Preliminary Assessment of Occurrence, Potential Origin, and Human Health Risk of Volatile Organic Compounds in Uncontrolled Springs, North Morocco
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Sampling
2.3. Chemicals and Reagents
2.4. VOC Extraction
Gas Chromatography–Mass Spectrometry (GC-MS) Analysis
2.5. Quantitative Analysis
2.6. Statistical Analysis
2.7. Health Risk Assessment
2.7.1. Carcinogenic Risk
2.7.2. Non-Carcinogenic Risk
3. Results and Discussion
3.1. General Characteristics
3.2. Frequency of Detection and Potential Origin
3.3. Health Risk Assessment
3.4. Cancer Risk Assessment
3.5. Non-Cancer Risk Assessment
3.6. Hierarchical Cluster Analysis of Principal Components (HCPC)
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- UNICEF; World Health Organization. WHO|Progress on Household Drinking Water, Sanitation and Hygiene 2000–2017:Special Focus on Inequalities. In New York; 2019. Available online: https://www.who.int/water_sanitation_health/publications/jmp-report-2019/en/ (accessed on 16 March 2020).
- Baehr, A.L.; Stackelberg, P.E.; Baker, R.J. Evaluation of the atmosphere as a source of volatile organic compounds in shallow groundwater. Water Resour. Res. 1999, 35, 127–136. [Google Scholar] [CrossRef]
- Zogorski, J.S. The Quality of Our Nation’s Waters: Volatile Organic Compounds in the Nation’s Ground Water and Drinking-Water Supply Wells; U.S. Geological Survey: Reston, VA, USA, 2006; ISBN 978-1-4113-0836-7.
- US EPA, O. Technical Overview of Volatile Organic Compounds. Available online: https://www.epa.gov/indoor-air-quality-iaq/technical-overview-volatile-organic-compounds (accessed on 19 January 2022).
- Tsai, W.-T. Toxic Volatile Organic Compounds (VOCs) in the Atmospheric Environment: Regulatory Aspects and Monitoring in Japan and Korea. Environments 2016, 3, 23. [Google Scholar] [CrossRef] [Green Version]
- Goldstein, A.H.; Galbally, I.E. Known and Unexplored Organic Constituents in the Earth’s Atmosphere. Environ. Sci. Technol. 2007, 41, 1514–1521. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Im, J.K.; Yu, S.J.; Kim, S.; Kim, S.H.; Noh, H.R.; Kim, M.K. Occurrence, Potential Sources, and Risk Assessment of Volatile Organic Compounds in the Han River Basin, South Korea. Int. J. Environ. Res. Public. Health 2021, 18, 3727. [Google Scholar] [CrossRef] [PubMed]
- Rowe, B.L.; Toccalino, P.L.; Moran, M.J.; Zogorski, J.S.; Price, C.V. Occurrence and Potential Human-Health Relevance of Volatile Organic Compounds in Drinking Water from Domestic Wells in the United States. Environ. Health Perspect. 2007, 115, 1539–1546. [Google Scholar] [CrossRef] [Green Version]
- WHO IARC (World Health Organization International Agency for Research on Cancer). Agents Classified by the IARC Monographs; WHO: Geneva, Switzerland, 1987; p. 37.
- Lupo, P.J.; Symanski, E.; Waller, D.K.; Chan, W.; Langlois, P.H.; Canfield, M.A.; Mitchell, L.E. Maternal Exposure to Ambient Levels of Benzene and Neural Tube Defects among Offspring: Texas, 1999–2004. Environ. Health Perspect. 2011, 119, 397–402. [Google Scholar] [CrossRef] [Green Version]
- Glass, D.; Gray, C.; Jolley, D.; Gibbons, C.; Sim, M.; Fritschi, L.; Adams, G.; Bisby, J.; Manuell, R. Leukemia risk associated with low-level benzene exposure—PubMed—NCBI. Epidemiology 2003, 14, 569–577. [Google Scholar] [CrossRef]
- Schnatter, A.R.; Rosamilia, K.; Wojcik, N.C. Review of the literature on benzene exposure and leukemia subtypes. Chem. Biol. Interact. 2005, 153–154, 9–21. [Google Scholar] [CrossRef]
- Farris, G.M.; Robinson, S.N.; Wong, B.A.; Wong, V.A.; Shah, R. Effects of benzene on splenic, thymic, and femoral lymphocytes in mice. Toxicology 1997, 118, 137–148. [Google Scholar] [CrossRef]
- Genc, S.; Zadeoglulari, Z.; Fuss, S.H.; Genc, K. The Adverse Effects of Air Pollution on the Nervous System. J. Toxicol. 2012, 2012, e782462. [Google Scholar] [CrossRef]
- El-Shakour, A.A.; El-Ebiarie, A.S.; Ibrahim, Y.H.; Moneim, A.E.A.; El-Mekawy, A.M. Effect of benzene on oxidative stress and the functions of liver and kidney in rats. J. Environ. Occup. Health 2015, 4, 34–39. [Google Scholar]
- US EPA Human Health Risk Assessment. Available online: https://www.epa.gov/risk/human-health-risk-assessment (accessed on 8 February 2022).
