Effects of Various Processing Methods on the Metabolic Profile and Antioxidant Activity of Dendrobium catenatum Lindley Leaves
Abstract
:1. Introduction
2. Results and Discussion
2.1. Leaf Morphology
2.2. Antioxidant Activities of D. catenatum Leaves
2.3. Total Flavonoid and Water-Soluble Polysaccharide Content of D. catenatum Leaves
2.4. Correlations between Antioxidant Activity and Metabolite Content
2.5. HPLC Fingerprinting and Similarity Analyses
2.6. HCA and PCA Results
2.7. Identification of Metabolites by HPLC-DAD/ESI-MSn
3. Discussion
4. Materials and Methods
4.1. Preparation of Plant Materials
4.2. Sample Preparation
4.3. Chemicals and Reagents
4.4. Preparation of Test Sample Solutions for Total Flavonoid, Metabolite, and Antioxidant Capacity Analyses
4.5. Preparation of Test Samples for Water-Soluble Polysaccharide and Antioxidant Capacity Analyses
4.6. Determination of the DPPH Free-Radical-Scavenging Activities of Leaf Extracts
4.7. Determination of the ABTS+ Free-Radical-Scavenging Activities of Leaf Extracts
4.8. Determination of Total Flavonoid Content
4.9. Determination of the Water-Soluble Polysaccharide Content
4.10. HPLC Fingerprinting
4.11. Data Processing and Statistical Analyses
4.12. Identification of Metabolites by HPLC-DAD/ESI-MSn and HR-ESI-MS
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Si, J.P.; Zhang, Y.; Luo, Y.B.; Liu, J.J.; Liu, Z.J. Herbal textual research on relationship between Chinese medicine”Shihu” (Dendrobium spp.) and “Tiepi Shihu” (D. catenatum). China J. Chin. Mater. Med. 2017, 42, 2001–2005. [Google Scholar]
- Niu, Z.; Zhu, F.; Fan, Y.; Li, C.; Zhang, B.; Zhu, S.; Hou, Z.; Wang, M.; Yang, J.; Xue, Q. The chromosome-level reference genome assembly for Dendrobium officinale and its utility of functional genomics research and molecular breeding study. Acta Pharm. Sin. B 2021, in press. [Google Scholar] [CrossRef]
- Tian, L.; Hu, Y.; Chen, X.Y. Advancing Human Health through Exploration of Plant Metabolism and Reaping the Benefits of Edible Medicinal Plants. Mol. Plant 2017, 10, 533–536. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, X.; Ding, X.; Chu, B.; Qi, Z.; Ge, D.; Sun, G. Genetic diversity analysis and conservation of the endangered Chinese endemic herb Dendrobium officinale Kimura et Migo (Orchidaceae) based on AFLP. Genetica 2008, 133, 159–166. [Google Scholar] [CrossRef]
- Si, J.P.; Wang, Q.; Liu, Z.J.; Liu, J.J.; Luo, Y.B. Breakthrough in key science and technologies in Dendrobium catenatum industry. China J. Chin. Mater. Med. 2017, 42, 2223–2227. [Google Scholar]
- Liu, Z.P.; Guo, Y.Y.; Iu, J.J.; Si, J.P.; Wu, L.S.; Zhang, X.F. Effect of strains and parts on amino acids of Dendrobium officinale. China J. Chin. Mater. Med. 2015, 40, 1468–1472. [Google Scholar]
- Liu, Z.P.; Xu, C.X.; Liu, J.J.; Si, J.P.; Zhang, X.F.; Wu, L.S. Study on accumulation of polysaccharides and alcohol-soluble extracts contents of Dendrobium officinale leaves. China J. Chin. Mater. Med. 2015, 40, 2314. [Google Scholar]
- Wang, Y.H. Traditional uses, chemical constituents, pharmacological activities, and toxicological effects of Dendrobium leaves: A review. J. Ethnopharmacol. 2021, 270, 113851. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Zhang, L.; Liu, J.; Liang, J.; Si, J.; Wu, S. Dendrobium officinale leaves as a new antioxidant source. J. Funct. Foods 2017, 37, 400–415. [Google Scholar] [CrossRef]
