Identification of Single and Combined Serum Metabolites Associated with Food Intake
Abstract
:1. Introduction
2. Results
2.1. Subject Characteristics
2.2. Diet-Metabolite Associations
2.2.1. Plant-Derived Foods
2.2.2. Animal-Derived Foods
2.2.3. Alcoholic Beverages
2.3. Combined Serum Metabolites for Prediction of Food Intake
3. Discussion
4. Materials and Methods
4.1. Subjects
4.2. Dietary Assessment
4.3. Covariate Data
4.4. Data Acquisition
4.4.1. Sampling, Sample Handling, and Preprocessing
4.4.2. NMR Spectroscopy
4.5. Statistics
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Collaborators GBDD. Health effects of dietary risks in 195 countries, 1990–2017: A systematic analysis for the Global Burden of Disease Study 2017. Lancet 2019, 393, 1958–1972. [Google Scholar] [CrossRef]
- Collaborators GBDRF. Global burden of 87 risk factors in 204 countries and territories, 1990–2019: A systematic analysis for the Global Burden of Disease Study 2019. Lancet 2020, 396, 1223–1249. [Google Scholar] [CrossRef]
- Kipnis, V.; Midthune, D.; Freedman, L.; Bingham, S.; Day, N.E.; Riboli, E.; Ferrari, P.; Carroll, R.J. Bias in dietary-report instruments and its implications for nutritional epidemiology. Public Health Nutr. 2002, 5, 915–923. [Google Scholar] [CrossRef]
- Brennan, L.; Hu, F.B. Metabolomics-Based Dietary Biomarkers in Nutritional Epidemiology-Current Status and Future Opportunities. Mol. Nutr. Food Res. 2019, 63, e1701064. [Google Scholar] [CrossRef]
- Scalbert, A.; Brennan, L.; Manach, C.; Andres-Lacueva, C.; Dragsted, L.O.; Draper, J.; Rappaport, S.M.; van der Hooft, J.J.; Wishart, D.S. The food metabolome: A window over dietary exposure. Am. J. Clin. Nutr. 2014, 99, 1286–1308. [Google Scholar] [CrossRef]
- Garcia-Aloy, M.; Hulshof, P.J.M.; Estruel-Amades, S.; Oste, M.C.J.; Lankinen, M.; Geleijnse, J.M.; de Goede, J.; Ulaszewska, M.; Mattivi, F.; Bakker, S.J.L.; et al. Biomarkers of food intake for nuts and vegetable oils: An extensive literature search. Genes Nutr. 2019, 14, 7. [Google Scholar] [CrossRef]
- Sri Harsha, P.S.C.; Wahab, R.A.; Garcia-Aloy, M.; Madrid-Gambin, F.; Estruel-Amades, S.; Watzl, B.; Andres-Lacueva, C.; Brennan, L. Biomarkers of legume intake in human intervention and observational studies: A systematic review. Genes Nutr. 2018, 13, 25. [Google Scholar] [CrossRef]
- Cuparencu, C.; Pratico, G.; Hemeryck, L.Y.; Sri Harsha, P.S.C.; Noerman, S.; Rombouts, C.; Xi, M.; Vanhaecke, L.; Hanhineva, K.; Brennan, L.; et al. Biomarkers of meat and seafood intake: An extensive literature review. Genes Nutr. 2019, 14, 35. [Google Scholar] [CrossRef]
- Li, K.J.; Brouwer-Brolsma, E.M.; Burton-Pimentel, K.J.; Vergeres, G.; Feskens, E.J.M. A systematic review to identify biomarkers of intake for fermented food products. Genes Nutr. 2021, 16, 5. [Google Scholar] [CrossRef]
