Isotopic Tracer for Absolute Quantification of Metabolites of the Pentose Phosphate Pathway in Bacteria
Abstract
:1. Introduction
2. Pentose Phosphate Pathway
3. Isotopic Tracer
3.1. Studies of PPP Metabolism by Isotopic Tracer Method
3.2. In Vivo Synthesis of Metabolite-Labeled Isotopes
3.3. In Vitro Synthesis of Metabolite-Labeled Isotopes
3.4. Aniline Tagging Method
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Kovářová, J.; Barrett, M.P. The pentose phosphate pathway in parasitic Trypanosomatids. Trends Parasitol. 2016, 32, 622–634. [Google Scholar] [CrossRef]
- Stincone, A.; Prigione, A.; Cramer, T.; Wamelink, M.M.C.; Campbell, K.; Cheung, E.; Olin-Sandoval, V.; Grüning, N.-M.; Krüger, A.; Tauqeer Alam, M.; et al. The return of metabolism: Biochemistry and physiology of the pentose phosphate pathway. Biol. Rev. 2015, 90, 927–963. [Google Scholar] [CrossRef] [Green Version]
- Bertels, L.K.; Murillo, L.F.; Heinisch, J.J. The pentose phosphate pathway in yeasts–more than a poor cousin of glycolysis. Biomolecules 2021, 11, 725. [Google Scholar] [CrossRef]
- Werner, C.; Doenst, T.; Schwarzer, M. Metabolic pathways and cycles. In The Scientist Guide to Cardiac Metabolism; Academic Press: Cambridge, MA, USA, 2016; pp. 39–55. [Google Scholar] [CrossRef]
- Lucarelli, G.; Galleggiante, V.; Rutigliano, M.; Sanguedolce, F.; Cagiano, S.; Bufo, P.; Lastilla, G.; Maiorano, E.; Ribatti, D.; Giglio, A.; et al. Metabolomic profile of glycolysis and the pentose phosphate pathway identifies the central role of glucose-6-phosphate dehydrogenase in clear cell-renal cell carcinoma. Oncotarget 2015, 6, 13371–13386. [Google Scholar] [CrossRef] [Green Version]
- Ge, T.; Yang, J.; Zhou, S.; Wang, Y.; Li, Y.; Tong, X. The role of the pentose phosphate pathway in diabetes and cancer. Front. Endocrinol. 2020, 11, 365. [Google Scholar] [CrossRef]
- Luo, X.; Liu, J.; Wang, H.; Lu, H. Metabolomics identified new biomarkers for the precise diagnosis of pancreatic cancer and associated tissue metastasis. Pharmacol. Res. 2020, 156, 104805. [Google Scholar] [CrossRef]
- Maifiah, M.H.M.; Creek, D.J.; Nation, R.L.; Forrest, A.; Tsuji, B.T.; Velkov, T.; Li, J. Untargeted metabolomics analysis reveals key pathways responsible for the synergistic killing of colistin and doripenem combination against Acinetobacter baumannii. Sci. Rep. 2017, 7, srep45527. [Google Scholar] [CrossRef] [Green Version]
- Han, M.L.; Liu, X.; Velkov, T.; Lin, Y.W.; Zhu, Y.; Li, M.; Yu, H.H.; Zhou, Z.; Creek, D.; Zhang, J.; et al. Metabolic analyses revealed time-dependent synergistic killing by colistin and aztreonam combination against multidrug-resistant Acinetobacter baumannii. Front. Microbiol. 2018, 9, 2776. [Google Scholar] [CrossRef]
- Zhu, Y.; Zhao, J.; Maifiah, M.H.M.; Velkov, T.; Schreiber, F.; Li, J. Metabolic responses to polymyxin treatment in Acinetobacter baumannii ATCC 19606: Integrating transcriptomics and metabolomics with genome-scale metabolic modeling. mSystems 2019, 4, e00157-18. [Google Scholar] [CrossRef]