- Yang, K.; Lu, T.; Zhan, L.; Zhou, C.; Zhang, N.; Lei, S.; Wang, Y.; Yang, J.; Yan, M.; Lv, G.; et al. Physicochemical characterization of polysaccharide from the leaf of Dendrobium officinale and effect on LPS induced damage in GES-1 cell. Int. J. Biol. Macromol. 2020. [Google Scholar] [CrossRef]
- Zhou, J.; Gong, Y.; Ma, H.; Wang, H.; Qian, D.; Wen, H.; Liu, R.; Duan, J.; Wu, Q. Effect of drying methods on the free and conjugated bufadienolide content in toad venom determined by ultra-performance liquid chromatography-triple quadrupole mass spectrometry coupled with a pattern recognition approach. J. Pharm. Biomed. Anal. 2015, 114, 482–487. [Google Scholar] [CrossRef]
- Nakilcioğlu-Taş, E.; Coşan, G.; Ötleş, S. Optimization of process conditions to improve the quality properties of healthy watermelon snacks developed by hot-air drying. J. Food Meas. Charact. 2021. [Google Scholar] [CrossRef]
- Nguyen, V.T.; Quan, V.V.; Bowyer, M.C. Effects of different drying methods on bioactive compound yield and antioxidant capacity of Phyllanthus amarus. Dry. Technol. 2015, 33, 1006–1017. [Google Scholar] [CrossRef]
- Li, C.; Ning, L.D.; Si, J.P.; Wu, L.S.; Liu, J.J.; Song, X.S.; Yu, Q.X. Effects of post-harvest processing and extraction methods on polysaccharides content of Dendrobium officinale. China J. Chin. Mater. Med. 2013, 38, 524–527. [Google Scholar]
- Yuste, S.; Macià, A.; Motilva, M.J.; Prieto-Diez, N.; Rubió, L. Thermal and non-thermal processing of red-fleshed apple: How are (poly)phenol composition and bioavailability affected? Food Funct. 2020, 11, 10436. [Google Scholar] [CrossRef] [PubMed]
- Hirono, H.; Uesugi, R. Changes in the content of pectic substances in tea leaves (Camellia sinensis L.) during steam processing of green tea. Food Sci. Technol. Res. 2014, 20, 859–865. [Google Scholar] [CrossRef] [Green Version]
- Jie, X.; Hu, F.L.; Wei, W.; Wan, X.C.; Bao, G.H. Investigation on biochemical compositional changes during the microbial fermentation process of Fu brick tea by LC–MS based metabolomics. Food Chem. 2015, 186, 176. [Google Scholar]
- Tomlins, K.I.; Mashingaidze, A. Influence of withering, including leaf handling, on the manufacturing and quality of black teas—A review. Food Chem. 1997, 60, 573–580. [Google Scholar] [CrossRef]
- Peng, F.; Chen, J.; Wang, X.; Xu, C.; Liu, T.; Xu, R. Changes in levels of phenylethanoid glycosides, antioxidant activity, and other quality traits in Cistanche deserticola Y. C. Ma slices by steam processing. Chem. Pharm. Bull. 2016, 64, 1024–1030. [Google Scholar] [CrossRef] [Green Version]
- Jeszka-Skowron, M.; Frankowski, R.; Zgoła-Grześkowiak, A. Comparison of methylxantines, trigonelline, nicotinic acid and nicotinamide contents in brews of green and processed Arabica and Robusta coffee beans—Influence of steaming, decaffeination and roasting processes on coffee beans. LWT Food Sci. Technol. 2020, 125, 109344. [Google Scholar] [CrossRef]
- Zhou, G.; Lv, G. Comparative studies on scavenging DPPH free radicals activity of flavone C-glycosides from different parts of Dendrobium officinale. China J. Chin. Mater. Med. 2012, 37, 1536–1540. [Google Scholar]
- Wang, J.; Chen, H.X.; Xing, L.S.; Wang, Y.W.; Huang, Y.H.; Liu, H.Q. Comparative Analysis of Bioactive Components of Dendrobium candidum from Different Producing Areas of Hainan. Nat. Prod. Res. Dev. 2015, 27, 768. [Google Scholar]
- Voet, D.R.; Gratzer, W.B.; Cox, R.A.; Doty, P. Absorption spectra of nucleotides, polynucleotides, and nucleic acids in the far ultraviolet. Biopolymers 1963, 1, 193–208. [Google Scholar] [CrossRef]
- Dong, X.; Wang, L. The determination of amino acids of ultraviolet absorption spectrum. J. Dezhou Univ. 2015, 31, 44–46. [Google Scholar]
