Preliminary Results of CitraVes™ Effects on Low Density Lipoprotein Cholesterol and Waist Circumference in Healthy Subjects after 12 Weeks: A Pilot Open-Label Study
Abstract
:1. Introduction
2. Results
2.1. Chemical and Biophysical Characterization of the Supplement
2.2. Effects of the Supplement on Clinical and Haematobiochemical Parameters
3. Discussion
4. Materials and Methods
4.1. Design of the Study
4.2. Clinical Variables
4.3. Biochemical Analyses
4.4. Determination of Chemical Analytes in the Supplement
4.5. Size Distribution Determined by Dynamic Light Scattering (DLS)
4.6. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hartley, A.; Marshall, D.C.; Salciccioli, J.D.; Sikkel, M.B.; Maruthappu, M.; Shalhoub, J. Trends in mortality from ischemic heart disease and cerebrovascular disease in europe: 1980 to 2009. Circulation 2016, 133, 1916–1926. [Google Scholar] [CrossRef] [Green Version]
- Townsend, N.; Wilson, L.; Bhatnagar, P.; Wickramasinghe, K.; Rayner, M.; Nichols, M. Cardiovascular disease in Europe 2016: An epidemiological update. Eur. Heart J. 2016, 37, 3182–3183. [Google Scholar] [CrossRef]
- Imamura, F.; Micha, R.; Khatibzadeh, S.; Fahimi, S.; Shi, P.; Powles, J.; Mozaffarian, D. Dietary quality among men and women in 187 countries in 1990 and 2010: A systematic assessment. Lancet Glob. Health 2015, 3, e132–e142. [Google Scholar] [CrossRef] [Green Version]
- Dolzhenko, M.M.; Barnett, O.Y.; Grassos, C.; Dragomiretska, N.V.; Goloborodko, B.I.; Ilashchuk, T.O.; Zuiev, K.O.; Karpenko, O.V.; Kolesnikova, O.V.; Kolesnyk, T.V.; et al. Management of dyslipidemia in individuals with low-to-moderate cardiovascular risk: Role of nutraceuticals. Adv. Ther. 2020, 37, 4549–4567. [Google Scholar] [CrossRef] [PubMed]
- Aronson, J.K. Defining “nutraceuticals”: Neither nutritious nor pharmaceutical. Br. J. Clin. Pharmacol. 2017, 83, 8–19. [Google Scholar] [CrossRef] [PubMed]
- Catapano, A.L.; Graham, I.; De Backer, G.; Wiklund, O.; Chapman, M.J.; Drexel, H.; Hoes, A.W.; Jennings, C.S.; Landmesser, U.; Pedersen, T.P.; et al. 2016 ESC/EAS guidelines for the management of dyslipidaemias: The task force for the management of dyslipidaemias of the European Society of Cardiology (ESC) and European Atherosclerosis Society (EAS) developed with the special contribution of the European Association for Cardiovascular Prevention & Rehabilitation (EACPR). Atherosclerosis 2016, 253, 281–344. [Google Scholar] [PubMed] [Green Version]
- Perk, J.; De Backer, G.; Gohlke, H.; Graham, I.; Reiner, Z.; Verschuren, M.; Albus, C.; Benlian, P.; Boysen, G.; Cifkova, R.; et al. European guidelines on cardiovascular disease prevention in clinical practice (version 2012). The fifth joint task force of the European Society of Cardiology and other societies on cardiovascular disease prevention in clinical practice (constituted by representatives of nine societies and by invited experts). Eur. Heart J. 2012, 33, 1635–1701. [Google Scholar]