- WHO. Strengthening Drinking-Water Surveillance Using Risk-Based Approaches; WHO: Geneva, Switzerland, 2019; p. 43.
- Michel, F.; Chen, Y.; Shirey, R. Improved Determination of Volatile Organic Compounds in Water by SPME and GC/MS: ISO Standard 17943. 2022. Available online: https://www.envirotech-online.com/article/environmental-laboratory/7/merck-sigma-aldrich-pty-ltd/pimproved-determination-of-volatile-organic-compounds-in-water-by-spme-and-gcms-iso-standard-17943p/2350 (accessed on 31 October 2022).
- Pecoraino, G.; Scalici, L.; Avellone, G.; Ceraulo, L.; Favara, R.; Candela, E.; Provenzano, M.; Scaletta, C. Distribution of volatile organic compounds in Sicilian groundwaters analysed by head space-solid phase micro extraction coupled with gas chromatography mass spectrometry (SPME/GC/MS)—ScienceDirect. Water Res. 2008, 42, 3563–3577. [Google Scholar] [CrossRef]
- Yu, M.-Y.; Yang, X.-Q.; Fan, R.; Zheng, Y.-K.; Shi, J.-B.; Zheng, Q. Non-target Screening Analysis of Volatile Organic Compounds in Drinking Water by Headspace-solid Phase Microextraction Gas Chromatography-Mass Spectrometry. Chin. J. Anal. Chem. 2020, 48, 1228–1235. [Google Scholar] [CrossRef]
- Fang, F.; Hong, C.-S.; Chu, S.; Kou, W.; Bucciferro, A. Reevaluation of headspace solid-phase microextraction and gas chromatography–mass spectrometry for the determination of methyl tert-butyl ether in water samples. J. Chromatogr. A 2003, 1021, 157–164. [Google Scholar] [CrossRef]
- He, Y.; Wang, Y.; Lee, H.K. Trace analysis of ten chlorinated benzenes in water by headspace solid-phase microextraction. J. Chromatogr. A 2000, 874, 149–154. [Google Scholar] [CrossRef]
- Arthur, C.L.; Pawliszyn, J. Solid phase microextraction with thermal desorption using fused silica optical fibers. Anal. Chem. 1990, 62, 2145–2148. [Google Scholar] [CrossRef]
- Zhang, Z.; Pawliszyn, J. Headspace solid-phase microextraction. Anal. Chem. 1993, 65, 1843–1852. [Google Scholar] [CrossRef]
- Laghzal, A.; Boudinar, B.; Khaddor, M.; Cherroud, S.; Fihri, M.; Mammad, C. Evaluation of physico-chemical and bacteriological quality of water springs by using a principal component analysis (PCA): A case study of Tingitane Peninsula (Morocco). J. Mater. Environ. Sci. 2016, 7, 456–462. [Google Scholar]
- Mkadmi, Y.; Benabbi, O.; Fekhaoui, M.; Benakkam, R.; Bjijou, W.; Elazzouzi, M.; Kadourri, M.; Chetouani, A. Study of the impact of heavy metals and physico-chemical parameters on the quality of the wells and waters of the Holcim area (Oriental region of Morocco). J. Mater. Environ. Sci. 2018, 9, 672–679. [Google Scholar]
- HCP Population Projections of the Provinces and Prefectures of the Tangier-Tetouan-Al Oceima Region (Projections de la Population des Provinces et Prefectures de la Region Tanger-Tetouan-al Hoceima). Available online: https://www.hcp.ma/region-tanger/Etudes-Regionales_r21.html?start=4 (accessed on 23 May 2021).
- Salhi, A.; Martin-Vide, J.; Benhamrouche, A.; Benabdelouahab, S.; Himi, M.; Benabdelouahab, T.; Ponsati, A.C. Rainfall distribution and trends of the daily precipitation concentration index in northern Morocco: A need for an adaptive environmental policy. SN Appl. Sci. 2019, 1, 277. [Google Scholar] [CrossRef] [Green Version]
- Ministry of the Interior. Tangier-Tetouan-Al Hoceima Region: General Monograph (La Région de Tanger-Tétouan-Al Hoceima: Monographie générale); Ministry of the Interior: Rabat, Morocco, 2015; p. 69. [Google Scholar]
- High Commission for Planning of Morocco Demographic and Socio-Economic Data of the Rural Population (Excluding Nomads) per Douar According to the 2014 General Population and Housing Census (Données Démographiques et Socio-Économiques de la Population Rurale (Hors Nomades) par Douar Selon le Recensement Général de la Population et de L’habitat de 2014). Available online: https://www.hcp.ma/downloads/RGPH-2014_t17441.html (accessed on 24 May 2021).
