Breast Cancer Prevention by Dietary Polyphenols: Microemulsion Formulation and In Vitro Studies
Abstract
:1. Introduction
2. Results
2.1. Polyphenol-Loaded Microemulsions Are Homogenous and Stable under Varied Temperatures
2.2. Microemulsion Carrier Improves Antioxidant Activities of Dietary Polyphenols
2.3. Blank Microemulsion and PL-MEs Are More Toxic Than Pure Polyphenols on Breast Cancer Cells
3. Discussion
4. Materials and Methods
4.1. Microemulsion Formulation
4.2. Microemulsion Characterization
4.2.1. Particle Size
4.2.2. Zeta Potential
4.2.3. Transmission Electron Microscopy (TEM) Visualization
4.2.4. Physicochemical Stability Test
4.2.5. Encapsulation Efficiency
4.3. In Vitro Antioxidant Activities
4.3.1. Free Radical Scavenging Activity against 2,2-Diphenyl-1-Picrylhydrazyl (DPPH)
4.3.2. Free Radical Scavenging Activity against Nitric Oxide (NO)
4.4. In Vitro Cytotoxic Activities
4.4.1. Cytotoxicity on Breast Cancer Cells
4.4.2. Cytotoxicity on Human Keratinocyte
4.5. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef]
- Sedeta, E.T.; Jobre, B.; Avezbakiyev, B. Breast cancer: Global patterns of incidence, mortality, and trends. J. Clin. Oncol. 2023, 41, 10528. [Google Scholar] [CrossRef]
- Ewertz, M.; Jensen, A.B. Late effects of breast cancer treatment and potentials for rehabilitation. Acta Oncol. 2011, 50, 187–193. [Google Scholar] [CrossRef]
- Jiwa, M.; Long, A.; Shaw, T.; Pagey, G.; Halkett, G.; Pillai, V.; Meng, X. The management of acute adverse effects of breast cancer treatment in general practice: A video-vignette study. J. Med. Internet Res. 2014, 16, e204. [Google Scholar] [CrossRef] [PubMed]
- Soerjomataram, I.; Bray, F. Planning for tomorrow: Global cancer incidence and the role of prevention 2020–2070. Nat. Rev. Clin. Oncol. 2021, 18, 663–672. [Google Scholar] [CrossRef]
- Bellanger, M.; Barry, K.; Rana, J.; Regnaux, J.-P. Cost-Effectiveness of Lifestyle-Related Interventions for the Primary Prevention of Breast Cancer: A Rapid Review. Front. Med. 2020, 6, 325. [Google Scholar] [CrossRef]
- Chlebowski, R.T.; Aragaki, A.K.; Anderson, G.L.; Pan, K.; Neuhouser, M.L.; Manson, J.E.; Thomson, C.A.; Mossavar-Rahmani, Y.; Lane, D.S.; Johnson, K.C.; et al. Dietary Modification and Breast Cancer Mortality: Long-Term Follow-Up of the Women’s Health Initiative Randomized Trial. J. Clin. Oncol. 2020, 38, 1419–1428. [Google Scholar] [CrossRef] [PubMed]
- Marino, M.; Del Bo’, C.; Martini, D.; Porrini, M.; Riso, P. A Review of Registered Clinical Trials on Dietary (Poly)Phenols: Past Efforts and Possible Future Directions. Foods 2020, 9, 1606. [Google Scholar] [CrossRef]
- Chew, B.; Mathison, B.; Kimble, L.; McKay, D.; Kaspar, K.; Khoo, C.; Chen, C.Y.O.; Blumberg, J. Chronic consumption of a low calorie, high polyphenol cranberry beverage attenuates inflammation and improves glucoregulation and HDL cholesterol in healthy overweight humans: A randomized controlled trial. Eur. J. Nutr. 2019, 58, 1223–1235. [Google Scholar] [CrossRef] [PubMed]
- Hayakawa, S.; Ohishi, T.; Miyoshi, N.; Oishi, Y.; Nakamura, Y.; Isemura, M. Anti-cancer effects of green tea epigallocatchin-3-gallate and coffee chlorogenic acid. Molecules 2020, 25, 4553. [Google Scholar] [CrossRef]