- Lin, Y.W.; Han, M.L.; Zhao, J.; Zhu, Y.; Rao, G.; Forrest, A.; Song, J.; Kaye, K.S.; Hertzog, P.; Purcell, A.; et al. Synergistic combination of polymyxin B and enrofloxacin induced metabolic perturbations in extensive drug-resistant Pseudomonas aeruginosa. Front. Pharmacol. 2019, 10, 1146. [Google Scholar] [CrossRef] [Green Version]
- Zhao, S.; Li, L. Chemical derivatization in LC-MS-based metabolomics study. TrAC Trends Anal. Chem. 2020, 131, 115988. [Google Scholar] [CrossRef]
- Wu, L.; Mashego, M.R.; van Dam, J.C.; Proell, A.M.; Vinke, J.L.; Ras, C.; van Winden, W.A.; van Gulik, W.M.; Heijnen, J.J. Quantitative analysis of the microbial metabolome by isotope dilution mass spectrometry using uniformly 13C-labeled cell extracts as internal standards. Anal. Biochem. 2005, 336, 164–171. [Google Scholar] [CrossRef]
- Mashego, M.R.; Wu, L.; van Dam, J.C.; Ras, C.; Vinke, J.L.; van Winden, W.A.; van Gulik, W.M.; Heijnen, J.J. MIRACLE: Mass isotopomer ratio analysis of U-13C-labeled extracts. A new method for accurate quantification of changes in concentrations of intracellular metabolites. Biotechnol. Bioeng. 2004, 85, 620–628. [Google Scholar] [CrossRef]
- Huang, T.; Armbruster, M.R.; Coulton, J.B.; Edwards, J.L. Chemical tagging in mass spectrometry for systems biology. Anal. Chem. 2018, 91, 109–125. [Google Scholar] [CrossRef]
- Clendinen, C.S.; Stupp, G.S.; Ajredini, R.; Lee-McMullen, B.; Beecher, C.; Edison, A.S. An overview of methods using 13C for improved compound identification in metabolomics and natural products. Front. Plant Sci. 2015, 6, 611. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Siegrist, M.S.; Swarts, B.M.; Fox, D.M.; Lim, S.A.; Bertozzi, C.R. Illumination of growth, division and secretion by metabolic labeling of the bacterial cell surface. FEMS Microbiol. Rev. 2015, 39, 184–202. [Google Scholar] [CrossRef] [Green Version]
- Srivastava, A.; Kowalski, G.M.; Callahan, D.L.; Meikle, P.J.; Creek, D.J. Strategies for extending metabolomics studies with stable isotope labelling and fluxomics. Metabolites 2016, 6, 32. [Google Scholar] [CrossRef] [Green Version]
- Sauer, U. Metabolic networks in motion: 13C-based flux analysis. Mol. Syst. Biol. 2006, 2, 62. [Google Scholar] [CrossRef] [Green Version]
- Buescher, J.M.; Antoniewicz, M.R.; Boros, L.G.; Burgess, S.C.; Brunengraber, H.; Clish, C.B.; DeBerardinis, R.J.; Feron, O.; Frezza, C.; Ghesquiere, B.; et al. A roadmap for interpreting 13C metabolite labeling patterns from cells. Curr. Opin. Biotechnol. 2015, 34, 189–201. [Google Scholar] [CrossRef]
- Jannasch, A.; Sedlak, M.; Adamec, J. Quantification of Pentose Phosphate Pathway (PPP) Metabolites by Liquid Chromatography-Mass Spectrometry. In Metabolic Profiling; Metz, T.O., Ed.; Humana Press: Totowa, NJ, USA, 2011; Volume 708, pp. 159–171. [Google Scholar] [CrossRef]
