Fused Triazole-Azepine Hybrids as Potential Non-Steroidal Antiinflammatory Agents
Abstract
:1. Introduction
2. Materials and Methods
2.1. General Information
2.2. Synthesis and Characterization of Compounds
2.2.1. General Procedure of Synthesis of 3-aryl-6,7,8,9-tetrahydro-5H-[1,2,4]triazolo[4,3-a]azepines 7a–g
2.2.2. Characterization of Compounds 7a–g
2.3. Pharmacology Studies
2.3.1. Animals
2.3.2. Analgesic Activity
2.3.3. Anti-Inflammatory (Antiexudative) Activity
3. Results and Discussion
3.1. Synthesis and Characterization of Derivatives 7a–g
3.2. In Silico Evaluation of Drug-Likeness Parameters and Pharmacokinetics Properties of Compounds 7a–g Using the SwissAdme
3.3. In Vivo Studies of Analgesic and Anti-Inflammatory Activity of Compounds 7a–g and Emprical SAR
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rainsford, K.D. Anti-inflammatory drugs in the 21st century. Subcell. Biochem. 2007, 42, 3–27. [Google Scholar] [CrossRef] [PubMed]
- Rao, P.P.; Kabir, S.N.; Mohamed, T. Nonsteroidal Anti-Inflammatory Drugs (NSAIDs): Progress in Small Molecule Drug Development. Pharmaceuticals 2010, 3, 1530–1549. [Google Scholar] [CrossRef] [PubMed]
- Suthar, S.K.; Sharma, M. Recent developments in chimeric NSAIDs as safer anti-inflammatory agents. Med. Res. Rev. 2015, 35, 341–407. [Google Scholar] [CrossRef]
- Bacchi, S.; Palumbo, P.; Sponta, A.; Coppolino, M.F. Clinical pharmacology of non-steroidal anti-inflammatory drugs: A review. Antiinflamm. Antiallergy Agents Med. Chem. 2012, 11, 52–64. [Google Scholar] [CrossRef] [PubMed]
- David-Pereira, A.; Dickenson, A.H. Issues in the future development of new analgesic drugs. Curr. Opin. Support Palliat. Care 2019, 13, 107–110. [Google Scholar] [CrossRef]
- Fiorucci, S.; Distrutti, E. COXIBs, CINODs and H2S-releasing NSAIDs: Current perspectives in the development of safer non steroidal anti-inflammatory drugs. Curr. Med. Chem. 2011, 18, 3494–3505. [Google Scholar] [CrossRef]
- Sharma, S.; Kumar, D.; Singh, G.; Monga, V.; Kumar, B. Recent advancements in the development of heterocyclic anti-inflammatory agents. Eur. J. Med. Chem. 2020, 200, 112438. [Google Scholar] [CrossRef]
- Bian, M.; Ma, Q.Q.; Wu, Y.; Du, H.H.; Guo-Hua, G. Small molecule compounds with good anti-inflammatory activity reported in the literature from 01/2009 to 05/2021: A review. J. Enzyme Inhib. Med. Chem. 2021, 36, 2139–2159. [Google Scholar] [CrossRef]
- Demchenko, S.A.; Bobkova, L.S.; Yadlovskyi, O.E. Potential anti-inflammatory and analgesic drugs from triazole derivatives line: Problems and prospects. Pharm. Drug Toxicol. 2021, 15, 239–248. (In Ukrainian) [Google Scholar] [CrossRef]
- Dorababu, A. Update of Recently (2016–2020) Designed Azepine Analogs and Related Heterocyclic Compounds with Potent Pharmacological Activities. Polycycl. Aromat. Compd. 2022, 43, 2250–2268. [Google Scholar] [CrossRef]
- Demchenko, S.A.; Baglay, A.Y.; Zelinskaya, A.E.; Seredinskaya, N.N.; Yadlovsky, O.E.; Bukhtiarova, T.A.; Bobkova, L.S.; Demchenko, A.M. Synthesis of benzenesulphonamide derivatives and study of their affinity for COX-2 by the molecular docking. Pharm. Drug Toxicol. 2020, 14, 24–35. (In Ukrainian) [Google Scholar] [CrossRef]
- Amir, M.; Shikha, K. Synthesis and anti-inflammatory, analgesic, ulcerogenic and lipid peroxidation activities of some new 2-[(2,6-dichloroanilino)phenyl]acetic acid derivatives. Eur. J. Med. Chem. 2004, 39, 535–545. [Google Scholar] [CrossRef] [PubMed]