- Ulusoy, H.G.; Sanlier, N. A minireview of quercetin: From its metabolism to possible mechanisms of its biological activities. Crit. Rev. Food Sci. Nutr. 2020, 60, 3290–3303. [Google Scholar] [CrossRef]
- Yadegarynia, S.; Pham, A.; Ng, A.; Nguyen, D.; Lialiutska, T.; Bortolazzo, A.; Sivryuk, V.; Bremer, M.; White, J.B. Profiling flavonoid cytotoxicity in human breast cancer cell lines: Determination of structure-function relationships. Nat. Prod. Commun. 2012, 7, 1295–1304. [Google Scholar] [CrossRef]
- Dabeek, W.M.; Marra, M.V. Dietary Quercetin and Kaempferol: Bioavailability and Potential Cardiovascular-Related Bioactivity in Humans. Nutrients 2019, 11, 2288. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Fang, X.; Ge, L.; Cao, F.; Zhao, L.; Wang, Z.; Xiao, W. Antitumor, antioxidant and anti-inflammatory activities of kaempferol and its corresponding glycosides and the enzymatic preparation of kaempferol. PLoS ONE 2018, 13, e0197563. [Google Scholar] [CrossRef] [PubMed]
- Zhu, L.; Xue, L. Kaempferol Suppresses Proliferation and Induces Cell Cycle Arrest, Apoptosis, and DNA Damage in Breast Cancer Cells. Oncol. Res. 2019, 27, 629–634. [Google Scholar] [CrossRef]
- Yi, X.; Zuo, J.; Tan, C.; Xian, S.; Luo, C.; Chen, S.; Yu, L.; Luo, Y. Kaempferol, a flavonoid compound from gynura medica induced apoptosis and growth inhibition in MCF-7 breast cancer cell. Afr. J. Tradit. Complement. Altern. Med. 2016, 13, 210–215. [Google Scholar] [CrossRef]
- Adomako-Bonsu, A.G.; Chan, S.L.F.; Pratten, M.; Fry, J.R. Antioxidant activity of rosmarinic acid and its principal metabolites in chemical and cellular systems: Importance of physico-chemical characteristics. Toxicol. In Vitro 2017, 40, 248–255. [Google Scholar] [CrossRef]
- Messeha, S.S.; Zarmouh, N.O.; Asiri, A.; Soliman, K.F.A. Rosmarinic acid-induced apoptosis and cell cycle arrest in triple-negative breast cancer cells. Eur. J. Pharmacol. 2020, 885, 173419. [Google Scholar] [CrossRef]
- McClements, D.J. Nanoemulsions versus microemulsions: Terminology, differences, and similarities. Soft Matter 2012, 8, 1719–1729. [Google Scholar] [CrossRef]
- Bera, A.; Mandal, A. Microemulsions: A novel approach to enhanced oil recovery: A review. J. Petrol. Explor. Prod. Technol. 2015, 5, 255–268. [Google Scholar] [CrossRef]
- Yang, F.; He, Q.; Dai, X.; Zhang, X.; Song, D. The potential role of nanomedicine in the treatment of breast cancer to overcome the obstacles of current therapies. Front. Pharmacol. 2023, 14, 1143102. [Google Scholar] [CrossRef]
- Garavand, F.; Jalai-Jivan, M.; Assadpour, E.; Jafari, S.M. Encapsulation of phenolic compounds within nano/microemulsion systems: A review. Food Chem. 2021, 364, 130376. [Google Scholar] [CrossRef]
- Rahdar, A.; Hajinezhad, M.R.; Sargazi, S.; Zaboli, M.; Barani, M.; Baino, F.; Bilal, M.; Sanchooli, E. Biochemical, Ameliorative and Cytotoxic Effects of Newly Synthesized Curcumin Microemulsions: Evidence from In Vitro and In Vivo Studies. Nanomaterials 2021, 11, 817. [Google Scholar] [CrossRef]
- Nastiti, C.M.R.R.; Ponto, T.; Abd, E.; Grice, J.E.; Benson, H.A.E.; Roberts, M.S. Topical Nano and Microemulsions for Skin Delivery. Pharmaceutics 2017, 9, 37. [Google Scholar] [CrossRef] [PubMed]