- Tao, Y.; Cai, H.; Li, W.; Cai, B. Ultrafiltration coupled with high-performance liquid chromatography and quadrupole-time-of-flight mass spectrometry for screening lipase binders from different extracts of Dendrobium officinale. Anal. Bioanal. Chem. 2015, 407, 1–13. [Google Scholar] [CrossRef]
- Benayad, Z.; Gómez-Cordovés, C.; Es-Safi, N.E. Identification and quantification of flavonoid glycosides from fenugreek (Trigonella foenum-graecum) germinated seeds by LC–DAD–ESI/MS analysis. J. Food Compos. Anal. 2014, 35, 21–29. [Google Scholar] [CrossRef] [Green Version]
- Farag, M.A.; Otify, A.; Porzel, A.; Michel, C.G.; Elsayed, A.; Wessjohann, L.A. Comparative metabolite profiling and fingerprinting of genus Passiflora leaves using a multiplex approach of UPLC-MS and NMR analyzed by chemometric tools. Anal. Bioanal. Chem. 2016, 408, 1–19. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, S.; Gao, B.; Qian, Z.; Liu, J.; Wu, S.; Si, J. Identifcation and quantitative analysis of phenolic glycosides with antioxidant activity in methanolic extract of Dendrobium catenatum flowers and selection of quality control herb-markers. Food Res. Int. 2019, 123, 732–745. [Google Scholar] [CrossRef]
- Zhou, G.F.; Lv, G.Y. Study on eight flavone C-glycosides in Dendrobium officinale leaves and their fragmentation pattern by HPLC-DAD-ESI-MSn. Chin. Pharm. J. 2012, 47, 13–19. [Google Scholar]
- Lin, Q.; Ni, H.; Wu, L.; Weng, S.Y.; Chen, F. Analysis of aroma-active volatiles in an SDE extract of white tea. Food Sci. Nutr. 2021, 9, 605–615. [Google Scholar] [CrossRef]
- Suri, K.; Singh, B.; Kaur, A.; Singh, N. Influence of dry air and infrared pre-treatments on oxidative stability, Maillard reaction products and other chemical properties of linseed (Linum usitatissimum L.) oil. J. Food Sci. Technol. 2021, 1–11. [Google Scholar] [CrossRef]
- Mphahlele, R.R.; Fawole, O.A.; Makunga, N.P.; Opara, U.L. Effect of drying on the bioactive compounds, antioxidant, antibacterial and antityrosinase activities of pomegranate peel. BMC Complementary Altern. Med. 2016, 16, 143. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yulianto, M.E.; Senen, S.; Ariwibowo, D. Studi awal rekayasa proses produksi teh hijau berkatekin tinggi melalui teknologi steaming. Metana 2007, 4, 1–7. [Google Scholar]
- Jiao, Y.; Quan, W.; He, Z.; Gao, D.; Qin, F.; Zeng, M.; Chen, J. Effects of Catechins on N-(Carboxymethyl)lysine and N-(Carboxyethyl)lysine Formation in Green Tea and Model Systems. J. Agric. Food Chem. 2019, 67, 1254–1260. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Hua, J.; Jiang, Y.; Yang, Y.; Wang, J.; Yuan, H. Influence of fixation methods on the chestnut-like aroma of green tea and dynamics of key aroma substances-ScienceDirect. Food Res. Int. 2020, 136, 109479. [Google Scholar] [CrossRef]
- Fang, Z.T.; Song, C.J.; Xu, H.; Ye, J.H. Dynamic changes in flavonol glycosides during production of green, yellow, white, oolong and black teas from Camellia sinensis L. (cv. Fudingdabaicha). Int. J. Food Sci. Technol. 2019, 54, 490–498. [Google Scholar] [CrossRef]
- Lai, L. The role of enzymes in Oolong tea processing. Fujian Tea 2004, 4, 22–23. [Google Scholar]
- Singh, R.; Singh, R.K. Role of enzyme in fruit juices clarification during processing: A review. Int. J. Biol. Sci. 2015, 6, 1–12. [Google Scholar]
- Zhu, Y.; Luo, Y.; Wang, P.; Zhao, M.; Li, L.; Hu, X.; Chen, F. Simultaneous determination of free amino acids in Pu-erh tea and their changes during fermentation. Food Chem. 2016, 194, 643–649. [Google Scholar] [CrossRef]
