |
Height (cm) | 165.0 ± 9.5 | 167.5 ± 8.7 | 167.7 ± 9.4 |
BMI (kg/cm2) | 27.9 ± 4.3 | 28.4 ± 4.8 | 25.7 ± 9.4 *,§ |
Blood Pressure (mm Hg) | |||
Systolic | 135.2 ± 24.4 | 132.3 ± 17.7 | 139.9 ± 17.4 |
Diastolic | 81.6 ± 11.4 | 81.9 ± 11.1 | 80.7 ± 8.0 |
Heart rate (bmp) | 79.7 ± 7.7 | 79.8 ± 6.8 | 79.4 ± 7.5 |
Oxygen saturation (%) | 99.0 ± 1.5 | 98.8 ± 1.6 | 99.7 ± 10.0 |
Azotemia (g/dL) | 38.4 ± 10.4 | 40.8 ± 18.8 | 43.2 ± 13.5 * |
Total Cholesterol (mg/dL) | 191.9 ± 39.1 | 194.9 ± 42.2 | 189.2 ± 40.0 |
HDL (mg/dL) | 57.2 ± 13.1 | 52.5 ± 14.7 | 62.9 ± 18.8 § |
LDL (mg/dL) | 114.2 ± 30.1 | 113.7 ± 33.9 | 113.9 ± 33.9 |
Triglycerides (mg/dL) | 115.4 ± 57.3 | 138.4 ± 95.3 | 116.6 ± 63.5 |
Creatinine (mg/dL) | 0.8 ± 0.2 | 0.9 ± 0.4 | 0.9 ± 0.3 * |
Alkaline phosphatase (UI/L) | 53.7 ± 16.2 | 55.2 ± 13.3 | 81.4 ± 59.3 *,§ |
GGT (U/L) | 26.4 ± 17.5 | 26.7 ± 22.4 | 49.2 ± 118.6 |
Glycaemia (mg/dL) | 92.1 ± 25.3 | 99.1 ± 29.3 | 101.0 ± 26.7 |
White blood cells (n/µL) | 6725.6 ± 1917.1 | 8427.6 ± 12315.9 | 6033.3 ± 1928.7 * |
Red blood cells (n/µL) | 4.97 * 106 ± 4.92 * 106 | 4.95 * 106 ± 7.14 * 106 | 4.66 * 106 ± 6.78 * 106 * |
AST (mU/mL) | 21.5 ± 7.7 | 23.8 ± 11.6 | 25.2 ± 11.9 * |
ALT (mU/mL) | 25.1 ± 12.2 | 28.1 ± 14.9 | 27.2 ± 16.9 |
LDH (U/L) | 169.3 ± 27.1 | 177.6 ± 28.9 | 172.3 ± 34.9 |
Serum iron (µg/dL) | 95.0 ± 33.6 | 95.5 ± 36.9 | 79.6 ± 42.8 *,§ |
Uric acid (mg/dL) | 5.4 ± 1.4 | 5.8 ± 1.7 | 5.2 ± 1.4 § |
Other pathologies (n(%)) | 45 (90%) | 40 (80%) | 98 (98%) |
Hypertension ¶ | 24 (53%) | 25 (63%) | 49 (50%) |
Diabetes ¶ | 9 (20%) | 8 (20%) | 14 (14%) |
Hypertriglyceridemia ¶ | 2 (4%) | 1 (3%) | 0 (0%) |
Hypercholesterolemia ¶ | 6 (13%) | 6 (15%) | 4 (4%) |
Heart disease ¶ | 6 (13%) | 5 (13%) | 7 (7%) |
Cancer in other organ ¶ | 6 (13%) | 3 (8%) | 13 (13%) |
Other ¶ | 11 (24%) | 10 (25%) | 24 (24%) |
Pharmacological treatments (n(%)) | 39 (78%) | 37 (74%) | 82 (82%) |
Model | S | Sp | PLR | NLR | NPV | PPV | A |
---|---|---|---|---|---|---|---|
NB | 0.58 ± 0.10 | 1.00 ± 0.00 | ND | 0.42 | 0.67 ± 0.08 | 1.00 ± 0.00 | 0.77 |
GLM | 0.96 ± 0.04 | 1.00 ± 0.00 | ND | 0.04 | 0.96 ± 0.04 | 1.00 ± 0.00 | 0.98 |
LR | 0.88 ± 0.06 | 0.95 ± 0.05 | 18.58 | 0.12 | 0.87 ± 0.07 | 0.96 ± 0.04 | 0.91 |
FLM | 1.00 ± 0.00 | 0.77 ± 0.09 | 4.40 | 0.00 | 1.00 ± 0.00 | 0.83 ± 0.07 | 0.89 |
DL | 1.00 ± 0.00 | 1.00 ± 0.00 | ND | 0.00 | 1.00 ± 0.00 | 1.00 ± 0.00 | 1.00 |
DT | 1.00 ± 0.00 | 0.82 ± 0.08 | 5.50 | 0.00 | 1.00 ± 0.00 | 0.86 ± 0.06 | 0.91 |
RF | 0.69 ± 0.09 | 1.00 ± 0.00 | ND | 0.31 | 0.72 ± 0.08 | 1.00 ± 0.00 | 0.83 |
GBT | 0.46 ± 0.10 | 1.00 ± 0.00 | ND | 0.54 | 0.61 ± 0.08 | 1.00 ± 0.00 | 0.71 |
SVM | 0.81 ± 0.08 | 1.00 ± 0.00 | ND | 0.19 | 0.81 ± 0.08 | 1.00 ± 0.00 | 0.89 |
PLS-DA | 0.92 ± 0.05 | 0.87 ± 0.06 | 7.10 | 0.10 | 0.90 ± 0.05 | 0.89 ± 0.05 | 0.90 |
EML | 1.00 ± 0.00 | 1.00 ± 0.00 | ND | 0.00 | 1.00 ± 0.00 | 1.00 ± 0.00 | 1.00 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Troisi, J.; Tafuro, M.; Lombardi, M.; Scala, G.; Richards, S.M.; Symes, S.J.K.; Ascierto, P.A.; Delrio, P.; Tatangelo, F.; Buonerba, C.; et al. A Metabolomics-Based Screening Proposal for Colorectal Cancer. Metabolites 2022, 12, 110. https://doi.org/10.3390/metabo12020110
Troisi J, Tafuro M, Lombardi M, Scala G, Richards SM, Symes SJK, Ascierto PA, Delrio P, Tatangelo F, Buonerba C, et al. A Metabolomics-Based Screening Proposal for Colorectal Cancer. Metabolites. 2022; 12(2):110. https://doi.org/10.3390/metabo12020110
Chicago/Turabian StyleTroisi, Jacopo, Maria Tafuro, Martina Lombardi, Giovanni Scala, Sean M. Richards, Steven J. K. Symes, Paolo Antonio Ascierto, Paolo Delrio, Fabiana Tatangelo, Carlo Buonerba, and et al. 2022. "A Metabolomics-Based Screening Proposal for Colorectal Cancer" Metabolites 12, no. 2: 110. https://doi.org/10.3390/metabo12020110
APA StyleTroisi, J., Tafuro, M., Lombardi, M., Scala, G., Richards, S. M., Symes, S. J. K., Ascierto, P. A., Delrio, P., Tatangelo, F., Buonerba, C., Pierri, B., & Cerino, P. (2022). A Metabolomics-Based Screening Proposal for Colorectal Cancer. Metabolites, 12(2), 110. https://doi.org/10.3390/metabo12020110