- Rothwell, J.A.; Madrid-Gambin, F.; Garcia-Aloy, M.; Andres-Lacueva, C.; Logue, C.; Gallagher, A.M.; Mack, C.; Kulling, S.E.; Gao, Q.; Pratico, G.; et al. Biomarkers of intake for coffee, tea, and sweetened beverages. Genes Nutr. 2018, 13, 15. [Google Scholar] [CrossRef] [Green Version]
- Vazquez-Fresno, R.; Llorach, R.; Urpi-Sarda, M.; Khymenets, O.; Bullo, M.; Corella, D.; Fito, M.; Martinez-Gonzalez, M.A.; Estruch, R.; Andres Lacueva, C. An NMR metabolomics spproach reveals a combined-biomarkers model in a wine interventional trial with validation in free-living individuals of the PREDIMED study. Metabolomics 2015, 11, 797–806. [Google Scholar] [CrossRef]
- Trimigno, A.; Münger, L.; Picone, G.; Freiburghaus, C.; Pimentel, G.; Vionnet, N.; Pralong, F.; Capozzi, F.; Badertscher, R.; Vergères, G. GC-MS Based Metabolomics and NMR Spectroscopy Investigation of Food Intake Biomarkers for Milk and Cheese in Serum of Healthy Humans. Metabolites 2018, 8, 26. [Google Scholar] [CrossRef] [PubMed]
- Mcnamara, A.E.; Collins, C.; Harsha, P.S.C.S.; González-Peña, D.; Gibbons, H.; Mcnulty, B.A.; Nugent, A.P.; Walton, J.; Flynn, A.; Brennan, L. Metabolomic-Based Approach to Identify Biomarkers of Apple Intake. Mol. Nutr. Food Res. 2020, 64, 1901158. [Google Scholar] [CrossRef]
- Liang, S.; Nasir, R.F.; Bell-Anderson, K.S.; Toniutti, C.A.; O’Leary, F.M.; Skilton, M.R. Biomarkers of dietary patterns: A systematic review of randomized controlled trials. Nutr. Rev. 2022, 80, 1856–1895. [Google Scholar] [CrossRef] [PubMed]
- Garcia-Aloy, M.; Rabassa, M.; Casas-Agustench, P.; Hidalgo-Liberona, N.; Llorach, R.; Andres-Lacueva, C. Novel strategies for improving dietary exposure assessment: Multiple-data fusion is a more accurate measure than the traditional single-biomarker approach. Trends Food Sci. Technol. 2017, 69, 220–229. [Google Scholar] [CrossRef]
- Wang, Y.; Hodge, R.A.; Stevens, V.L.; Hartman, T.J.; McCullough, M.L. Identification and Reproducibility of Plasma Metabolomic Biomarkers of Habitual Food Intake in a US Diet Validation Study. Metabolites 2020, 10, 382. [Google Scholar] [CrossRef]
- Garcia-Aloy, M.; Llorach, R.; Urpi-Sarda, M.; Jauregui, O.; Corella, D.; Ruiz-Canela, M.; Salas-Salvado, J.; Fito, M.; Ros, E.; Estruch, R.; et al. A metabolomics-driven approach to predict cocoa product consumption by designing a multimetabolite biomarker model in free-living subjects from the PREDIMED study. Mol. Nutr. Food Res. 2015, 59, 212–220. [Google Scholar] [CrossRef]
- Garcia-Aloy, M.; Llorach, R.; Urpi-Sarda, M.; Tulipani, S.; Salas-Salvado, J.; Martinez-Gonzalez, M.A.; Corella, D.; Fito, M.; Estruch, R.; Serra-Majam, L.; et al. Nutrimetabolomics fingerprinting to identify biomarkers of bread exposure in a free-living population from the PREDIMED study cohort. Metabolomics 2015, 11, 155–165. [Google Scholar] [CrossRef]