- US EPA. Risk Assessment Guidance for Superfund (RAGS): Part A; US EPA: Washington, DC, USA, 1989; p. 291.
- US EPA. Guidance for Superfund Volume I: Human Heatlh Evaluation Manual (Part E, Supplemental Guidance for Dermal Risk Assessment); US EPA: Washington, DC, USA, 2004; p. 186.
- US EPA. Guidelines for Exposure Assessment; 1992. Available online: https://cfpub.epa.gov/ncea/risk/recordisplay.cfm?deid=15263 (accessed on 3 May 2021).
- US EPA. Risk Assessment. 2013. Available online: https://www.epa.gov/risk (accessed on 5 August 2021).
- WHO Guidelines for Drinking-Water Quality, 3rd ed; WHO (Ed.) World Health Organization: Geneva, Switzerland, 2004; ISBN 978-92-4-154638-6.
- Ikem, A. Measurement of volatile organic compounds in bottled and tap waters by purge and trap GC–MS: Are drinking water types different? J. Food Compos. Anal. 2010, 23, 70–77. [Google Scholar] [CrossRef]
- Nikolaou, A.D.; Golfinopoulos, S.; Kostopoulou, M.N.; Kolokythas, G.; Lekkas, D. Determination of volatile organic compounds in surface waters and treated wastewater in Greece—ScienceDirect. Water Res. 2002, 36, 2883–2890. [Google Scholar] [CrossRef] [PubMed]
- Qin, P.; Cao, F.; Lu, S.; Li, L.; Guo, X.; Zhao, B.; Wan, Z.; Bi, B. Occurrence and health risk assessment of volatile organic compounds in the surface water of Poyang Lake in March 2017. R. Soc. Chem. 2019, 9, 22609–22617. [Google Scholar] [CrossRef] [PubMed]
- Page, B.D.; Conacher, H.B.S.; Salminen, J.; Nixon, G.R.; Riedel, G.; Mori, B.; Gagnon, J.; Brousseau, R. Survey of Bottled Drinking Water Sold in Canada. Part 2. Selected Volatile Organic Compounds. J. AOAC Int. 1993, 76, 26–31. [Google Scholar] [CrossRef] [PubMed]
- Al-Mudhaf, H.F.; Alsharifi, F.A.; Abu-Shady, A.-S.I. A survey of organic contaminants in household and bottled drinking waters in Kuwait. Sci. Total Environ. 2009, 407, 1658–1668. [Google Scholar] [CrossRef]
- Yu, S.; Lee, P.-K.; Hwang, S.-I. Groundwater contamination with volatile organic compounds in urban and industrial areas: Analysis of co-occurrence and land use effects. Environ. Earth Sci. 2015, 74, 3661–3677. [Google Scholar] [CrossRef]
- Amezghal, A.; Omari, H.; Mohamed, R.; Halim, M.; Assafi, M. Characterization of the compounds involved in the problems of taste and odour in the water of Sidi Mohamed Ben Abdellah dam (Morocco). J. Mater. Environ. Sci. 2016, 7, 2996–3003. [Google Scholar]
- Yang, W.; Zhao, Y.; Wang, D.; Wu, H.; Lin, A.; He, L. Using Principal Components Analysis and IDW Interpolation to Determine Spatial and Temporal Changes of Surface Water Quality of Xin’anjiang River in Huangshan, China. Int. J. Environ. Res. Public Health 2020, 17, 2942. [Google Scholar] [CrossRef]
- Agency for Toxic Substances and Disease Registry ATSDR—Toxicological Profile: Tetrachloroethylene (PERC) 2019. Available online: https://wwwn.cdc.gov/TSP/ToxProfiles/ToxProfiles.aspx?id=265&tid=48 (accessed on 18 March 2020).