- Zhu, S.; Guo, S.; Duan, J.A.; Qian, D.; Yan, H.; Sha, X.; Zhu, Z. UHPLC-TQ-MS coupled with multivariate statistical analysis to characterize nucleosides, nucleobases and amino acids in Angelicae Sinensis Radix obtained by different drying methods. Molecules 2017, 22, 918. [Google Scholar]
- Kiehne, A.; Engelhardt, U.H. Thermospray-LC-MS analysis of various groups of polyphenols in tea: I. Catechins, flavonol O-glycosides and flavone C-glycosides. Zeitschrift für Le0bensmittel-Untersuchung und -Forschung 1996, 202, 48–54. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.L.; Si, J.P.; Wu, L.S.; Guo, Y.Y.; Yu, J.; Wang, L.H. Field experiment of F1 generation and superior families selection of Dendrobium officinale. China J. Chin. Mater. Med. 2013, 38, 3861. [Google Scholar]
- Zhang, X.L.; Liu, J.J.; Wu, L.S.; Si, J.P.; Guo, Y.Y.; Yu, J.; Wang, L.H. Quantitive variation of polysaccharides and alcohol-soluble extracts in F1 generation of Dendrobium officinale. China J. Chin. Mater. Med. 2013, 38, 3687–3690. [Google Scholar]
- Si, J.P.; Dong, H.X.; Liao, X.Y.; Zhu, Y.Q.; Li, H. Dendrobium officinale stereoscopic cultivation method. China J. Chin. Mater. Med. 2014, 39, 4576–4579. [Google Scholar]
- Lin, Y.K.; Zhu, Y.Q.; Si, J.P.; Qin, L.; Zhu, Y.; Wu, L.S.; Liu, J.J. Effects of cultivation environments on Dendrobium catenatum. China J. Chin. Mater. Med. 2017, 3084–3089. [Google Scholar]
- Li, Y.; Liu, J.J.; Zhang, X.F.; Wu, S.H.; Li, S.P.; Si, J.P. Study on quantification method of non-starch polysaccharides in Dendrobium catenatum. China J. Chin. Mater. Med. 2019, 44, 3221–3225. [Google Scholar]
- Shahidi, F.; Zhong, Y. Measurement of antioxidant activity. J. Funct. Foods 2015, 18, 757–781. [Google Scholar] [CrossRef]
- Zhou, H.; Liang, J.; Lv, D.; Hu, Y.; Zhu, Y.; Si, J.; Wu, S. Characterization of phenolics of Sarcandra glabra by non-targeted high-performance liquid chromatography fingerprinting and following targeted electrospray ionisation tandem mass spectrometry/time-of-flight mass spectrometry analyses. Food Chem. 2013, 138, 2390–2398. [Google Scholar] [CrossRef]
- Chirinos, R.; Pedreschi, R.; Rogez, H.; Larondelle, Y.; Campos, D. Phenolic compound contents and antioxidant activity in plants with nutritional and/or medicinal properties from the Peruvian Andean region. Ind. Crop. Prod. 2013, 47, 145–152. [Google Scholar] [CrossRef]
- D’Urso, G.; Mes, J.J.; Montoro, P.; Hall, R.D.; Vos, R. Identification of Bioactive Phytochemicals in Mulberries. Metabolites 2020, 10, 7. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.Y.; Guo, Y.; Si, J.P.; Sun, X.B.; Sun, G.B.; Liu, J.J. A polysaccharide of Dendrobium officinale ameliorates H2O2-induced apoptosis in H9c2 cardiomyocytes via PI3K/AKT and MAPK pathways. Int. J. Biol. Macromol. 2017, 104, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Saeed, A.I.; Sharov, V.; White, J.; Li, J.; Liang, W.; Bhagabati, N.; Braisted, J.; Klapa, M.; Currier, T.; Thiagarajan, M. TM4: A free, open-source system for microarray data management and analysis. Biotechniques 2003, 34, 374–378. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Treatments | Abbreviation | Drying Temperature | ||
---|---|---|---|---|
Freeze drying | FD | −60 °C | ||
Hot-air drying | D | 60 °C | 80 °C | 100 °C |
Rolling before drying | RD | 60 °C | 80 °C | 100 °C |
Steaming before drying | SD | 60 °C | 80 °C | 100 °C |
Steaming and rolling before drying | SRD | 60 °C | 80 °C | 100 °C |