- Garcia-Aloy, M.; Llorach, R.; Urpi-Sarda, M.; Tulipani, S.; Estruch, R.; Martinez-Gonzalez, M.A.; Corella, D.; Fito, M.; Ros, E.; Salas-Salvado, J.; et al. Novel multimetabolite prediction of walnut consumption by a urinary biomarker model in a free-living population: The PREDIMED study. J. Proteome Res. 2014, 13, 3476–3483. [Google Scholar] [CrossRef]
- Wishart, D.S.; Guo, A.; Oler, E.; Wang, F.; Anjum, A.; Peters, H.; Dizon, R.; Sayeeda, Z.; Tian, S.; Lee, B.L.; et al. HMDB 5.0: The Human Metabolome Database for 2022. Nucleic Acids Res. 2022, 50, D622–D631. [Google Scholar] [CrossRef]
- Livsmedelsverk, S. Livsmedelstabeller: Energi Och Näringsämnen; Statens Livsmedelsverk: Uppsala, Sweden, 1986. [Google Scholar]
- Matthews, D.E.; Campbell, R.G. The effect of dietary protein intake on glutamine and glutamate nitrogen metabolism in humans. Am. J. Clin. Nutr. 1992, 55, 963–970. [Google Scholar] [CrossRef]
- Schmidt, J.A.; Fensom, G.K.; Rinaldi, S.; Scalbert, A.; Gunter, M.J.; Holmes, M.V.; Key, T.J.; Travis, R.C. NMR Metabolite Profiles in Male Meat-Eaters, Fish-Eaters, Vegetarians and Vegans, and Comparison with MS Metabolite Profiles. Metabolites 2021, 11, 121. [Google Scholar] [CrossRef] [PubMed]
- Papandreou, C.; Hernandez-Alonso, P.; Bullo, M.; Ruiz-Canela, M.; Li, J.; Guasch-Ferre, M.; Toledo, E.; Clish, C.; Corella, D.; Estruch, R.; et al. High Plasma Glutamate and a Low Glutamine-to-Glutamate Ratio Are Associated with Increased Risk of Heart Failure but Not Atrial Fibrillation in the Prevencion con Dieta Mediterranea (PREDIMED) Study. J. Nutr. 2020, 150, 2882–2889. [Google Scholar] [CrossRef]
- Langenau, J.; Oluwagbemigun, K.; Brachem, C.; Lieb, W.; Giuseppe, R.D.; Artati, A.; Kastenmuller, G.; Weinhold, L.; Schmid, M.; Nothlings, U. Blood Metabolomic Profiling Confirms and Identifies Biomarkers of Food Intake. Metabolites 2020, 10, 468. [Google Scholar] [CrossRef]
- Wang, Y.; Gapstur, S.M.; Carter, B.D.; Hartman, T.J.; Stevens, V.L.; Gaudet, M.M.; McCullough, M.L. Untargeted Metabolomics Identifies Novel Potential Biomarkers of Habitual Food Intake in a Cross-Sectional Study of Postmenopausal Women. J. Nutr. 2018, 148, 932–943. [Google Scholar] [CrossRef] [PubMed]
- Gu, Y.; Zhao, A.; Huang, F.; Zhang, Y.; Liu, J.; Wang, C.; Jia, W.; Xie, G.; Jia, W. Very low carbohydrate diet significantly alters the serum metabolic profiles in obese subjects. J. Proteome Res. 2013, 12, 5801–5811. [Google Scholar] [CrossRef]
- Brien, S.E.; Ronksley, P.E.; Turner, B.J.; Mukamal, K.J.; Ghali, W.A. Effect of alcohol consumption on biological markers associated with risk of coronary heart disease: Systematic review and meta-analysis of interventional studies. BMJ 2011, 342, d636. [Google Scholar] [CrossRef]