- Gros, V.; Gaimoz, C.; Herrmann, F.; Custer, T.; Williams, J.; Bonsang, B.; Sauvage, S.; Locoge, N.; d’Argouges, O.; Sarda-Estève, R.; et al. Volatile organic compounds sources in Paris in spring 2007. Part I: Qualitative analysis. Environ. Chem. 2011, 8, 74–90. [Google Scholar] [CrossRef]
- Liu, B.; Chen, L.; Huang, L.; Wang, Y.; Li, Y. Distribution of volatile organic compounds (VOCs) in surface water, soil, and groundwater within a chemical industry park in Eastern China. Water Sci. Technol. J. Int. Assoc. Water Pollut. Res. 2015, 71, 259–267. [Google Scholar] [CrossRef]
- Ajwa, H.A. Alternatives to Methyl bromide in Strawberry Production in the United States of America and the Mediterranean Region. Altern. Methyl. Bromide Strawb. Prod. United States Am. Mediterr. Reg. 2003, 42, 1000–1025. [Google Scholar] [CrossRef]
- Le Matin Pesticides for Agricultural Use: The ONSSA Ensures that the Authorizations Are Subject to a Regular Review (Pesticides à Usage Agricole: L’ONSSA Assure que les Autorisations Sont Soumises à un réexamen Régulier). Available online: https://lematin.ma/express/2020/precisions-lonssa/344480.html (accessed on 13 April 2022).
- Consonews Pesticides Banned in Europe: Morocco is the Leading Importer in Africa (Pesticides Interdits en Europe: Le Maroc Premier Importateur en Afrique) 2020. Available online: https://consonews.ma/22683.html (accessed on 17 April 2022).
- Mapecology Tangier-Tetouan-Al Hoceima: Agricultural Season Indicators Show Record Production. Map. Ecol. 2021. Available online: https://mapecology.ma/en/regions-en/tangier-tetouan-al-hoceima-agricultural-season-indicators-show-record-production/ (accessed on 19 April 2022).
- Besri, M. Current situation of tomato grafting as alternative to methyl bromide for tomato production in Morocco. In Proceedings of the Annual International Research Conference on Methyl Bromide Alternatives and Emissions Reductions, San Diego, CA, USA, 29 October–1 November 2007. [Google Scholar]
- El Bakouri, H.; Ouassini, A.; Morillo, J.; Usero, J. Pesticides in ground water beneath Loukkos perimeter, Northwest Morocco. J. Hydrol. 2008, 348, 270–278. [Google Scholar] [CrossRef]
- Sarti, O.; Otal, E.; Morillo, J.; Ouassini, A. Integrated assessment of groundwater quality beneath the rural area of R’mel, Northwest of Morocco. Groundw. Sustain. Dev. 2021, 14, 100620. [Google Scholar] [CrossRef]
- Poerschmann, J.; Baskyr, I.; Weiner, B.; Koehler, R.; Wedwitschka, H.; Kopinke, F.-D. Hydrothermal carbonization of olive mill wastewater. Bioresour. Technol. 2013, 133, 581–588. [Google Scholar] [CrossRef]
- Miller, R.R.; Newhook, R.; Poole, A. Styrene Production, Use, and Human Exposure. Crit. Rev. Toxicol. 1994, 24, S1–S10. [Google Scholar] [CrossRef]
- Risk Assessment Guidance for Superfund; Office of Emergency and Remedial Response, U.S. Environmental Protection Agency, 1989. Available online: https://www.epa.gov/sites/default/files/2015-09/documents/rags_a.pdf (accessed on 31 October 2022).
- Visit Tanger AIN ZARKA—Chamal/Tanger-Tetouan-Al Hoceima—Site Officiel. Available online: https://www.visittanger.com/en/nature/ain-zarka/6086242b900e06001602c260 (accessed on 27 April 2022).
- Benchrif, A.; Guinot, B.; Bounakhla, M.; Cachier, H.; Damnati, B.; Baghdad, B. Aerosols in Northern Morocco: Input pathways and their chemical fingerprint. Atmos. Environ. 2018, 174, 140–147. [Google Scholar] [CrossRef]
- Le360 A Huge Fire Ravages the Bab Berred Forest in the Chefchaouen Region (Un Immense Incendie Ravage la Forêt de Bab Berred dans la Région de Chefchaouen). Available online: https://fr.le360.ma/societe/revue-du-web-un-immense-incendie-ravage-la-foret-de-bab-berred-dans-la-region-de-chefchaouen-222012 (accessed on 27 May 2021).
- Map Express M’diq-Fnideq: A Forest Fire Under Control, More than 1020 ha Ravaged (M’diq-Fnideq: Un feu de Forêt Maitrisé, Plus de 1.020 ha Ravagés). Available online: http://www.mapexpress.ma/actualite/societe-et-regions/mdiq-fnideq-feu-foret-maitrise-1-020-ha-ravages/ (accessed on 27 May 2021).