- Cadière, A.; Ortiz-Julien, A.; Camarasa, C.; Dequin, S. Evolutionary engineered Saccharomyces cerevisiae wine yeast strains with increased in vivo flux through the pentose phosphate pathway. Metab. Eng. 2011, 13, 263–271. [Google Scholar] [CrossRef]
- Clasquin, M.F.; Melamud, E.; Singer, A.; Gooding, J.R.; Xu, X.; Dong, A.; Cui, H.; Campagna, S.R.; Savchenko, A.; Yakunin, A.F.; et al. Riboneogenesis in yeast. Cell 2011, 145, 969–980. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Q.; Bartels, D. Octulose: A forgotten metabolite? J. Exp. Bot. 2017, 68, 5689–5694. [Google Scholar] [CrossRef] [Green Version]
- Jin, L.; Zhou, Y. Crucial role of the pentose phosphate pathway in malignant tumors (Review). Oncol. Lett. 2019, 17, 4213–4221. [Google Scholar] [CrossRef] [Green Version]
- DeBerardinis, R.J.; Sayed, N.; Ditsworth, D.; Thompson, C.B. Brick by brick: Metabolism and tumor cell growth. Curr. Opin. Genet. Dev. 2008, 18, 54–61. [Google Scholar] [CrossRef] [Green Version]
- Zheng, Y.; Zhu, Y.; Zhuge, T.; Li, B.; Gu, C. Metabolomics analysis discovers estrogen altering cell proliferation via the pentose phosphate pathway in infertility patient endometria. Front. Endocrinol. 2021, 12, 79114. [Google Scholar] [CrossRef]
- Bolaños, J.P.; Almeida, A.; Moncada, S. Glycolysis: A bioenergetic or a survival pathway? Trends Biochem. Sci. 2010, 35, 145–149. [Google Scholar] [CrossRef]
- Haschemi, A.; Kosma, P.; Gille, L.; Evans, C.R.; Burant, C.F.; Starkl, P.; Knapp, B.; Haas, R.; Schmid, J.A.; Jandl, C.; et al. The sedoheptulose kinase CARKL directs macrophage polarization through control of glucose metabolism. Cell Metab. 2012, 15, 813–826. [Google Scholar] [CrossRef] [Green Version]
- Igoillo-Esteve, M.; Maugeri, D.; Stern, A.L.; Beluardi, P.; Cazzulo, J.J. The pentose phosphate pathway in Trypanosoma cruzi: A potential target for the chemotherapy of Chagas disease. An. Acad. Bras. Cien. 2007, 79, 649–663. [Google Scholar] [CrossRef]
- Maugeri, D.A.; Cazzulo, J.J.; Burchmore, R.J.S.; Barrett, M.P.; Ogbunude, P.O.J. Pentose phosphate metabolism in Leishmania mexicana. Mol. Biochem. Parasitol. 2003, 130, 117–125. [Google Scholar] [CrossRef]
- Taylor, P.L.; Blakely, K.M.; De Leon, G.P.; Walker, J.R.; McArthur, F.; Evdokimova, E.; Zhang, K.; Valvano, M.; Wright, G.; Junop, M.S. Structure and function of sedoheptulose-7-phosphate isomerase, a critical enzyme for lipopolysaccharide biosynthesis and a target for antibiotic adjuvants. J. Biol. Chem. 2008, 283, 2835–2845. [Google Scholar] [CrossRef] [Green Version]
- Alteri, C.J.; Mobley, H.L.T. Escherichia coli physiology and metabolism dictates adaptation to diverse host microenvironments. Curr. Opin. Microbiol. 2012, 15, 3–9. [Google Scholar] [CrossRef] [Green Version]
- Hussein, M.; Han, M.L.; Zhu, Y.; Zhou, Q.; Lin, Y.W.; Hancock, R.E.W.; Hoyer, D.; Creek, D.J.; Li, J.; Velkov, T. Metabolomics study of the synergistic killing of polymyxin B in combination with amikacin against polymyxin-susceptible and -resistant Pseudomonas aeruginosa. Antimicrob. Agents Chemother. 2020, 64, e01587-19. [Google Scholar] [CrossRef]