- van Tol, A.; S van der Gaag, M.; MScheek, L.; van Gent, T.; Hendriks, H.F. Changes in postprandial lipoproteins of low and high density caused by moderate alcohol consumption with dinner. Atherosclerosis. 1998, 141 (Suppl. S1), S101-3. [Google Scholar] [CrossRef]
- Wurtz, P.; Cook, S.; Wang, Q.; Tiainen, M.; Tynkkynen, T.; Kangas, A.J.; Soininen, P.; Laitinen, J.; Viikari, J.; Kahonen, M.; et al. Metabolic profiling of alcohol consumption in 9778 young adults. Int. J. Epidemiol. 2016, 45, 1493–1506. [Google Scholar] [CrossRef]
- Lindqvist, H.M.; Radjursoga, M.; Malmodin, D.; Winkvist, A.; Ellegard, L. Serum metabolite profiles of habitual diet: Evaluation by 1H-nuclear magnetic resonance analysis. Am. J. Clin. Nutr. 2019, 110, 53–62. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lindqvist, H.M.; Radjursoga, M.; Torstensson, T.; Jansson, L.; Ellegard, L.; Winkvist, A. Urine Metabolite Profiles and Nutrient Intake Based on 4-Day Weighed Food Diary in Habitual Vegans, Vegetarians, and Omnivores. J. Nutr. 2021, 151, 30–39. [Google Scholar] [CrossRef] [PubMed]
- NNR Working Group. Nordic Nutrition Recommendations 2012. Integrating Nutrition and Physical Activity, 5th ed.; Nordic Council of Ministers: Copenhagen, Denmark, 2014. [Google Scholar]
- Pallister, T.; Jennings, A.; Mohney, R.P.; Yarand, D.; Mangino, M.; Cassidy, A.; MacGregor, A.; Spector, T.D.; Menni, C. Characterizing Blood Metabolomics Profiles Associated with Self-Reported Food Intakes in Female Twins. PLoS ONE 2016, 11, e0158568. [Google Scholar] [CrossRef]
- Cheung, W.; Keski-Rahkonen, P.; Assi, N.; Ferrari, P.; Freisling, H.; Rinaldi, S.; Slimani, N.; Zamora-Ros, R.; Rundle, M.; Frost, G.; et al. A metabolomic study of biomarkers of meat and fish intake. Am. J. Clin. Nutr. 2017, 105, 600–608. [Google Scholar] [CrossRef]
- Ek, A.; Kallings, L.V.; Ekstrom, M.; Borjesson, M.; Ekblom, O. Subjective reports of physical activity levels and sedentary time prior to hospital admission can predict utilization of hospital care and all-cause mortality among patients with cardiovascular disease. Eur. J. Cardiovasc. Nurs. 2020, 19, 691–701. [Google Scholar] [CrossRef]
- Wishart, D.S.; Jewison, T.; Guo, A.C.; Wilson, M.; Knox, C.; Liu, Y.; Djoumbou, Y.; Mandal, R.; Aziat, F.; Dong, E.; et al. HMDB 3.0--The Human Metabolome Database in 2013. Nucleic Acids Res/ 2013, 41, D801–D807. [Google Scholar] [CrossRef]
- Cloarec O, Dumas ME, Craig A, Barton RH, Trygg J, Hudson J, Blancher C, Gauguier D, Lindon JC, Holmes E, Nicholson J: Statistical total correlation spectroscopy: An exploratory approach for latent biomarker identification from metabolic 1H NMR data sets. Anal. Chem. 2005, 77, 1282–1289. [CrossRef] [PubMed]
Food/Food Group | Metabolite Identification | Rho 1 | p2 | AUC 3 |
---|---|---|---|---|
SOY | ||||
Soy beverage | Glycine | 0.319 | <0.001 | 0.710 |