- Proctor, C.R.; Lee, J.; Yu, D.; Shah, A.D.; Whelton, A.J. Wildfire caused widespread drinking water distribution network contamination. AWWA Water Sci. 2020, 2, e1183. [Google Scholar] [CrossRef]
- Certini, G. Effects of fire on properties of forest soils: A review. Oecologia 2005, 143, 1–10. [Google Scholar] [CrossRef]
- Watts, P.; Long, G.; Meek, M.E. Chloroform; Concise International Chemical Assessment Document; World Health Organization: Geneva, Switzerland, 2004; ISBN 978-92-4-153058-3.
- Laturnus, F.; Haselmann, K.F.; Borch, T.; Grøn, C. Terrestrial natural sources of trichloromethane (chloroform, CHCl3)—An overview. Biogeochemistry 2002, 60, 121–139. [Google Scholar] [CrossRef]
- Freuze, I.; Brosillon, S.; Arlot, J.; Laplanche, A.; Tozza, D.; Cavard, J. Impact of UV-irradiation on the formation of odorous chloroaldimines in drinking water. Chemosphere 2006, 63, 1660–1666. [Google Scholar] [CrossRef]
- US EPA. Chloroform 67-66-3; US EPA: Washington, DC, USA, 2000. Available online: https://www.epa.gov/sites/default/files/2016-09/documents/chloroform.pdf (accessed on 31 October 2022).
- Tanja24. La Yennou Spring Water; the Destination for Natural Water Lovers in Tangier: “Sheer You Drink It, You Will Come Back to It”. Available online: https://www.youtube.com/watch?v=encRcCttq68 (accessed on 27 April 2022).
- Vega, M.; Pardo, R.; Barrado, E.; Debán, L. Assessment of seasonal and polluting effects on the quality of river water by exploratory data analysis. Water Res. 1998, 32, 3581–3592. [Google Scholar] [CrossRef]
- Afsahi, K. The Rif and California: Environmental Violence in the Era of New Cannabis Markets. Int. Dev. Policy Rev. Int. Polit. Dév. 2020, 12, 183–205. [Google Scholar] [CrossRef]
- The United Nations Office on Drugs and Crime (UNODC); The Moroccan Government. Morocco Cannabis Survey 2004 (Maroc Enquete sur Cannabis 2004); The United Nations Office on Drugs and Crime (UNODC): Vienna, Austria, 2005; Available online: https://www.unodc.org/pdf/research/Morocco_survey_2004.pdf (accessed on 31 October 2022).
- Siyada Legalization of Cannabis Cultivation in Morocco: The State in Alliance With Capital Against the Land and Small Farmers. Available online: https://www.siyada.org/en/siyada-board/neoliberal-schemes/legalization-of-cannabis-cultivation-in-morocco-the-state-in-alliance-with-capital-against-the-land-and-small-farmers/ (accessed on 5 April 2022).
- Agency for Toxic Substances and Disease Registry ATSDR—Public Health Statement: Naphthalene, 1—Methylnapthalene, 2—Methylnapthalene. Available online: https://www.atsdr.cdc.gov/phs/phs.asp?id=238&tid=43 (accessed on 15 April 2020).
- Buckpitt, A.; Kephalopoulos, S.; Koistinen, K.; Kotzias, D.; Morawska, L.; Sagunski, H. Naphthalene; World Health Organization: Geneva, Switzerland, 2010.
