Next Article in Journal
Metabolic Profiles of Whole, Parotid and Submandibular/Sublingual Saliva
Next Article in Special Issue
Optimizing Secondary Electrospray Ionization High-Resolution Mass Spectrometry (SESI-HRMS) for the Analysis of Volatile Fatty Acids from Gut Microbiome
Previous Article in Journal
Plasma Metabolites Associate with All-Cause Mortality in Individuals with Type 2 Diabetes
Previous Article in Special Issue
Deciphering the Metabolic Pathways of Pitaya Peel after Postharvest Red Light Irradiation
Open AccessArticle

Target Analysis of Volatile Organic Compounds in Exhaled Breath for Lung Cancer Discrimination from Other Pulmonary Diseases and Healthy Persons

1
Department of Hygiene and Epidemiology, University Hospital of Larissa, Faculty of Medicine, University of Thessaly, 22 Papakyriazi Street, 41222 Larissa, Greece
2
Respiratory Medicine Department, University Hospital of Larissa, Faculty of Medicine, University of Thessaly, 41500 Larissa, Greece
3
Bioinformatics Laboratory, Department of Biochemistry and Biotechnology, University of Thessaly, 41500 Larissa, Greece
4
Department of Biochemistry, Faculty of Medicine, University of Thessaly, 41500 Larissa, Greece
*
Author to whom correspondence should be addressed.
Metabolites 2020, 10(8), 317; https://doi.org/10.3390/metabo10080317
Received: 29 May 2020 / Revised: 29 July 2020 / Accepted: 31 July 2020 / Published: 3 August 2020
(This article belongs to the Special Issue Volatile Metabolites’ New Frontier for Metabolomics)
The aim of the present study was to investigate the ability of breath analysis to distinguish lung cancer (LC) patients from patients with other respiratory diseases and healthy people. The population sample consisted of 51 patients with confirmed LC, 38 patients with pathological computed tomography (CT) findings not diagnosed with LC, and 53 healthy controls. The concentrations of 19 volatile organic compounds (VOCs) were quantified in the exhaled breath of study participants by solid phase microextraction (SPME) of the VOCs and subsequent gas chromatography-mass spectrometry (GC-MS) analysis. Kruskal–Wallis and Mann–Whitney tests were used to identify significant differences between subgroups. Machine learning methods were used to determine the discriminant power of the method. Several compounds were found to differ significantly between LC patients and healthy controls. Strong associations were identified for 2-propanol, 1-propanol, toluene, ethylbenzene, and styrene (p-values < 0.001–0.006). These associations remained significant when ambient air concentrations were subtracted from breath concentrations. VOC levels were found to be affected by ambient air concentrations and a few by smoking status. The random forest machine learning algorithm achieved a correct classification of patients of 88.5% (area under the curve—AUC 0.94). However, none of the methods used achieved adequate discrimination between LC patients and patients with abnormal computed tomography (CT) findings. Biomarker sets, consisting mainly of the exogenous monoaromatic compounds and 1- and 2- propanol, adequately discriminated LC patients from healthy controls. The breath concentrations of these compounds may reflect the alterations in patient’s physiological and biochemical status and perhaps can be used as probes for the investigation of these statuses or normalization of patient-related factors in breath analysis. View Full-Text
Keywords: lung cancer; exhaled breath; volatile organic compounds; machine learning lung cancer; exhaled breath; volatile organic compounds; machine learning
Show Figures

Figure 1

MDPI and ACS Style

Koureas, M.; Kirgou, P.; Amoutzias, G.; Hadjichristodoulou, C.; Gourgoulianis, K.; Tsakalof, A. Target Analysis of Volatile Organic Compounds in Exhaled Breath for Lung Cancer Discrimination from Other Pulmonary Diseases and Healthy Persons. Metabolites 2020, 10, 317.

Show more citation formats Show less citations formats
Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Article Access Map by Country/Region

1
Search more from Scilit
 
Search
Back to TopTop