Soy beans | (Asparagine) 4 | 0.252 | 0.007 | 0.891 |
Valine | 0.264 | 0.005 | 0.904 | |
Soy products | Glycine | 0.442 | <0.001 | 0.776 |
Total soy | Glycine | 0.435 | <0.001 | 0.761 |
FRUIT AND VEGETABLES | ||||
Cruciferous vegetables | Glutamine + unidentified | 0.499 | <0.001 | 0.721 |
Citrus fruits and marmalade | U 5 21 | 0.503 | <0.001 | 0.754 |
Total citrus fruits and juices | U21 | 0.628 | <0.001 | 0.743 |
NUTS AND ALMONDS | ||||
Nuts and almonds | U6 | 0.351 | <0.001 | 0.714 |
U2 | 0.397 | <0.001 | 0.745 | |
RED MEAT AND POULTRY | ||||
Red meat | (3-methylhistidine) | 0.265 | 0.004 | 0.701 |
Creatine | 0.511 | <0.001 | 0.800 | |
U6 | 0.315 | <0.001 | 0.739 | |
Valine + unidentified | 0.345 | <0.001 | 0.753 | |
Phosphocholine + acetylcholine + phosphoethanolamine + lipids/ffa | 0.274 | 0.003 | 0.704 | |
Creatinine + ornithine | 0.286 | 0.002 | 0.721 | |
Creatine + lysine | 0.535 | <0.001 | 0.824 | |
Arginine + lysine | 0.304 | 0.001 | 0.727 | |
3-hydroxyisobutyrate | 0.374 | <0.001 | 0.768 | |
Valine | 0.391 | <0.001 | 0.769 | |
(2-aminobutyrate) | 0.277 | 0.003 | 0.718 | |
Leucine | 0.333 | <0.001 | 0.742 | |
Leucine + isoleucine | 0.269 | 0.004 | 0.706 | |
Isoleucine | 0.249 | 0.008 | 0.704 | |
Meat products/Processed meat | Creatinine | 0.303 | 0.001 | 0.713 |
Creatine | 0.434 | <0.001 | 0.778 | |
Creatinine + ornithine | 0.268 | 0.004 | 0.706 | |
Creatine + lysine | 0.422 | <0.001 | 0.777 | |
3-hydroxyisobutyrate | 0.331 | <0.001 | 0.749 | |
Leucine | 0.283 | 0.002 | 0.701 | |
Poultry | Creatine | 0.518 | <0.001 | 0.870 |
U5 | 0.335 | <0.001 | 0.743 | |
Valine + unidentified | 0.343 | <0.001 | 0.751 | |
Creatine + lysine | 0.524 | <0.001 | 0.886 | |
3-hydroxyisobutyrate | 0.384 | <0.001 | 0.819 | |
Valine | 0.380 | <0.001 | 0.764 | |
Leucine | 0.306 | <0.001 | 0.721 | |
Leucine + isoleucine | 0.303 | 0.001 | 0.700 | |
Total meat | Creatinine | 0.364 | <0.001 | 0.724 |
Creatine | 0.553 | <0.001 | 0.805 | |
Valine + unidentified | 0.344 | <0.001 | 0.730 | |
Valine + unidentified | 0.382 | <0.001 | 0.750 | |
Creatinine + ornithine | 0.322 | <0.001 | 0.721 | |
Creatine + lysine | 0.551 | <0.001 | 0.814 | |
Arginine + lysine | 0.328 | <0.001 | 0.730 | |
3-hydroxyisobutyrate | 0.396 | <0.001 | 0.765 | |
Valine | 0.435 | <0.001 | 0.765 | |
(2-aminobutyrate) | 0.289 | 0.002 | 0.728 | |
Leucine | 0.382 | <0.001 | 0.753 | |
Isoleucine | 0.290 | 0.002 | 0.720 | |
SEAFOOD | ||||
Fatty fish | Creatine | 0.314 | <0.001 | 0.747 |
Creatine + lysine | 0.283 | 0.002 | 0.733 | |
Lean fish | Creatine + lysine | 0.274 | 0.003 | 0.716 |
Shellfish | Creatine | 0.245 | 0.009 | 0.706 |
Total fish and shellfish | Creatine | 0.414 | <0.001 | 0.748 |
Creatine + lysine | 0.443 | <0.001 | 0.770 | |
3-hydroxyisobutyrate | 0.302 | 0.001 | 0.709 | |
EGGS | ||||