- Baldini, V.; Mastropasqua, M.; Francucci, C.M.; D’Erasmo, E. Cardiovascular disease and osteoporosis. J. Endocrinol. Investig. 2005, 28, 69–72. [Google Scholar]
- Carbone, L.D.; Ortiz-Kaemena, M.F.; Elam, R.E. Heart failure and osteoporosis: An association that merits further study. Pol. Arch. Intern. Med. 2020, 130, 928–929. [Google Scholar] [CrossRef]
- Chuang, T.L.; Chuang, M.H.; Koo, M.; Lin, C.H.; Wang, Y.F. Association of bone mineral density and trabecular bone score with cardiovascular disease. Tzu-Chi Med. J. 2020, 32, 234–239. [Google Scholar]
- Gu, Z.; Yuanyuan, Y.; Lingyu, Z.; Cong, C. Assessment of the risk of incident heart failure in patients with osteoporosis: A systematic review and meta-analysis of eligible cohort studies. Pol. Arch. Intern. Med. 2020, 130, 934–941. [Google Scholar] [CrossRef]
- Poli, A.; Barbagallo, C.M.; Cicero, A.F.G.; Corsini, A.; Manzato, E.; Trimarco, B.; Bernini, F.; Visioli, F.; Bianchi, A.; Canzone, G.; et al. Nutraceuticals and functional foods for the control of plasma cholesterol levels. An intersociety position paper. Pharmacol. Res. 2018, 134, 51–60. [Google Scholar] [CrossRef]
- Cicero, A.F.G.; Colletti, A.; Bajraktari, G.; Descamps, O.; Djuric, D.M.; Ezhov, M.; Fras, Z.; Katsiki, N.; Langlois, M.; Latkovskis, G.; et al. Lipid lowering nutraceuticals in clinical practice: Position paper from an international lipid expert panel. Arch. Med Sci. 2017, 13, 965–1005. [Google Scholar] [CrossRef]
- Banach, M.; Patti, A.M.; Giglio, R.V.; Cicero, A.F.G.; Atanasov, A.G.; Bajraktari, G.; Bruckert, E.; Descamps, O.; Djuric, D.M.; Ezhov, M.; et al. The role of nutraceuticals in statin intolerant patients. J. Am. Coll. Cardiol. 2018, 72, 96–118. [Google Scholar] [CrossRef]
- Poli, A.; Visioli, F. Pharmacology of nutraceuticals with lipid lowering properties. High Blood Press. Cardiovasc. Prev. 2019, 26, 113–118. [Google Scholar] [CrossRef] [PubMed]
- Lorenzatti, A.J.; Toth, P.P. New perspectives on atherogenic dyslipidaemia and cardiovascular disease. Eur. Cardiol. 2020, 15, 1–9. [Google Scholar] [CrossRef]
- Barylski, M.; Toth, P.P.; Nikolic, D.; Banach, M.; Rizzo, M.; Montalto, G. Emerging therapies for raising high-density lipoprotein cholesterol (HDL-C) and augmenting HDL particle functionality. Best Pract. Res. Clin. Endocrinol. Metab. 2014, 28, 453–461. [Google Scholar] [CrossRef] [PubMed]
- Sangineto, M.; Bukke, V.N.; Bellanti, F.; Tamborra, R.; Moola, A.; Duda, L.; Villani, R.; Romano, A.D.; Serviddio, G. A Novel Nutraceuticals Mixture Improves Liver Steatosis by Preventing Oxidative Stress and Mitochondrial Dysfunction in a NAFLD Model. Nutrients 2021, 13, 652. [Google Scholar] [CrossRef]
- Perez-Martinez, P.; Mikhailidis, D.P.; Athyros, V.G.; Bullo, M.; Couture, P.; Covas, M.I.; de Koning, L.; Delgado-Lista, J.; Diaz-Lopez, A.; Drevon, C.A.; et al. Lifestyle recommendations for the prevention and management of metabolic syndrome: An international panel recommendation. Nutr. Rev. 2017, 75, 307–326. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ling, Y.; Shi, Z.; Yang, X.; Cai, Z.; Wang, L.; Wu, X.; Ye, A.; Jiang, J. Hypolipidemic effect of pure total flavonoids from peel of citrus (PTFC) on hamsters of hyperlipidemia and its potential mechanism. Exp. Gerontol. 2020, 130, 110786. [Google Scholar] [CrossRef]