- Jia, C.; Batterman, S. A Critical Review of Naphthalene Sources and Exposures Relevant to Indoor and Outdoor Air. Int. J. Environ. Res. Public. Health 2010, 7, 2903–2939. [Google Scholar] [CrossRef] [PubMed]
- International Agency for Research on Cancer. Tetrachloroethylene; International Agency for Research on Cancer: Lyon, France, 2014. [Google Scholar]
Organic Synthesis Compounds | Trihalomethanes | Fumigant | Gasoline Hydrocarbon | Solvents | Total VOCs | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Samples | 1,1-DCE | CHF | 2,2-DCP | 1,2-DCP | DBE | Cis-1,3-DCP | Trans-1,3-DCP | 1,3-DCP | NAPH | STY | 1,2,4-TMB | PCE | Trans-1,2-DCE | 1,3,5-TMB | CYM | |
Sample n1 | <MDL | 2.79 ± 0.36 | 1.70 ± 0.2 | <MDL | <MDL | <MDL | <MDL | <MQL | <MQL | <MQL | <MDL | <MDL | <MQL | <MDL | <MDL | 4.49 |
Sample n2 | <MDL | <MDL | 1.44 ± 0.01 | <MDL | <MDL | <MDL | <MDL | <MDL | <MDL | <MDL | <MDL | <MDL | <MQL | <MDL | <MDL | 1.44 |
Sample n3 | <MDL | <MDL | 1.26 ± 0.14 | <MDL | <MDL | <MDL | <MDL | <MQL | <MQL | <MDL | <MDL | <MDL | <MDL | <MDL | <MDL | 1.26 |
Sample n4 | <MDL | <MDL | 1.14 ± 0.08 | <MDL | <MDL | <MDL | <MDL | <MQL | <MDL | <MDL | <MDL | <MQL | <MQL | <MQL | <MDL | 1.14 |
Sample n5 | <MDL | <MDL | 1.42 ± 0.07 | <MDL | <MDL | <MDL | <MDL | <MQL | <MQL | <MDL | <MDL | 1.40 ± 0.17 | <MDL | <MDL | 0.27 ± 0.01 | 3.09 |
Sample n6 | <MDL | <MDL | 1.22 ± 0.17 | 0.61 ± 0.14 | <MDL | <MDL | <MDL | <MQL | <MDL | <MQL | <MDL | <MQL | <MQL | <MDL | <MDL | 1.83 |
Sample n7 | <MDL | <MDL | 1.58 ± 0.15 | <MDL | <MDL | <MDL | <MDL | <MQL | <MQL | 4.09 ± 0.35 | <MDL | <MQL | <MQL | <MDL | <MDL | 5.67 |
Sample n8 | <MDL | <MDL | 1.52 ± 0.04 | 0.72 ± 0.05 | 1.36 ± 0.02 | 0.19 ± 0.00 | 1.12 ± 0.13 | <MQL | <MQL | 3.83 ± 0.58 | <MDL | <MQL | 1.29 ± 0.1 | 0.41 ± 0.04 | <MDL | 10.44 |
Sample n9 | <MDL | <MDL | <MQL | <MDL | <MDL | <MDL | <MDL | <MQL | <MDL | <MDL | <MDL | <MQL | <MQL | <MDL | <MDL | ----- |
Sample n10 | <MDL | <MDL | 1.33 ± 0.04 | <MDL | <MDL | <MDL | 0.72 ± 0.1 | <MDL | <MDL | 3.13 ± 0.09 | <MDL | <MDL | <MQL | <MDL | <MDL | 5.18 |
Sample n11 | 2.03 ± 0.12 | <MDL | <MQL | <MDL | <MDL | <MDL | 0.69 ± 0.00 | <MDL | <MDL | 2.77 ± 0.15 | <MDL | <MDL | <MQL | <MDL | <MDL | 5.49 |
Sample n12 | <MDL | <MDL | <MQL | <MDL | <MDL | <MDL | 0.79 ± 0.07 | <MDL | <MDL | <MQL | <MDL | <MDL | <MQL | <MDL | <MDL | 0.79 |
Sample n13 | <MQL | <MDL | <MQL | <MDL | <MDL | <MDL | <MDL | <MDL | <MDL | 3.6 ± 0.29 | <MDL | <MDL | <MQL | <MDL | <MDL | 3.6 |
Sample n14 | <MDL | <MDL | <MQL | <MDL | <MDL | <MDL | <MDL | <MDL | <MDL | <MDL | <MDL | <MDL | <MQL | <MDL | <MDL | ----- |
Sample n15 | <MDL | <MDL | <MDL | <MDL | <MDL | <MDL | <MDL | <MDL | <MDL | <MDL | <MDL | <MDL | <MQL | <MDL | <MDL | ----- |
Sample n16 | <MDL | <MDL | <MQL | <MDL | <MDL | <MDL | <MDL | <MQL | <MDL | <MDL | <MDL | <MQL | <MQL | <MDL | <MDL | ----- |
Sample n17 | <MDL | <MDL | 1.9 ± 0.28 | 0.80 ± 0.04 | <MDL | <MDL | <MDL | 1.24 ± 0.01 | 2.26 ± 0.38 | <MQL | <MDL | 2.86 ± 0.06 | 1.46 ± 0.04 | <MQL | <MDL | 10.52 |