Peak. | Rt (min) | λ max (nm) | Compound Names | Molecular Weight (Da) | Error (ppm) | ESI-MS [M+H]+ (m/z) | ESI-MS [M-H]− (m/z) | Negative ESI-MS/MS (Relative Abundance, %) | Type |
---|---|---|---|---|---|---|---|---|---|
F1 | 2.88 | 223, 281 | Cytidylic acid | 323.0524 | −1.76 | 324.57 | - | - | Nucleoside |
F2 | 3.20 | 223, 275 | Uridylic acid | 324.0355 | 1.05 | 324.71 | - | - | Nucleoside |
F3 | 3.41 | 224 | Arginine | 174.1105 | 6.69 | 173.99 | - | - | Amino acid |
F4 | 4.53 | - | Unknown | - | - | - | - | - | Unknown |
F5 | 5.24 | 215, 263 | Unknown | - | - | - | - | - | Nucleoside analogue |
F6 | 6.78 | 218, 260 | Tyrosine | 181.0738 | 0.30 | 182.44 | - | - | Amino acid |
F7 | 7.79 | 215, 298 | Hydroxybenzoic acid hexose | 300.0844 | 0.53 | 301.00 | - | - | Monoaromatic |
F8 | 9.64 | 217, 265 | Phenylalanine | 165.0788 | 1.00 | 166.30 | - | - | Amino acid |
F9 | 10.41 | 218, 282 | Tryptophan | 204.0914 | −7.42 | 204.66 | - | - | Amino acid |
F10 | 22.97 | 296 | Unknown | - | - | - | - | - | Unknown |
F11 | 26.20 | 272, 322 | Vicenin II | 594.1620 | −0.80 | 594.78 | 593.08 | 593 (47), 575 (9), 503 (32), 473 (100), 455 (5), 383 (11), 353 (13) | Flavonoid C-glycoside |
F12 | 31.45 | 272, 322 | Vicenin I | 564.1504 | 4.38 | 564.78 | 563.07 | 563 (4), 545 (30), 503 (73), 473 (100), 443 (67), 425 (7), 383 (22), 353 (30) | Flavonoid C-glycoside |
F13 | 33.98 | 272, 322 | Isoschaftoside | 564.1507 | 5.03 | 564.83 | 563.08 | 563 (21), 545 (17), 503 (82), 473 (100), 443 (92), 425 (11), 383 (33), 353 (25) | Flavonoid C-glycoside |
F14 | 34.51 | 272, 322 | Schaftoside | 564.1479 | −1.78 | 564.91 | 563.11 | 563 (11), 545 (14), 503 (7), 473 (48), 443 (100), 425 (2), 413 (2), 383 (7), 353 (16) | Flavonoid C-glycoside |
F15 | 42.18 | 272, 322 | Apigenin 6-C-β-D-xyloside-8-C-α-L-arabinoside | 534.1407 | 6.29 | 534.75 | 533.02 | 533 (57), 473 (19), 443 (100), 383 (13) | Flavonoid C-glycoside |
F16 | 45.26 | 272, 322 | Apigenin 6, 8-di-C-α-L-arabinoside | 534.1381 | 6.51 | 534.80 | 533.18 | 533 (12), 515 (18), 503 (2), 473 (45), 443 (100), 425 (5), 413 (3), 383 (7), 353 (5) | Flavonoid C-glycoside |
F17 | 47.10 | 272, 322 | Apigenin 6-C-α-L-arabinoside-8-C-β-D-xyloside | 534.1398 | 4.68 | 534.85 | 533.15 | 533 (20), 515 (9), 503 (2), 473 (74), 443 (100), 425 (5), 383 (19), 353 (11) | Flavonoid C-glycoside |
F18 | 48.07 | 257, 352 | Rutin | 610.1562 | −5.96 | 610.57 | 609.10 | 609 (30), 591 (4), 463 (2), 373 (3), 343 (15), 301 (100), 271 (10) | Flavonoid O-glycoside |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, J.-J.; Liu, Z.-P.; Zhang, X.-F.; Si, J.-P. Effects of Various Processing Methods on the Metabolic Profile and Antioxidant Activity of Dendrobium catenatum Lindley Leaves. Metabolites 2021, 11, 351. https://doi.org/10.3390/metabo11060351
Liu J-J, Liu Z-P, Zhang X-F, Si J-P. Effects of Various Processing Methods on the Metabolic Profile and Antioxidant Activity of Dendrobium catenatum Lindley Leaves. Metabolites. 2021; 11(6):351. https://doi.org/10.3390/metabo11060351
Chicago/Turabian StyleLiu, Jing-Jing, Zhen-Peng Liu, Xin-Feng Zhang, and Jin-Ping Si. 2021. "Effects of Various Processing Methods on the Metabolic Profile and Antioxidant Activity of Dendrobium catenatum Lindley Leaves" Metabolites 11, no. 6: 351. https://doi.org/10.3390/metabo11060351
APA StyleLiu, J. -J., Liu, Z. -P., Zhang, X. -F., & Si, J. -P. (2021). Effects of Various Processing Methods on the Metabolic Profile and Antioxidant Activity of Dendrobium catenatum Lindley Leaves. Metabolites, 11(6), 351. https://doi.org/10.3390/metabo11060351