- Mulvihill, E.E.; Burke, A.C.; Huff, M.W. Citrus flavonoids as regulators of lipoprotein metabolism and atherosclerosis. Annu. Rev. Nutr. 2016, 36, 275–299. [Google Scholar] [CrossRef]
- Cappello, A.R.; Dolce, V.; Iacopetta, D.; Martello, M.; Fiorillo, M.; Curcio, R.; Muto, L.; Dhanyalayam, D. Bergamot (citrus bergamia risso) flavonoids and their potential benefits in human hyperlipidemia and atherosclerosis: An overview. Mini Rev. Med. Chem. 2016, 16, 619–629. [Google Scholar] [CrossRef]
- Raimondo, S.; Giavaresi, G.; Lorico, A.; Alessandro, R. Extracellular vesicles as biological shuttles for targeted therapies. Int. J. Mol. Sci. 2019, 20, 1848. [Google Scholar] [CrossRef] [Green Version]
- Pucci, M.; Raimondo, S. Plant extracellular vesicles: The safe for bioactive compounds. In Advances in Biomembranes and Lipid Self-Assembly; Academic Press: Cambridge, MA, USA, 2020; Volume 32. [Google Scholar]
- Ju, S.; Mu, J.; Dokland, T.; Zhuang, X.; Wang, Q.; Jiang, H.; Xiang, X.; Deng, Z.B.; Wang, B.; Zhang, L.; et al. Grape exosome-like nanoparticles induce intestinal stem cells and protect mice from DSS-induced colitis. Mol. Ther. 2013, 21, 1345–1357. [Google Scholar] [CrossRef] [Green Version]
- Deng, Z.; Rong, Y.; Teng, Y.; Mu, J.; Zhuang, X.; Tseng, M.; Samykutty, A.; Zhang, L.; Yan, J.; Miller, D.; et al. Broccoli-derived nanoparticle inhibits mouse colitis by activating dendritic cell AMP-activated protein kinase. Mol. Ther. 2017, 25, 1641–1654. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhuang, X.; Deng, Z.B.; Mu, J.; Zhang, L.; Yan, J.; Miller, D.; Feng, W.; McClain, C.J.; Zhang, H.G. Ginger-derived nanoparticles protect against alcohol-induced liver damage. J. Extracell. Vesicles 2015, 4, 28713. [Google Scholar] [CrossRef] [PubMed]
- Berger, E.; Colosetti, P.; Jalabert, A.; Meugnier, E.; Wiklander, O.P.B.; Jouhet, J.; Errazurig-Cerda, E.; Chanon, S.; Gupta, D.; Rautureau, G.J.P.; et al. Use of nanovesicles from orange juice to reverse diet-induced gut modifications in diet-induced obese mice. Mol. Ther. Methods Clin. Dev. 2020, 18, 880–892. [Google Scholar] [CrossRef] [PubMed]
- Raimondo, S.; Naselli, F.; Fontana, S.; Monteleone, F.; Lo Dico, A.; Saieva, L.; Zito, G.; Flugy, A.; Manno, M.; Di Bella, M.A.; et al. Citrus limon-derived nanovesicles inhibit cancer cell proliferation and suppress CML xenograft growth by inducing trail-mediated cell death. Oncotarget 2015, 6, 19514–19527. [Google Scholar] [CrossRef] [Green Version]
- Raimondo, S.; Saieva, L.; Cristaldi, M.; Monteleone, F.; Fontana, S.; Alessandro, R. Label-free quantitative proteomic profiling of colon cancer cells identifies acetyl-CoA carboxylase alpha as antitumor target of citrus limon-derived nanovesicles. J. Proteom. 2018, 173, 1–11. [Google Scholar] [CrossRef]