- Hussein, M.; Hu, X.; Paulin, O.K.A.; Crawford, S.; Zhou, Q.T.; Baker, M.; Schneider-Futschik, E.K.; Zhu, Y.; Li, J.; Velkov, T. Polymyxin B combinations with FDA-approved non-antibiotic phenothiazine drugs targeting multi-drug resistance of Gram-negative pathogens. Comput. Struct. Biotechnol. J. 2020, 18, 2247–2258. [Google Scholar] [CrossRef]
- Han, M.L.; Liu, X.; Velkov, T.; Lin, Y.W.; Zhu, Y.; Creek, D.J.; Barlow, C.K.; Yu, H.H.; Zhou, Z.; Zhang, J.; et al. Comparative metabolomics reveals key pathways associated with the synergistic killing of colistin and sulbactam combination against multidrug-resistant Acinetobacter baumannii. Front. Pharmacol. 2019, 10, 754. [Google Scholar] [CrossRef] [Green Version]
- Abdul Rahim, N.; Zhu, Y.; Cheah, S.E.; Johnson, M.D.; Yu, H.H.; Sidjabat, H.E.; Butler, M.S.; Cooper, M.A.; Fu, J.; Paterson, D.L.; et al. Synergy of the polymyxin-chloramphenicol combination against New Delhi metallo-β-lactamase-producing Klebsiella pneumoniae is predominately driven by chloramphenicol. ACS Infect. Dis. 2021, 7, 1584–1595. [Google Scholar] [CrossRef]
- Hussein, M.; Han, M.L.; Zhu, Y.; Schneider-Futschik, E.K.; Hu, X.; Zhou, Q.T.; Lin, Y.-W.; Anderson, D.; Creek, D.; Hoyer, D.; et al. Mechanistic insights from global metabolomics studies into synergistic bactericidal effect of a polymyxin B combination with tamoxifen against cystic fibrosis MDR Pseudomonas aeruginosa. Comput. Struct. Biotechnol. J. 2018, 16, 587–599. [Google Scholar] [CrossRef]
- Creek, D.J.; Mazet, M.; Achcar, F.; Anderson, J.; Kim, D.H.; Kamour, R.; Morand, P.; Millerioux, Y.; Biran, M.; Kerkhoven, E.J.; et al. Probing the metabolic network in bloodstream-form Trypanosoma brucei using untargeted metabolomics with stable isotope labelled glucose. PLoS Pathog. 2015, 11, e1004689. [Google Scholar] [CrossRef] [Green Version]
- Wushensky, J.A.; Youngster, T.; Mendonca, C.M.; Aristilde, L. Flux connections between gluconate pathway, glycolysis, and pentose-phosphate pathway during carbohydrate metabolism in Bacillus megaterium QM B1551. Front. Microbiol. 2018, 9, 2789. [Google Scholar] [CrossRef]
- Yang, W.C.; Sedlak, M.; Regnier, F.E.; Mosier, N.; Ho, N.; Adamec, J. Simultaneous quantification of metabolites involved in central carbon and energy metabolism using reversed-phase liquid chromatography-mass spectrometry and in vitro 13C labeling. Anal. Chem. 2008, 80, 9508–9516. [Google Scholar] [CrossRef]
- Vilkhovoy, M.; Dai, D.; Vadhin, S.; Adhikari, A.; Varner, J.D. Absolute quantification of cell-free protein synthesis metabolism by reversed-phase liquid chromatography-mass spectrometry. J. Vis. Exp. 2019, 2019, e60329. [Google Scholar] [CrossRef]
- Katz, J.; Wood, H.G. The use of C14O2 yields from glucose-1- and -6-C14 for the evaluation of the pathways of glucose metabolism. J. Biol. Chem. 1963, 238, 517–523. [Google Scholar] [CrossRef]