- Biruss, B.; Dietl, R.; Valenta, C. The influence of selected steroid hormones on the physicochemical behaviour of DPPC liposomes. Chem. Phys. Lipids 2007, 148, 84–90. [Google Scholar] [CrossRef]
- Mori Cortés, N.; Califano, A.N.; Lorenzo, G. Physical and chemical stability under environmental stress of microemulsions formulated with fish oil. Food Res. Inter. 2019, 119, 283–290. [Google Scholar] [CrossRef]
- Feng, J.-L.; Wang, Z.-W.; Zhang, J.; Wang, Z.-N.; Liu, F. Study on food-grade vitamin E microemulsions based on nonionic emulsifiers. Colloids Surf. A Physicochem. Eng. Asp. 2009, 339, 1–6. [Google Scholar] [CrossRef]
- Mandal, S. Curcumin, a promising anti-cancer therapeutic: It’s bioactivity and development of drug delivery vehicles. Int. J. Drug Res. Technol. 2016, 6, 43–57. [Google Scholar]
- Luo, Z.; Murray, B.S.; Yusoff, A.; Morgan, M.R.A.; Povey, M.J.W.; Day, A.J. Particle-Stabilizing Effects of Flavonoids at the Oil−Water Interface. J. Agric. Food Chem. 2011, 59, 2636–2645. [Google Scholar] [CrossRef]
- Yuliani, S.; Muchtadi, T.R.; Syakir, M. Changes in characteristics of nanoemulsion of cinnamon oil and their relationships with instability mechanisms during storage. J. Food Process. Preserv. 2018, 42, e13745. [Google Scholar] [CrossRef]
- Subongkot, T.; Ngawhirunpat, T. Development of a novel microemulsion for oral absorption enhancement of all-trans retinoic acid. Int. J. Nanomed. 2017, 12, 5585–5599. [Google Scholar] [CrossRef] [PubMed]
- Chansiri, G.; Lyons, R.T.; Patel, M.V.; Hem, S.L. Effect of surface charge on the stability of oil/water emulsions during steam sterilization. J. Pharm. Sci. 1999, 88, 454–458. [Google Scholar] [CrossRef]
- McClements, D.J.; Rao, J. Food-Grade Nanoemulsions: Formulation, Fabrication, Properties, Performance, Biological Fate, and Potential Toxicity. Crit. Rev. Food Sci. Nutr. 2011, 51, 285–330. [Google Scholar] [CrossRef] [PubMed]
- Sedaghat Doost, A.; Dewettinck, K.; Devlieghere, F.; Van der Meeren, P. Influence of non-ionic emulsifier type on the stability of cinnamaldehyde nanoemulsions: A comparison of polysorbate 80 and hydrophobically modified inulin. Food Chem. 2018, 258, 237–244. [Google Scholar] [CrossRef] [PubMed]
- Rao, J.; McClements, D.J. Food-grade microemulsions, nanoemulsions and emulsions: Fabrication from sucrose monopalmitate & lemon oil. Food Hydrocolloids 2011, 25, 1413–1423. [Google Scholar] [CrossRef]
- Rolland, M.; Truong, N.P.; Parkatzidis, K.; Pilkington, E.H.; Torzynski, A.L.; Style, R.W.; Dufresne, E.R.; Anastasaki, A. Shape-Controlled Nanoparticles from a Low-Energy Nanoemulsion. JACS Au 2021, 1, 1975–1986. [Google Scholar] [CrossRef] [PubMed]
- Musakhanian, J.; Rodier, J.-D.; Dave, M. Oxidative Stability in Lipid Formulations: A Review of the Mechanisms, Drivers, and Inhibitors of Oxidation. AAPS PharmSciTech 2022, 23, 151. [Google Scholar] [CrossRef] [PubMed]
- Bikiaris, N.D.; Koumentakou, I.; Hatzistamatiou, K.; Lykidou, S.; Barmpalexis, P.; Nikolaidis, N. Preparation and Investigation of the SPF and Antioxidant Properties of O/W and W/O Emulsions Containing Vitamins A, C and E for Cosmetic Applications. Cosmetics 2023, 10, 76. [Google Scholar] [CrossRef]