- Mulero, J.; Bernabe, J.; Cerda, B.; Garcia-Viguera, C.; Moreno, D.A.; Albaladejo, M.D.; Aviles, F.; Parra, S.; Abellan, J.; Zafrilla, P. Variations on cardiovascular risk factors in metabolic syndrome after consume of a citrus-based juice. Clin. Nutr. 2012, 31, 372–377. [Google Scholar] [CrossRef]
- Toth, P.P.; Patti, A.M.; Nikolic, D.; Giglio, R.V.; Castellino, G.; Biancucci, T.; Geraci, F.; David, S.; Montalto, G.; Rizvi, A.; et al. Bergamot reduces plasma lipids, atherogenic small dense LDL, and subclinical atherosclerosis in subjects with moderate hypercholesterolemia: A 6 months prospective study. Front. Pharmacol. 2015, 6, 299. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aptekmann, N.P.; Cesar, T.B. Orange juice improved lipid profile and blood lactate of overweight middle-aged women subjected to aerobic training. Maturitas 2010, 67, 343–347. [Google Scholar] [CrossRef]
- Cesar, T.B.; Aptekmann, N.P.; Araujo, M.P.; Vinagre, C.C.; Maranhao, R.C. Orange juice decreases low-density lipoprotein cholesterol in hypercholesterolemic subjects and improves lipid transfer to high-density lipoprotein in normal and hypercholesterolemic subjects. Nutr. Res. 2010, 30, 689–694. [Google Scholar] [CrossRef]
- Aptekmann, N.P.; Cesar, T.B. Long-term orange juice consumption is associated with low LDL-cholesterol and apolipoprotein b in normal and moderately hypercholesterolemic subjects. Lipids Health Dis. 2013, 12, 119. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Roza, J.M.; Xian-Liu, Z.; Guthrie, N. Effect of citrus flavonoids and tocotrienols on serum cholesterol levels in hypercholesterolemic subjects. Altern. Ther. Health Med. 2007, 13, 44–48. [Google Scholar] [PubMed]
- Silveira, J.Q.; Dourado, G.K.; Cesar, T.B. Red-fleshed sweet orange juice improves the risk factors for metabolic syndrome. Int. J. Food Sci. Nutr. 2015, 66, 830–836. [Google Scholar] [CrossRef]
- Wilcox, L.J.; Borradaile, N.M.; de Dreu, L.E.; Huff, M.W. Secretion of hepatocyte apob is inhibited by the flavonoids, naringenin and hesperetin, via reduced activity and expression of ACAT2 and MTP. J. Lipid Res. 2001, 42, 725–734. [Google Scholar] [CrossRef]
- Bellavia, D.; Dimarco, E.; Costa, V.; Carina, V.; De Luca, A.; Raimondi, L.; Fini, M.; Gentile, C.; Caradonna, F.; Giavaresi, G. Flavonoids in bone erosive diseases: Perspectives in osteoporosis treatment. Trends Endocrinol. Metab. 2021, 32, 76–94. [Google Scholar] [CrossRef]
- Kwon, E.Y.; Choi, M.S. Eriocitrin improves adiposity and related metabolic disorders in high-fat diet-induced obese mice. J. Med. Food 2020, 23, 233–241. [Google Scholar] [CrossRef] [Green Version]
- Wan, J.; Feng, Y.; Du, L.; Veeraraghavan, V.P.; Mohan, S.K.; Guo, S. Antiatherosclerotic activity of eriocitrin in high-fat-diet-induced atherosclerosis model rats. J. Environ. Pathol. Toxicol. Oncol. 2020, 39, 61–75. [Google Scholar] [CrossRef]