Sample n18 | <MDL | 7.6±0.00 | <MQL | <MDL | <MDL | <MDL | <MDL | <MQL | <MDL | <MDL | <MDL | <MQL | <MQL | <MDL | <MDL | 7.6 |
Sample n19 | <MDL | <MDL | <MQL | <MDL | <MDL | <MDL | 0.91 ± 0.07 | <MQL | <MDL | <MDL | <MDL | <MQL | <MQL | <MDL | <MDL | 1.68 |
Sample n20 | 2.76±0.16 | <MDL | <MQL | <MDL | <MDL | <MDL | <MDL | <MDL | <MDL | <MQL | 0.27 ± 0.00 | <MDL | <MQL | <MDL | <MDL | 3.03 |
Sample n21 | <MDL | <MDL | <MQL | <MDL | <MDL | <MDL | 0.66 ± 0.03 | <MDL | <MDL | <MDL | <MDL | <MDL | <MQL | <MDL | <MDL | 0.66 |
Sample n22 | <MDL | <MDL | <MQL | <MDL | <MDL | <MDL | <MDL | <MDL | <MDL | <MQL | <MDL | <MDL | <MQL | <MDL | <MDL | ----- |
Sample n23 | <MQL | <MDL | <MQL | <MDL | <MDL | <MDL | <MDL | <MDL | <MDL | <MQL | <MDL | <MDL | <MQL | <MDL | <MDL | ----- |
Sample n24 | <MQL | <MDL | <MQL | <MDL | <MDL | <MDL | <MDL | <MDL | <MDL | <MQL | <MDL | <MDL | <MQL | <MDL | <MDL | ----- |
Sample n25 | <MDL | <MDL | <MQL | 0.48 ± 0.02 | <MDL | <MDL | <MDL | <MQL | <MDL | <MQL | <MDL | <MDL | <MDL | <MDL | <MDL | 0.48 |
Sample n26 | <MQL | <MDL | <MQL | <MDL | <MDL | <MDL | <MDL | <MDL | <MDL | 2.56 ± 0.14 | <MDL | <MDL | <MDL | <MDL | <MDL | 2.56 |
Min | <MDL | <MDL | <MDL | <MDL | <MDL | <MDL | <MDL | <MDL | <MDL | <MDL | <MDL | <MDL | <MDL | <MDL | <MDL | |
Max | 2.76 | 7.6 | 1.9 | 0.8 | 1.36 | 0.19 | 1.12 | 1.24 | 2.26 | 4.09 | 0.27 | 2.86 | 1.46 | 0.41 | 0.27 | |
FOD (%) | 7.69 | 7.69 | 38.46 | 19.23 | 3.85 | 3.85 | 23.08 | 3.85 | 7.69 | 23.08 | 3.85 | 7.69 | 7.69 | 3.85 | 3.85 | |
WHO (µg/L) | 30 | 200 | ----- | 40 | ----- | ----- | ----- | ----- | ----- | 20 | ----- | 40 | 50 (cis and trans) | ----- | ----- | |
IARC classification | ----- | 2B | ----- | 1 | ----- | 2B | 2B | ----- | 2B | 2A | ----- | 2A | ----- | ----- | ----- |
Carcinogenic Risk Assessment | ||||||
---|---|---|---|---|---|---|
Samples | Pathway | CHF | 1,2-DCP | Cis Trans-1,3-DCP | PCE | NAPH |
Sample n1 | Ingestion | 2.47 × 10−6 | ||||
Dermal | 9.21 × 10−5 | |||||
Sample n5 | Ingestion | 8.42 × 10−8 | ||||
Dermal | 2.09 × 10−5 | |||||
Sample n6 | Ingestion | 6.41 × 10−7 | ||||
Dermal | 2.62 × 10−8 | |||||
Sample n8 | Ingestion | 7.59 × 10−7 | 3.7 × 10−6 | |||
Dermal | 3.10 × 10−8 | 1.61 × 10−4 | ||||
Sample n10 | Ingestion | 2.6 × 10−6 | ||||
Dermal | 8.8 × 10−5 | |||||
Sample n11 | Ingestion | 2 × 10−6 | ||||
Dermal | 8.46 × 10−5 | |||||
Sample n12 | Ingestion | 2.3 × 10−6 | ||||
Dermal | 9.71 × 10−5 | |||||
Sample n17 | Ingestion | 8.51 × 10−7 | 1.72 × 10−7 | 7.75 × 10−6 | ||
Dermal | 3.48 × 10−8 | 4.25 × 10−8 | 2.10 × 10−3 | |||
Sample n18 | Ingestion | 6.72 × 10−6 | ||||
Dermal | 2.50 × 10−4 | |||||
Sample n19 | Ingestion | 2.6 × 10−6 | ||||
Dermal | 3.33 × 10−8 | 1.11 × 10−4 | ||||
Sample n20 | Ingestion | |||||
Dermal | ||||||
Sample n21 | Ingestion | 1.9 × 10−6 | ||||
Dermal | 8.17 × 10−5 | |||||
Sample n25 | Ingestion | 5.03 × 10−7 | ||||
Dermal | 2.06 × 10−8 |
Non-Carcinogenic Risk Assessment | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Samples | Pathway | 1,1-DCE | Trans-1,2-DCE | CHF | 1,2-DCP | Cis Trans 1,3-DCP | 1,3-DCP | PCE | STY | 1,2,4-TMB | 1,3,5-TMB | NAPH |