- Segger, D.; Aßmus, U.; Brock, M.; Erasmy, J.; Finkel, P.; Fitzner, A.; Heuss, H.; Kortemeier, U.; Munke, S.; Rheinländer, T.; et al. Multicenter study on measurement of the natural pH of the skin surface. Int. J. Cos. Sci. 2008, 30, 75. [Google Scholar] [CrossRef]
- Üstündağ Okur, N.; Çağlar, E.Ş.; Arpa, M.D.; Karasulu, H.Y. Preparation and evaluation of novel microemulsion-based hydrogels for dermal delivery of benzocaine. Pharm. Dev. Technol. 2017, 22, 500–510. [Google Scholar] [CrossRef]
- Park, C.; Zuo, J.; Somayaji, V.; Lee, B.-J.; Löbenberg, R. Development of a novel cannabinoid-loaded microemulsion towards an improved stability and transdermal delivery. Int. J. Pharm. 2021, 604, 120766. [Google Scholar] [CrossRef] [PubMed]
- Silva, H.D.; Cerqueira, M.A.; Donsì, F.; Pinheiro, A.C.; Ferrari, G.; Vicente, A.A. Development and Characterization of Lipid-Based Nanosystems: Effect of Interfacial Composition on Nanoemulsion Behavior. Food Bioprocess Technol. 2020, 13, 67–87. [Google Scholar] [CrossRef]
- Huang, S.-s.; Zheng, R.-l. Rosmarinic acid inhibits angiogenesis and its mechanism of action in vitro. Cancer Lett. 2006, 239, 271–280. [Google Scholar] [CrossRef] [PubMed]
- Sudhakaran, M.; Sardesai, S.; Doseff, A.I. Flavonoids: New Frontier for Immuno-Regulation and Breast Cancer Control. Antioxidants 2019, 8, 103. [Google Scholar] [CrossRef] [PubMed]
- Korde Choudhari, S.; Chaudhary, M.; Bagde, S.; Gadbail, A.R.; Joshi, V. Nitric oxide and cancer: A review. World J. Surg. Oncol. 2013, 11, 118. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Wei, Z.; Teichmann, A.T.; Wieland, F.H.; Wang, A.; Lei, X.; Zhu, Y.; Yin, J.; Fan, T.; Zhou, L.; et al. Development of a novel nitric oxide (NO) production inhibitor with potential therapeutic effect on chronic inflammation. Eur. J. Med. Chem. 2020, 193, 112216. [Google Scholar] [CrossRef]
- Donsì, F.; Sessa, M.; Mediouni, H.; Mgaidi, A.; Ferrari, G. Encapsulation of bioactive compounds in nanoemulsion- based delivery systems. Procedia Food Sci. 2011, 1, 1666–1671. [Google Scholar] [CrossRef]
- Tian, C.; Liu, X.; Chang, Y.; Wang, R.; Lv, T.; Cui, C.; Liu, M. Investigation of the anti-inflammatory and antioxidant activities of luteolin, kaempferol, apigenin and quercetin. S. Afr. J. Bot. 2021, 137, 257–264. [Google Scholar] [CrossRef]
- Guo, R.X.; Fu, X.; Chen, J.; Zhou, L.; Chen, G. Preparation and Characterization of Microemulsions of Myricetin for Improving Its Antiproliferative and Antioxidative Activities and Oral Bioavailability. J. Agric. Food Chem. 2016, 64, 6286–6294. [Google Scholar] [CrossRef]
- Amuti, A.; Wang, X.; Zan, M.; Lv, S.; Wang, Z. Formulation and characterization of curcumin-loaded microemulsions: Evaluation of antioxidant stability and in vitro release. J. Mol. Liq. 2021, 336, 116881. [Google Scholar] [CrossRef]
- Ghandi, M.; Huang, F.W.; Jané-Valbuena, J.; Kryukov, G.V.; Lo, C.C.; McDonald, E.R.; Barretina, J.; Gelfand, E.T.; Bielski, C.M.; Li, H.; et al. Next-generation characterization of the Cancer Cell Line Encyclopedia. Nature 2019, 569, 503–508. [Google Scholar] [CrossRef] [PubMed]
- Chang, H.; Mi, M.; Ling, W.; Zhu, J.; Zhang, Q.; Wei, N.; Zhou, Y.; Tang, Y.; Yu, X.; Zhang, T.; et al. Structurally related anticancer activity of flavonoids: Involvement of reactive oxygen species generation. J. Food Biochem. 2010, 34, 1–14. [Google Scholar] [CrossRef]