- Onakpoya, I.; O’Sullivan, J.; Heneghan, C.; Thompson, M. The effect of grapefruits (Citrus paradisi) on body weight and cardiovascular risk factors: A systematic review and meta-analysis of randomized clinical trials. Crit. Rev. Food Sci. Nutr. 2017, 57, 602–612. [Google Scholar] [CrossRef] [PubMed]
- Dow, C.A.; Going, S.B.; Chow, H.H.; Patil, B.S.; Thomson, C.A. The effects of daily consumption of grapefruit on body weight, lipids, and blood pressure in healthy, overweight adults. Metabolism 2012, 61, 1026–1035. [Google Scholar] [CrossRef] [PubMed]
- Peters, S.A.E.; Bots, S.H.; Woodward, M. Sex differences in the association between measures of general and central adiposity and the risk of myocardial infarction: Results from the UK biobank. J. Am. Heart Assoc. 2018, 7, e008507. [Google Scholar] [CrossRef] [Green Version]
- Peters, S.A.; Huxley, R.R.; Woodward, M. Sex differences in body anthropometry and composition in individuals with and without diabetes in the UK biobank. BMJ Open 2016, 6, e010007. [Google Scholar] [CrossRef] [Green Version]
- Rampersaud, G.C.; Valim, M.F. 100% citrus juice: Nutritional contribution, dietary benefits, and association with anthropometric measures. Crit. Rev. Food Sci. Nutr. 2017, 57, 129–140. [Google Scholar] [CrossRef]
- Deopurkar, R.; Ghanim, H.; Friedman, J.; Abuaysheh, S.; Sia, C.L.; Mohanty, P.; Viswanathan, P.; Chaudhuri, A.; Dandona, P. Differential effects of cream, glucose, and orange juice on inflammation, endotoxin, and the expression of toll-like receptor-4 and suppressor of cytokine signaling-3. Diabetes Care 2010, 33, 991–997. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, J.H.; Lee, H.S.; Park, H.M.; Lee, Y.J. Serum alkaline phosphatase level is positively associated with metabolic syndrome: A nationwide population-based study. Clin. Chim. Acta 2020, 500, 189–194. [Google Scholar] [CrossRef] [PubMed]
- Kim, M.K.; Baek, K.H.; Kang, M.I.; Park, S.E.; Rhee, E.J.; Park, C.Y.; Lee, W.Y.; Oh, K.W. Serum alkaline phosphatase, body composition, and risk of metabolic syndrome in middle-aged korean. Endocr. J. 2013, 60, 321–328. [Google Scholar] [CrossRef] [Green Version]
- Brichacek, A.L.; Brown, C.M. Alkaline phosphatase: A potential biomarker for stroke and implications for treatment. Metab. Brain Dis. 2019, 34, 3–19. [Google Scholar] [CrossRef]
- Beyer-Westendorf, J.; Buller, H. External and internal validity of open label or double-blind trials in oral anticoagulation: Better, worse or just different? J. Thromb. Haemost. 2011, 9, 2153–2158. [Google Scholar] [CrossRef]
- Baldrich, P.; Rutter, B.D.; Karimi, H.Z.; Podicheti, R.; Meyers, B.C.; Innes, R.W. Plant extracellular vesicles contain diverse small RNA species and are enriched in 10- to 17-nucleotide “tiny” RNAS. Plant Cell 2019, 31, 315–324. [Google Scholar] [CrossRef] [Green Version]
- Xiao, J.; Feng, S.; Wang, X.; Long, K.; Luo, Y.; Wang, Y.; Ma, J.; Tang, Q.; Jin, L.; Li, X.; et al. Identification of exosome-like nanoparticle-derived micrornas from 11 edible fruits and vegetables. PeerJ 2018, 6, e5186. [Google Scholar] [CrossRef]