Eggs | Creatine + lysine | 0.334 | <0.001 | 0.700 |
3-hydroxyisobutyrate | 0.370 | <0.001 | 0.728 | |
Valine | 0.418 | <0.001 | 0.723 | |
(2-aminobutyrate) | 0.353 | <0.001 | 0.719 | |
Leucine | 0.436 | <0.001 | 0.735 | |
Isoleucine | 0.364 | <0.001 | 0.712 | |
DAIRY | ||||
Milk | Creatine | 0.420 | <0.001 | 0.730 |
Creatine + lysine | 0.480 | <0.001 | 0.780 | |
Arginine + lysine | 0.391 | <0.001 | 0.741 | |
3-hydroxyisobutyrate | 0.289 | 0.002 | 0.701 | |
Fermented dairy products | Creatine | 0.371 | <0.001 | 0.726 |
Valine + unidentified | 0.353 | <0.001 | 0.705 | |
Creatine + lysine | 0.452 | <0.001 | 0.777 | |
Arginine + lysine | 0.287 | 0.002 | 0.713 | |
Valine | 0.407 | <0.001 | 0.714 | |
(2-aminobutyrate) | 0.303 | 0.001 | 0.715 | |
Cheese | Creatine + lysine | 0.328 | <0.001 | 0.743 |
(2-aminobutyrate) | 0.309 | <0.001 | 0.708 | |
Total dairy | Creatine | 0.458 | <0.001 | 0.749 |
Valine + unidentified | 0.333 | <0.001 | 0.700 | |
Valine + unidentified | 0.394 | <0.001 | 0.723 | |
Creatine + lysine | 0.524 | <0.001 | 0.804 | |
Arginine + lysine | 0.355 | <0.001 | 0.743 | |
3-hydroxyisobutyrate | 0.357 | <0.001 | 0.736 | |
Valine | 0.442 | <0.001 | 0.747 | |
(2-aminobutyrate) | 0.330 | <0.001 | 0.732 | |
Leucine | 0.416 | <0.001 | 0.724 | |
Isoleucine | 0.384 | <0.001 | 0.714 | |
ALCOHOLIC BEVERAGES | ||||
Beer | Glucose + lysine + unidentified | 0.258 | 0.005 | 0.718 |
Isoleucine + unidentified | 0.249 | 0.007 | 0.735 | |
Glucose | 0.250 | 0.007 | 0.707 | |
Lipids/ffa + (methylguanidine) | 0.378 | <0.001 | 0.799 | |
Lipids/ffa | 0.244 | 0.009 | 0.758 | |
Proline | 0.253 | 0.007 | 0.709 | |
Proline + unidentified | 0.272 | 0.003 | 0.752 | |
White wine | (Xylose) | 0.244 | 0.009 | 0.702 |
Spirits | Lactate + proline + 3-hydroxybutyrate | 0.260 | 0.005 | 0.844 |
Citrate | 0.251 | 0.007 | 0.782 |
Food/Food Group | Metabolite Identification | Rho 1 | p2 | AUC 3 |
---|---|---|---|---|
Soy beans | (Asparagine) 4 | 0.252 | 0.007 | 0.891 |
Valine | 0.264 | 0.005 | 0.904 | |
Combined metabolite model | 0.301 | 0.001 | 0.967 | |
Citrus fruits and marmelade | U 5 22 | 0.248 | 0.008 | 0.637 |
U21 | 0.503 | <0.001 | 0.754 | |
Combined metabolite model | 0.515 | <0.001 | 0.780 | |
Nuts and almonds | U4 | 0.299 | 0.001 | 0.696 |
U2 | 0.397 | <0.001 | 0.745 | |
Combined metabolite model | 0.442 | <0.001 | 0.749 | |
Green/herbal tea | Asparagine | 0.255 | 0.006 | 0.641 |
Glycine | 0.242 | 0.009 | 0.643 | |
Combined metabolite model | 0.306 | <0.001 | 0.686 | |
Red meat | (3-methylhistidine) | 0.265 | 0.004 | 0.701 |
Creatine + lysine | 0.535 | <0.001 | 0.824 | |
Leucine | 0.333 | <0.001 | 0.742 | |
Combined metabolite model | 0.631 | <0.001 | 0.924 | |
Meat products/Processed meat | Creatinine | 0.303 | 0.001 | 0.713 |
Creatine + lysine | 0.422 | <0.001 | 0.777 | |
Combined metabolite model | 0.482 | <0.001 | 0.849 | |