- Nguyen, S.T.; Nguyen, H.T.-L.; Truong, K.D. Comparative cytotoxic effects of methanol, ethanol and DMSO on human cancer cell lines. Biomed. Res. Ther. 2020, 7, 3855–3859. [Google Scholar] [CrossRef]
- Li, Y.; Le Maux, S.; Xiao, H.; McClements, D.J. Emulsion-Based Delivery Systems for Tributyrin, a Potential Colon Cancer Preventative Agent. J. Agric. Food Chem. 2009, 57, 9243–9249. [Google Scholar] [CrossRef] [PubMed]
- Jung, S.; Lee, S.; Lee, H.; Yoon, J.; Lee, E.K. Oleic acid-embedded nanoliposome as a selective tumoricidal agent. Colloids Surf. B: Biointerfaces 2016, 146, 585–589. [Google Scholar] [CrossRef]
- Menendez, J.A.; Vellon, L.; Colomer, R.; Lupu, R. Oleic acid, the main monounsaturated fatty acid of olive oil, suppresses Her-2/neu (erbB-2) expression and synergistically enhances the growth inhibitory effects of trastuzumab (Herceptin™) in breast cancer cells with Her-2/neu oncogene amplification. Ann. Oncol. 2005, 16, 359–371. [Google Scholar] [CrossRef]
- Kotmakchiev, M.; Kantarcı, G.; Çetintaş, V.B.; Ertan, G. Cytotoxicity of a Novel Oil/Water Microemulsion System Loaded with Mitomycin-C in In Vitro Lung Cancer Models. Drug Dev. Res. 2012, 73, 185–195. [Google Scholar] [CrossRef]
- Alkhatib, M.H.; Alkhayyal, N.S. Cytotoxicity of Gemcitabine-Loaded-Microemulsions in Breast and Colon Cancer Cells. Trop. J. Pharm. Res. 2014, 13, 217–224. [Google Scholar] [CrossRef]
- Mandal, S.D.; Mandal, S.; Patel, J. Brain targeting efficiency of Curcumin loaded mucoadhesive microemulsion through intranasal route. J. Pharm. Investig. 2016, 46, 179–188. [Google Scholar] [CrossRef]
- Roohinejad, S.; Oey, I.; Wen, J.; Lee, S.J.; Everett, D.W.; Burritt, D.J. Formulation of oil-in-water β-carotene microemulsions: Effect of oil type and fatty acid chain length. Food Chem. 2015, 174, 270–278. [Google Scholar] [CrossRef]
- Son, H.-Y.; Lee, M.-S.; Chang, E.; Kim, S.-Y.; Kang, B.; Ko, H.; Kim, I.-H.; Zhong, Q.; Jo, Y.-H.; Kim, C.-T.; et al. Formulation and Characterization of Quercetin-loaded Oil in Water Nanoemulsion and Evaluation of Hypocholesterolemic Activity in Rats. Nutrients 2019, 11, 244. [Google Scholar] [CrossRef] [PubMed]
- Intanai, N. Formulation of Nanoemulsion Containing Ellagic Acid from Pomegranate Rind Extract for Skin Delivery. Master’s Thesis, Chulalongkorn University, Bangkok, Thailand, 2011. [Google Scholar]
- Blois, M.S. Antioxidant Determinations by the Use of a Stable Free Radical. Nature 1958, 181, 1199–1200. [Google Scholar] [CrossRef]
- Liana, D.; Eurtivong, C.; Phanumartwiwath, A. Boesenbergia rotunda and Its Pinostrobin for Atopic Dermatitis: Dual 5-Lipoxygenase and Cyclooxygenase-2 Inhibitor and Its Mechanistic Study through Steady-State Kinetics and Molecular Modeling. Antioxidants 2024, 13, 74. [Google Scholar] [CrossRef] [PubMed]
- Ulmann, N.; Häckl, K.; Touraud, D.; Kunz, W. Investigation of the salting-in/-out, hydrotropic and surface-active behavior of plant-based hormone and phenolic acid salts. J. Colloid Interface Sci. 2023, 641, 631–642. [Google Scholar] [CrossRef] [PubMed]