- Cesaro, A.; Schiavo, A.; Moscarella, E.; Coletta, S.; Conte, M.; Gragnano, F.; Fimiani, F.; Monda, E.; Caiazza, M.; Limongelli, G.; et al. Lipoprotein(a): A genetic marker for cardiovascular disease and target for emerging therapies. J. Cardiovasc. Med. 2021, 22, 151–161. [Google Scholar]
- Menard, J.A.; Cerezo-Magana, M.; Belting, M. Functional role of extracellular vesicles and lipoproteins in the tumour microenvironment. Philos. Trans. R. Soc. B Biol. Sci. 2018, 373, 20160480. [Google Scholar] [CrossRef]
- Sun, Y.; Saito, K.; Saito, Y. Lipid profile characterization and lipoprotein comparison of extracellular vesicles from human plasma and serum. Metabolites 2019, 9, 259. [Google Scholar] [CrossRef] [Green Version]
- Von Elm, E.; Altman, D.G.; Egger, M.; Pocock, S.J.; Gotzsche, P.C.; Vandenbroucke, J.P. The strengthening the reporting of observational studies in epidemiology (strobe) statement: Guidelines for reporting observational studies. J. Clin. Epidemiol. 2008, 61, 344–349. [Google Scholar] [CrossRef] [Green Version]
- Alberti, K.G.; Eckel, R.H.; Grundy, S.M.; Zimmet, P.Z.; Cleeman, J.I.; Donato, K.A.; Fruchart, J.C.; James, W.P.; Loria, C.M.; Smith, S.C.J. Harmonizing the metabolic syndrome: A joint interim statement of the international diabetes federation task force on epidemiology and prevention; national heart, lung, and blood institute; American Heart Association; World Heart Federation; International Atherosclerosis Society; and International Association for the Study of Obesity. Circulation 2009, 120, 1640–1645. [Google Scholar]
- Levey, A.S.; Stevens, L.A. Estimating GFR using the CKD epidemiology collaboration (CKD-EPI) creatinine equation: More accurate GFR estimates, lower CKD prevalence estimates, and better risk predictions. Am. J. Kidney Dis. 2010, 55, 622–627. [Google Scholar] [CrossRef] [Green Version]
- Noto, R.; Santangelo, M.G.; Ricagno, S.; Mangione, M.R.; Levantino, M.; Pezzullo, M.; Martorana, V.; Cupane, A.; Bolognesi, M.; Manno, M. The tempered polymerization of human neuroserpin. PLoS ONE 2012, 7, e32444. [Google Scholar] [CrossRef]
- Romancino, D.P.; Buffa, V.; Caruso, S.; Ferrara, I.; Raccosta, S.; Notaro, A.; Campos, Y.; Noto, R.; Martorana, V.; Cupane, A.; et al. Palmitoylation is a post-translational modification of Alix regulating the membrane organization of exosome-like small extracellular vesicles. Biochim. Biophys. Acta 2018, 1862, 2879–2887. [Google Scholar] [CrossRef] [Green Version]
- Patty, P.J.; Frisken, B.J. Direct determination of the number-weighted mean radius and polydispersity from dynamic light-scattering data. Appl. Opt. 2006, 45, 2209–2216. [Google Scholar] [CrossRef] [PubMed]
- Montis, C.; Zendrini, A.; Valle, F.; Busatto, S.; Paolini, L.; Radeghieri, A.; Salvatore, A.; Berti, D.; Bergese, P. Size distribution of extracellular vesicles by optical correlation techniques. Colloids Surf. B Biointerfaces 2017, 158, 331–338. [Google Scholar] [CrossRef] [PubMed]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2020. [Google Scholar]