Sample n1 | Ingestion | 7.98 × 10−3 | ||||||||||
Dermal | 6.93 × 10−1 | |||||||||||
Sample n5 | Ingestion | 6.68 × 10−3 | ||||||||||
Dermal | 3.86 × 10+1 | |||||||||||
Sample n6 | Ingestion | |||||||||||
Dermal | 4.14 × 10−2 | |||||||||||
Sample n7 | Ingestion | 5.84 × 10−4 | ||||||||||
Dermal | 2.53 × 10−1 | |||||||||||
Sample n8 | Ingestion | 1.84 × 10−3 | 5.13 × 10−4 | 1.2 × 10−3 | 5.48 × 10−4 | 1.18 × 10−3 | ||||||
Dermal | 2.24 × 10−1 | 4.89 × 10−2 | 1.3 × 10−1 | 2.37 × 10−1 | 9.38 × 10−1 | |||||||
Sample n10 | Ingestion | 6.8 × 10−4 | 4.48 × 10−4 | |||||||||
Dermal | 6.8 × 10−2 | 1.94 × 10−1 | ||||||||||
Sample n11 | Ingestion | 1.2 × 10−3 | 6.6 × 10−4 | 3.96 × 10−4 | ||||||||
Dermal | 8.69 × 10−2 | 6.6 × 10−2 | 1.71 × 10−1 | |||||||||
Sample n12 | Ingestion | 7.5 × 10−4 | ||||||||||
Dermal | 7.6 × 10−2 | |||||||||||
Sample n13 | Ingestion | 5.14 × 10−4 | ||||||||||
Dermal | 2.22 × 10−1 | |||||||||||
Sample n17 | Ingestion | 2.09 × 10−3 | 5.75 × 10−4 | 1.8 × 10−3 | 1.36 × 10−2 | 3.23 × 10−3 | ||||||
Dermal | 2.5 × 10−1 | 5.49 × 10−2 | 1.68 × 10−1 | 7.88 × 10+1 | 2.04 × 10+1 | |||||||
Sample n18 | Ingestion | 2.17 × 10−2 | ||||||||||
Dermal | 1.88 × 10+1 | |||||||||||
Sample n19 | Ingestion | 8.7 × 10−4 | ||||||||||
Dermal | 5.26 × 10−2 | 8.7 × 10−2 | ||||||||||
Sample n20 | Ingestion | 1.6 × 10−3 | 7.59 × 10−4 | |||||||||
Dermal | 1.18 × 10−1 | 8.31 × 10−1 | ||||||||||
Sample n21 | Ingestion | 6.3 × 10−4 | ||||||||||
Dermal | 6.4 × 10−2 | |||||||||||
Sample n25 | Ingestion | 3.40 × 10−4 | ||||||||||
Dermal | 3.25 × 10−2 | |||||||||||
Sample n26 | Ingestion | 3.66 × 10−4 | ||||||||||
Dermal | 1.58 × 10−1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lechhab, W.; Cincotta, F.; Lechhab, T.; Condurso, C.; Salmoun, F.; Cacciola, F.; Verzera, A. Preliminary Assessment of Occurrence, Potential Origin, and Human Health Risk of Volatile Organic Compounds in Uncontrolled Springs, North Morocco. Metabolites 2022, 12, 1213. https://doi.org/10.3390/metabo12121213
Lechhab W, Cincotta F, Lechhab T, Condurso C, Salmoun F, Cacciola F, Verzera A. Preliminary Assessment of Occurrence, Potential Origin, and Human Health Risk of Volatile Organic Compounds in Uncontrolled Springs, North Morocco. Metabolites. 2022; 12(12):1213. https://doi.org/10.3390/metabo12121213
Chicago/Turabian StyleLechhab, Wafae, Fabrizio Cincotta, Touria Lechhab, Concetta Condurso, Farida Salmoun, Francesco Cacciola, and Antonella Verzera. 2022. "Preliminary Assessment of Occurrence, Potential Origin, and Human Health Risk of Volatile Organic Compounds in Uncontrolled Springs, North Morocco" Metabolites 12, no. 12: 1213. https://doi.org/10.3390/metabo12121213
APA StyleLechhab, W., Cincotta, F., Lechhab, T., Condurso, C., Salmoun, F., Cacciola, F., & Verzera, A. (2022). Preliminary Assessment of Occurrence, Potential Origin, and Human Health Risk of Volatile Organic Compounds in Uncontrolled Springs, North Morocco. Metabolites, 12(12), 1213. https://doi.org/10.3390/metabo12121213