Compound 1 | Before Storage (Day 0) | After Storage, before Stability Test (Day 30, 4 °C) | After Stability Test (Centrifugation, Heating-Cooling, Freeze-Thawing) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
T (%) 2 | Size (nm) 3 | PDI 4 | Zeta (mV) 5 | T (%) | Size (nm) | PDI | Zeta (mV) | T (%) | Size (nm) | PDI | Zeta (mV) | |
QM | 100.630 ± 0.004 | 10.443 ± 0.090 | 0.105 ± 0.011 | −3.083 ± −0.300 | 96.952 ± 0.004 | 13.333 ± 0.545 | 0.246 ± 0.012 | −2.837 ± −0.102 | 96.680 ± 0.017 | 14.870 ± 0.140 | 0.442 ± 0.003 | −2.857 ± −0.163 |
KM | 100.862 ± 0.006 | 10.223 ± 0.050 | 0.100 ± 0.004 | −2.647 ± −0.333 | 100.64 ± 0.008 | 10.853 ± 0.091 | 0.179 ± 0.009 | −1.620 ± −0.239 | 99.484 ± 0 | 11.727 ± 0.361 | 0.289 ± 0.009 | −1.573 ± −0.248 |
RM | 101.220 ± 0.003 | 10.057 ± 0.025 | 0.101 ± 0.004 | −2.987 ± −0.272 | 99.553 ± 0.005 | 15.247 ± 0.648 | 0.271 ± 0.011 | −3.010 ± −0.135 | 97.325 ± 0.003 | 21.477 ± 3.202 | 0.428 ± 0.052 | −3.377 ± −0.161 |
BM | 101.420 ± 0.005 | 10.487 ± 0.040 | 0.119 ± 0.011 | −2.617 ± −0.601 | 100.504 ± 0.008 | 10.647 ± 0.110 | 0.154 ± 0.008 | −2.657 ± −0.248 | 99.559 ± 0.003 | 92.317 ± 37.413 | 0.244 ± 0.024 | −2.263 ± −0.309 |
Compound 1 | Encapsulation Efficiency (Mean ± SD, %) |
---|---|
QM | 98.134 ± 0.216 b |
KM | 98.334 ± 0.191 b |
RM | 92.428 ± 0.316 a |
Compound | IC50 (µg/mL) for DPPH 4 | IC50 (µg/mL) for NO 4 |
---|---|---|
Que | 46.491 ± 1.647 b | 72.087 ± 2.149 b |
QM | 31.725 ± 0.810 a | 89.503 ± 9.754 c |
Kae | 81.367 ± 2.116 d | 176.067 ± 8.277 d |
KM | 56.645 ± 1.562 c | 101.070 ± 10.622 c |
RA | 46.538 ± 1.647 b | 76.607 ± 5.422 b |
RM | 33.237 ± 0.276 a | 55.517 ± 2.505 a |
Que 1 | 46.491 ± 1.647 b | - |
Gallic acid 2 | - | 55.260 ± 1.790 a |
BM 3 | >400 | >400 |
Compounds | IC50 (µg/mL) for T47D Cells | IC50 (µg/mL) for MDA-MB-231 Cells |
---|---|---|
Que | >50 | 26.880 ± 0.596 b |
Kae | >50 | >50 |
RA | >50 | 26.060 ± 0.137 b |
QM | 1.321 ± 0.018 b | 1.347 ± 0.006 a |
KM | 1.420 ± 0.067 b | 1.397 ± 0.012 a |
RM | 1.307 ± 0.210 b | 1.993 ± 1.005 a |
Doxorubicin 1 | 0.365 ± 0.004 a | 1.213 ± 0.156 a |
BM 2 | 1.443 ± 0.033 b | 1.403 ± 0.451 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cristy, G.P.; Liana, D.; Chatwichien, J.; Aonbangkhen, C.; Srisomsap, C.; Phanumartwiwath, A. Breast Cancer Prevention by Dietary Polyphenols: Microemulsion Formulation and In Vitro Studies. Sci. Pharm. 2024, 92, 25. https://doi.org/10.3390/scipharm92020025
Cristy GP, Liana D, Chatwichien J, Aonbangkhen C, Srisomsap C, Phanumartwiwath A. Breast Cancer Prevention by Dietary Polyphenols: Microemulsion Formulation and In Vitro Studies. Scientia Pharmaceutica. 2024; 92(2):25. https://doi.org/10.3390/scipharm92020025
Chicago/Turabian StyleCristy, Ghea Putri, Desy Liana, Jaruwan Chatwichien, Chanat Aonbangkhen, Chantragan Srisomsap, and Anuchit Phanumartwiwath. 2024. "Breast Cancer Prevention by Dietary Polyphenols: Microemulsion Formulation and In Vitro Studies" Scientia Pharmaceutica 92, no. 2: 25. https://doi.org/10.3390/scipharm92020025
APA StyleCristy, G. P., Liana, D., Chatwichien, J., Aonbangkhen, C., Srisomsap, C., & Phanumartwiwath, A. (2024). Breast Cancer Prevention by Dietary Polyphenols: Microemulsion Formulation and In Vitro Studies. Scientia Pharmaceutica, 92(2), 25. https://doi.org/10.3390/scipharm92020025