- Bates, D.; Mächler, M.; Bolker, B.; Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 2015, 67, 48. [Google Scholar] [CrossRef]
- Searle, S.R.; Speed, F.M.; Milliken, G.A. Population marginal means in the linear model: An alternative to least squares means. Am. Stat. 1980, 34, 216–221. [Google Scholar]
Parameter | Gender | p-Value | Total (n = 20) | |
---|---|---|---|---|
Women (n = 9) | Men (n = 11) | |||
Age (years) | ||||
Mean [95% CI] | 43 [39, 48] | 54 [49, 58] | 0.002 | 49 [45, 53] |
Age n (%) | ||||
≤50 | 8 (89) | 4 (36) | NS | 12 (60) |
51–55 | 1 (11) | 3 (27) | 4 (20) | |
56–60 | 0 (0) | 3 (27) | 3 (15) | |
61–65 | 0 (0) | 1 (9) | 1 (5) | |
≥66 | 0 (0) | 0 (0) | 0 (0) | |
Height (m) | ||||
Mean [95% CI] | 1.68 [1.62, 1.74] | 1.76 [1.73, 1.79] | 0.005 | 1.73 [1.69, 1.76] |
Weight (kg) | ||||
Mean [95% CI] | 68 [61, 75] | 87 [79, 95] | <0.001 | 79 [72, 85] |
Waist circumference (cm) | ||||
Mean [95% CI] | 88 [82, 94] | 102 [96, 108] | 0.001 | 96 [90, 101] |
BMI (kg/m2) | ||||
Mean [95% CI] | 24 [22, 25] | 28 [26, 30] | 0.004 | 26 [25, 28] |
BMI n (%) | ||||
18.5–24—Healthy weight | 5 (56) | 1 (9) | 0.031 | 6 (30) |
25–29—Overweight | 4 (44) | 6 (55) | 10 (50) | |
30–34—Class I Obesity | 0 (0) | 4 (36) | 4 (20) | |
Smoke n (%) | ||||
Yes | 2 (22) | 1 (9) | NS | 3 (155) |
No | 6 (67) | 10 (91) | 16 (80) | |
ex-smokers | 1 (11) | 0 (0) | 1 (0.05) | |
Systolic Blood Pressure (mmHg) | ||||
Mean [95% CI] | 112 [102, 121] | 129 [121, 137] | 0.004 | 121 [114, 128] |
Diastolic Blood Pressure (mmHg) | ||||
Mean [95% CI] | 66 [59, 71] | 81 [75, 87] | <0.001 | 74 [69, 80] |
Parameter | Baseline (n = 19) | 4 Weeks (n = 19) | 12 Weeks (n = 19) | F, p-Value |
---|---|---|---|---|
Weight (kg) | ||||
Mean [95% CI] | 77.0 [70.9, 83.1] | 78.1 [71.3, 84.9] | 76.6 [70.5, 82.3] | NS |
Women | 68.00 [61.5, 74.5] | 67.9 [61.8, 74.0] | 67.2 [61.0, 73.4] | |
Men | 85.1 [77.9, 92.3] | 87.3 [78.7, 95.9] | 85.0 [77.9, 92.1] | |
Waist circumference (cm) | ||||
Mean [95% CI] | 94.3 [89.7, 98.9] | 94.2 [88.6, 99.7] | 92.9 [88.1, 97.7] | |
Women | 87.7 [81.7, 93.6] | 85.4 [79.9, 91.0] 1 | 85.0 [80.0, 90.0] 3 | F = 11.9, p < 0.0005 |
Men | 100.3 [95.4, 105.2] | 102.0 [95.7, 108.3] | 100.0 [95.3, 104.7] | |
BMI (kg/m2) | ||||
Mean [95% CI] | 25.7 [24.3, 27.2] | 26.0 [24.4, 27.7] | 25.6 [24.2, 27.0] | NS |
Women | 23.9 [22.3, 25.5] | 23.9 [22.3, 25.5] | 23.8 [22.3, 25.3] | |
Men | 27.4 [25.5, 29.3] | 28.0 [25.7, 30.3] | 27.2 [25.3, 29.1] | |
Systolic Blood Pressure (mmHg) | ||||
Mean [95% CI] | 120 [113, 126] | 118 [112, 124] | 119 [113, 125] | NS |
Women | 112 [102, 121] | 109 [105, 114] | 112 [105, 119] | |
Men | 127 [120, 135] | 126 [118, 134] | 126 [117, 135] | |
Diastolic Blood Pressure (mmHg) | ||||
Mean [95% CI] | 74 [68, 79] | 73 [67, 78] | 73 [67, 78] | NS |
Women | 66 [59, 72] | 66 [62, 70] | 67 [62, 73] | |
Men | 82 [75, 88] | 79 [70, 87] | 78 [69, 87] |