- Sable, H.Z. Pentose metabolism in extracts of yeast and mammalian tissues. Biochim. Biophys. Acta 1952, 8, 687–697. [Google Scholar] [CrossRef]
- Novello, F.; McLean, P. The pentose phosphate pathway of glucose metabolism. Measurement of the non-oxidative reactions of the cycle. Biochem. J. 1968, 107, 775–791. [Google Scholar] [CrossRef] [Green Version]
- Becker, M.A. Patterns of phosphoribosylpyrophosphate and ribose 5 phosphate concentration and generation in fibroblasts from patients with gout and purine overproduction. J. Clin. Investig. 1976, 57, 308–318. [Google Scholar] [CrossRef]
- King, M.T.; Passonneau, J.V.; Veech, R.L. Radiometric measurement of phosphoribosylpyrophosphate and ribose 5-phosphate by enzymatic procedures. Anal. Biochem. 1990, 187, 179–186. [Google Scholar] [CrossRef]
- Shih, Y.C.; Hsiao, J.T.; Sheu, F. Molecules feasibility of utilizing stable-isotope dimethyl labeling in liquid chromatography-tandem mass spectrometry-based determination for food allergens-case of Kiwifruit. Molecules 2019, 24, 1920. [Google Scholar] [CrossRef] [Green Version]
- Weindl, D.; Wegner, A.; Hiller, K. Metabolome-wide analysis of stable isotope labeling-Is it worth the effort? Front. Physiol. 2015, 6, 344. [Google Scholar] [CrossRef] [Green Version]
- Chokkathukalam, A.; Kim, D.-H.; Barrett, M.P.; Breitling, R.; Creek, D.J. Stable isotope-labeling studies in metabolomics: New insights into structure and dynamics of metabolic networks. Bioanalysis 2014, 6, 511–524. [Google Scholar] [CrossRef]
- Duckwall, C.; Murphy, T.; Young, J. Mapping cancer cell metabolism with 13C flux analysis: Recent progress and future challenges. J. Carcinog. 2013, 12, 13. [Google Scholar] [CrossRef]
- Niedenführ, S.; Wiechert, W.; Nöh, K. How to measure metabolic fluxes: A taxonomic guide for 13C fluxomics. Curr. Opin. Biotechnol. 2015, 34, 82–90. [Google Scholar] [CrossRef]
- Kim, I.-Y.; Suh, S.-H.; Lee, I.-K.; Wolfe, R.R. Applications of stable, nonradioactive isotope tracers in in vivo human metabolic research. Exp. Mol. Med. 2016, 48, e203. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Triebl, A.; Wenk, M.R. Biomolecules analytical considerations of stable isotope labelling in lipidomics. Biomolecules 2018, 8, 151. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grocholska, P.; Leonidov Tsakovski, S. Trends in the Hydrogen−Deuterium exchange at the carbon centers. Preparation of Internal Standards for quantitative analysis by LC-MS. Molecules 2021, 26, 2989. [Google Scholar] [CrossRef] [PubMed]
- Di Palma, S.; Raijmakers, R.; Heck, A.J.R.; Mohammed, S. Evaluation of the deuterium isotope effect in zwitterionic hydrophilic interaction liquid chromatography separations for implementation in a quantitative proteomic approach. Anal. Chem. 2011, 83, 8352–8356. [Google Scholar] [CrossRef]
- Zhao, S.; Li, L. Chemical isotope labeling LC-MS for metabolomics. In Cancer Metabolomics; Hu, S., Ed.; Springer: Cham, Switzerland, 2007; pp. 1–18. [Google Scholar]