Poultry | Creatine + lysine | 0.524 | <0.001 | 0.886 |
Valine | 0.380 | <0.001 | 0.764 | |
Combined metabolite model | 0.577 | <0.001 | 0.939 | |
Meat total | Creatinine | 0.364 | <0.001 | 0.724 |
Creatine + lysine | 0.551 | <0.001 | 0.814 | |
Valine | 0.435 | <0.001 | 0.765 | |
Combined metabolite model | 0.681 | <0.001 | 0.932 | |
Fish and shellfish total | Creatine + lysine | 0.443 | <0.001 | 0.770 |
Valine | 0.250 | 0.007 | 0.659 | |
Combined metabolite model | 0.416 | <0.001 | 0.772 | |
Eggs | Valine + unidentified | 0.316 | <0.001 | 0.680 |
Creatine + lysine | 0.334 | <0.001 | 0.700 | |
Valine | 0.418 | <0.001 | 0.723 | |
(2-aminobutyrate) | 0.353 | <0.001 | 0.719 | |
Combined metabolite model | 0.591 | <0.001 | 0.838 | |
Milk | Creatine + lysine | 0.480 | <0.001 | 0.780 |
Arginine + lysine | 0.391 | <0.001 | 0.741 | |
Combined metabolite model | 0.532 | <0.001 | 0.818 | |
Fermented dairy | Creatine + lysine | 0.452 | <0.001 | 0.777 |
Valine | 0.407 | <0.001 | 0.714 | |
Leucine + isoleucine | 0.241 | <0.001 | 0.611 | |
Combined metabolite model | 0.577 | <0.001 | 0.847 | |
Cheese | Creatine + lysine | 0.328 | <0.001 | 0.743 |
(2-aminobutyrate) | 0.309 | <0.001 | 0.708 | |
Combined metabolite model | 0.372 | <0.001 | 0.762 | |
Dairy total | Creatine + lysine | 0.524 | <0.001 | 0.804 |
Valine | 0.442 | <0.001 | 0.747 | |
(2-aminobutyrate) | 0.330 | <0.001 | 0.732 | |
Leucine + isoleucine | 0.266 | 0.004 | 0.626 | |
Combined metabolite model | 0.645 | <0.001 | 0.889 | |
Beer | Isoleucine + unidentified | 0.249 | 0.007 | 0.735 |
Lipids/ffa+ (methylguanidine) | 0.378 | <0.001 | 0.799 | |
Lipids/ffa | 0.244 | 0.009 | 0.758 | |
Proline | 0.253 | 0.007 | 0.709 | |
Combined metabolite model | 0.365 | <0.001 | 0.835 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Karlsson, T.; Winkvist, A.; Rådjursöga, M.; Ellegård, L.; Pedersen, A.; Lindqvist, H.M. Identification of Single and Combined Serum Metabolites Associated with Food Intake. Metabolites 2022, 12, 908. https://doi.org/10.3390/metabo12100908
Karlsson T, Winkvist A, Rådjursöga M, Ellegård L, Pedersen A, Lindqvist HM. Identification of Single and Combined Serum Metabolites Associated with Food Intake. Metabolites. 2022; 12(10):908. https://doi.org/10.3390/metabo12100908
Chicago/Turabian StyleKarlsson, Therese, Anna Winkvist, Millie Rådjursöga, Lars Ellegård, Anders Pedersen, and Helen M. Lindqvist. 2022. "Identification of Single and Combined Serum Metabolites Associated with Food Intake" Metabolites 12, no. 10: 908. https://doi.org/10.3390/metabo12100908
APA StyleKarlsson, T., Winkvist, A., Rådjursöga, M., Ellegård, L., Pedersen, A., & Lindqvist, H. M. (2022). Identification of Single and Combined Serum Metabolites Associated with Food Intake. Metabolites, 12(10), 908. https://doi.org/10.3390/metabo12100908