Parameter | Baseline | 4 Weeks | 12 Weeks | F, p-Value | ReferenceValue * |
---|---|---|---|---|---|
ALP (U/L) | 58 [52, 64] | 55 [49, 61] | 55 [49, 61] 3 | F = 4.34, p = 0.020 | 40–129 |
ALT (U/L) | 16 [13, 20] | 17 [14, 21] | 17 [13, 22] | NS | 0–31 |
AST (U/L) | 16 [14, 18] | 15 [13, 16] | 16 [13, 17] | NS | 0–31 |
γGT (mg/dL) | 17 [12, 22] | 17 [13, 21] | 16 [12, 21] | NS | 5–36 |
Urea (mg/dL) | - | 24 [19, 29] | 34 [28, 39] | NS | 10–50 |
Creatinine (mg/dL) | 0.83 [0.76, 0.90] | 0.81 [0.74, 0.88] | 0.84 [0.75, 0.93] | NS | 0.51–0.95 |
eGFR (mL/min) | 97 [91, 102] | 96 [91, 101] | 96 [89, 103] | NS | >90 |
Glucose (mg/dL) | 81 [77, 85] | 88 [81, 96] | 86 [82, 89] 3 | NS | 70–100 |
HbA1c (mmol/mol) | 35 [33, 36] | - | 33 [32, 35] 3 | F = 10.51, p = 0.004 | <40 |
HbA1c (%) | 5.3 [5.2, 5.4] | - | 5.2 [5.1, 5.4] 3 | F = 10.87, p = 0.004 | <5.7 |
Triglycerides (mg/dL) | 84 [60, 108] | 98 [73, 122] 1 | 95 [77, 114] 3 | F = 6.58, p = 0.005 | <150 |
Cholesterol (mg/dL) | 168 [154, 181] | 173 [158, 188] | 164 [152, 176] | NS | <200 |
HDL (mg/dL) | 53 [48, 59] | 52 [47, 58] | 52 [46, 58] | NS | >60 |
LDL (mg/dL) | 97 [87, 107] | 101 [88, 113] | 81 [66, 95] 2,3 | F = 13.17, p < 0.0005 | <110 |
IL-6 (pg/mL) | 2.5 [2.0, 3.0] | 3.0 [2.0, 3.9] | 2.6 [2.1, 3.1] | NS | <7 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Raimondo, S.; Nikolic, D.; Conigliaro, A.; Giavaresi, G.; Lo Sasso, B.; Giglio, R.V.; Chianetta, R.; Manno, M.; Raccosta, S.; Corleone, V.; et al. Preliminary Results of CitraVes™ Effects on Low Density Lipoprotein Cholesterol and Waist Circumference in Healthy Subjects after 12 Weeks: A Pilot Open-Label Study. Metabolites 2021, 11, 276. https://doi.org/10.3390/metabo11050276
Raimondo S, Nikolic D, Conigliaro A, Giavaresi G, Lo Sasso B, Giglio RV, Chianetta R, Manno M, Raccosta S, Corleone V, et al. Preliminary Results of CitraVes™ Effects on Low Density Lipoprotein Cholesterol and Waist Circumference in Healthy Subjects after 12 Weeks: A Pilot Open-Label Study. Metabolites. 2021; 11(5):276. https://doi.org/10.3390/metabo11050276
Chicago/Turabian StyleRaimondo, Stefania, Dragana Nikolic, Alice Conigliaro, Gianluca Giavaresi, Bruna Lo Sasso, Rosaria Vincenza Giglio, Roberta Chianetta, Mauro Manno, Samuele Raccosta, Valeria Corleone, and et al. 2021. "Preliminary Results of CitraVes™ Effects on Low Density Lipoprotein Cholesterol and Waist Circumference in Healthy Subjects after 12 Weeks: A Pilot Open-Label Study" Metabolites 11, no. 5: 276. https://doi.org/10.3390/metabo11050276
APA StyleRaimondo, S., Nikolic, D., Conigliaro, A., Giavaresi, G., Lo Sasso, B., Giglio, R. V., Chianetta, R., Manno, M., Raccosta, S., Corleone, V., Ferrante, G., Citarrella, R., Rizzo, M., De Leo, G., Ciaccio, M., Montalto, G., & Alessandro, R. (2021). Preliminary Results of CitraVes™ Effects on Low Density Lipoprotein Cholesterol and Waist Circumference in Healthy Subjects after 12 Weeks: A Pilot Open-Label Study. Metabolites, 11(5), 276. https://doi.org/10.3390/metabo11050276