- Ahn, W.S.; Crown, S.B.; Antoniewicz, M.R. Evidence for transketolase-like TKTL1 flux in CHO cells based on parallel labeling experiments and 13C-metabolic flux analysis. Metab. Eng. 2016, 37, 72–78. [Google Scholar] [CrossRef]
- Brekke, E.M.F.; Walls, A.B.; Schousboe, A.; Waagepetersen, H.S.; Sonnewald, U. Quantitative importance of the pentose phosphate pathway determined by incorporation of 13C from 2-13C and 3-13C glucose into TCA cycle intermediates and neurotransmitter amino acids in functionally intact neurons. J. Cereb. Blood Flow Metab. 2012, 32, 1788–1799. [Google Scholar] [CrossRef] [Green Version]
- Crown, S.B.; Indurthi, D.C.; Ahn, W.S.; Choi, J.; Papoutsakis, E.T.; Antoniewicz, M.R. Resolving the TCA cycle and pentose-phosphate pathway of Clostridium acetobutylicum ATCC 824 using isotopomer analysis, in vitro re-citrate synthase activities and expression analysis. Biotechnol. J. 2011, 6, 300–305. [Google Scholar] [CrossRef]
- Crown, S.B.; Ahn, W.S.; Antoniewicz, M.R. Rational design of 13C-labeling experiments for metabolic flux analysis in mammalian cells. BMC Syst. Biol. 2012, 6, 43. [Google Scholar] [CrossRef]
- Fan, J.; Ye, J.; Kamphorst, J.J.; Shlomi, T.; Thompson, C.B.; Rabinowitz, J.D. Quantitative flux analysis reveals folate-dependent NADPH production. Nature 2014, 510, 298–302. [Google Scholar] [CrossRef] [Green Version]
- Lee, W.N.P.; Boros, L.G.; Puigjaner, J.; Bassilian, S.; Lim, S.; Cascante, M. Mass isotopomer study of the nonoxidative pathways of the pentose cycle with [1,2-13C2]glucose. Am. J. Physiol. Endocrinol. Metab. 1998, 274, E843–E851. [Google Scholar] [CrossRef]
- Nakahigashi, K.; Toya, Y.; Ishii, N.; Soga, T.; Hasegawa, M.; Watanabe, H.; Takai, Y.; Honma, M.; Mori, H.; Tomita, M. Systematic phenome analysis of Escherichia coli multiple-knockout mutants reveals hidden reactions in central carbon metabolism. Mol. Syst. Biol. 2009, 5, 306. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Antoniewicz, M.R. A guide to 13C metabolic flux analysis for the cancer biologist. Exp. Mol. Med. 2018, 50, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Lewis, C.A.; Parker, S.J.; Fiske, B.P.; McCloskey, D.; Gui, D.Y.; Green, C.R.; Vokes, N.I.; Feist, A.M.; Heiden, M.G.V.; Metallo, C.M. Tracing compartmentalized NADPH metabolism in the cytosol and mitochondria of mammalian cells. Mol. Cell 2014, 55, 253–263. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ahn, W.S.; Antoniewicz, M.R. Metabolic flux analysis of CHO cells at growth and non-growth phases using isotopic tracers and mass spectrometry. Metab. Eng. 2011, 13, 598–609. [Google Scholar] [CrossRef] [PubMed]
- Metabolic labeling and chemoselective ligation|Thermo Fisher Scientific—MY. Available online: https://www.thermofisher.com/my/en/home/life-science/protein-biology/protein-biology-learning-center/protein-biology-resource-library/pierce-protein-methods/metabolic-labeling-chemoselective-ligation.html (accessed on 22 April 2022).
- Ong, S.E.; Blagoev, B.; Kratchmarova, I.; Kristensen, D.B.; Steen, H.; Pandey, A.; Mann, M. Stable isotope labeling by amino acids in cell culture, SILAC, as a simple and accurate approach to expression proteomics. Mol. Cell. Proteomics 2002, 1, 376–386. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Klein, S.; Heinzle, E. Isotope labeling experiments in metabolomics and fluxomics. WIREs Syst. Biol. Med. 2012, 4, 261–272. [Google Scholar] [CrossRef]
- Paul Lee, W.N.; Wahjudi, P.N.; Xu, J.; Go, V.L. Tracer-based Metabolomics: Concepts and Practices. Clin. Biochem. 2010, 43, 1269–1277. [Google Scholar] [CrossRef] [Green Version]
- Suchanek, M.; Radzikowska, A.; Thiele, C. Photo-leucine and photo-methionine allow identification of protein-protein interactions in living cells. Nat. Methods 2005, 2, 261–268. [Google Scholar] [CrossRef] [Green Version]
- Crivat, G.; Taraska, J.W. Imaging proteins inside cells with fluorescent tags. Trends Biotechnol. 2012, 30, 8–16. [Google Scholar] [CrossRef] [Green Version]
- Rappsilber, J. The beginning of a beautiful friendship: Cross-linking/mass spectrometry and modelling of proteins and multi-protein complexes. J. Struct. Biol. 2011, 173, 530–540. [Google Scholar] [CrossRef]
Isotopic Tracer | Sample | Method | PPP Metabolites | Reference |
---|---|---|---|---|
U-13C labeled medium | Saccharomyces cerevisiae | Rapid sampling and mix of chemostat labeled with 12C-labeled steady state glucose and 13C-labeled. | G6P, F6P | [14] |
U-13C6-glucose | S. cerevisiae | Feed the culture with U-13C6-glucose and the sample is added to the unlabeled calibration standards as IS. | G6P, F6P | [13] |
U-12C and U-13C-glucose | Trypanosoma brucei | Replacing the growth media with media containing 12C-labeled and 13C-labeled glucose. | R5P, F6P | [39] |
U-13C6-glucose | Bacillus megaterium | Addition of sample into U-13C6-glucose agar plates, followed by the continuation of the culture at regular intervals for isotopic switches | G6P, F6P, 6PG, R5P, S7P, E4P | [40] |
12C6- aniline and 13C6-aniline | S. cerevisiae | Tagging of internal standards with 13C6-aniline and derivatization of compounds in the sample with 12C6-aniline | G6P, F6P, DR5P, G3P, DE4P, DR5P | [41] |
S. cerevisiae | G6P, F6P, DR5P, G3P, 6PG, DE4P, DR5P, DS7P, X5P | [21] | ||
Escherichia coli | G6P, F6P, DR5P, G3P, 6PG, DE4P, DR5P, DS7P | [42] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mohd Kamal, K.; Mahamad Maifiah, M.H.; Zhu, Y.; Abdul Rahim, N.; Hashim, Y.Z.H.-Y.; Abdullah Sani, M.S. Isotopic Tracer for Absolute Quantification of Metabolites of the Pentose Phosphate Pathway in Bacteria. Metabolites 2022, 12, 1085. https://doi.org/10.3390/metabo12111085
Mohd Kamal K, Mahamad Maifiah MH, Zhu Y, Abdul Rahim N, Hashim YZH-Y, Abdullah Sani MS. Isotopic Tracer for Absolute Quantification of Metabolites of the Pentose Phosphate Pathway in Bacteria. Metabolites. 2022; 12(11):1085. https://doi.org/10.3390/metabo12111085
Chicago/Turabian StyleMohd Kamal, Khairunnisa, Mohd Hafidz Mahamad Maifiah, Yan Zhu, Nusaibah Abdul Rahim, Yumi Zuhanis Has-Yun Hashim, and Muhamad Shirwan Abdullah Sani. 2022. "Isotopic Tracer for Absolute Quantification of Metabolites of the Pentose Phosphate Pathway in Bacteria" Metabolites 12, no. 11: 1085. https://doi.org/10.3390/metabo12111085
APA StyleMohd Kamal, K., Mahamad Maifiah, M. H., Zhu, Y., Abdul Rahim, N., Hashim, Y. Z. H. -Y., & Abdullah Sani, M. S. (2022). Isotopic Tracer for Absolute Quantification of Metabolites of the Pentose Phosphate Pathway in Bacteria. Metabolites, 12(11), 1085. https://doi.org/10.3390/metabo12111085