- Jiang, B.; Huang, X.; Yao, H.; Jiang, J.; Wu, X.; Jiang, S.; Wang, Q.; Lu, T.; Xu, J. Discovery of Potential Anti-Inflammatory Drugs: Diaryl-1,2,4-Triazoles Bearing N-Hydroxyurea Moiety as Dual Inhibitors of Cyclooxygenase-2 and 5-Lipoxygenase. Org. Biomol. Chem. 2014, 12, 2114. [Google Scholar] [CrossRef] [PubMed]
- Ivasiv, V.; Albertini, C.; Gonçalves, A.E.; Rossi, M.; Bolognesi, M.L. Molecular Hybridization as a Tool for Designing Multitarget Drug Candidates for Complex Diseases. Curr. Top. Med. Chem. 2019, 19, 1694–1711. [Google Scholar] [CrossRef] [PubMed]
- Roszczenko, P.; Holota, S.; Szewczyk, O.K.; Dudchak, R.; Bielawski, K.; Bielawska, A.; Lesyk, R. 4-Thiazolidinone-Bearing Hybrid Molecules in Anticancer Drug Design. Int. J. Mol. Sci. 2022, 23, 13135. [Google Scholar] [CrossRef] [PubMed]
- Dangi, M.; Khichi, A.; Jakhar, R.; Chhillar, A.K. Growing Preferences towards Analog-based Drug Discovery. Curr. Pharm. Biotechnol. 2021, 22, 1030–1045. [Google Scholar] [CrossRef]
- Demchenko, A.M. Derivatives of 1,4-diaryl-5,6,7,8-tetrahydro-2,2a,8a-triazacyclopenta[c,d]azulene. Chem. Heterocycl. Compd. 2000, 36, 985–988. [Google Scholar] [CrossRef]
- Demchenko, S.A.; Fedchenkova, Y.A.; Bobkova, L.S.; Artemchuk, L.P.; Demchenko, A.M. The Synthesis and the Study of the Antitumor Activity of 1,4-Diaryl-5,6,7,8-Tetrahydro-2,2a,8a triazacyclopenta[cd]azulene Derivatives. J. Org. Pharm. Chem. 2019, 17, 3–12. [Google Scholar] [CrossRef]
- Demchenko, S.A.; Yeromina, H.O.; Perekhoda, L.O.; Bukhtiarova, T.A.; Bobkova, L.S.; Demchenko, A.M. Synthesis and analgesic properties of (3-allyl-4-aryl-3H-thiazol-2-ylidene)-[4-(6,7,8,9-tetrahydro-5H-[1,2,4]triazolo[4,3-a]azepin-3-yl)phenyl]amine derivatives. Farm. Zhurnal 2018, 1, 67–73. [Google Scholar] [CrossRef]
- Demchenko, S.A.; Fedchenkova, Y.A.; Tsigankov, S.; Yadlovskyi, O.E.; Sukhoveev, V.V.; Bukhtiarova, T.A.; Demchenko, A.M. Synthesis, analgesic and anti-inflammatory activity of 3-aryl(heteryl)-2-(6,7,8,9-tetrahydro-5H-[1,2,4]triazolo[4,3-a]azepin-3-yl)-acrylonitrile derivatives. J. Org. Pharm. Chem. 2020, 18, 32–39. [Google Scholar] [CrossRef]
- Demchenko, S.; Chalenko, N.; Bukhtiarova, T.; Seredynska, N.; Bobkova, L.; Yadlovsky, O. Synthesis and Analgesic Activity of 6,7,8,9-Tetrahydro-5H-[1,2,4]Triazolo [4,3-a]Azepines. Pharm. Drug Toxicol. 2018, 60, 25–31. (In Ukrainian) [Google Scholar]
- Halaiev, O.; Garazd, M.; Gzella, A.; Lesyk, R. Unexpected synthesis of azepino[4,3,2-cd]indoles from 4-aminoindoles. Tetrahedron Lett. 2017, 58, 1324–1325. [Google Scholar] [CrossRef]
- Holota, S.; Komykhov, S.; Sysak, S.; Gzella, A.; Cherkas, A.; Lesyk, R. Synthesis, Characterization and In Vitro Evaluation of Novel 5-Ene-thiazolo[3,2-b][1,2,4]triazole-6(5H)-ones as Possible Anticancer Agents. Molecules 2021, 26, 1162. [Google Scholar] [CrossRef] [PubMed]
- Brož, B.; Růžičková, Z.; Šimůnek, P. Synthesis of [1,2-a]-fused tricyclic dihydroquinolines by palladium-catalyzed intramolecular C–N cross-coupling of polarized heterocyclic enamines. ARKIVOC 2016, 2016, 118–141. [Google Scholar] [CrossRef]
- Petersen, S.; Tietze, E. Reaktionen Cyclischer Lactimäther Mit Acylierten Hydrazinderivaten. Chem. Ber. 1957, 90, 909–921. [Google Scholar] [CrossRef]
- Vigorita, M.G.; Ottana, R.; Monforte, F.; Maccari, R.; Trovato, A.; Monforte, M.T.; Taviano, M.F. Synthesis and anti-inflammatory, analgesic activity of 3,3′-(1,2-Ethanediyl)-bis[2-aryl-4-thiazolidinone] chiral compounds. Part 10. Bioorg. Med. Chem. Lett. 2001, 11, 2791–2794. [Google Scholar] [CrossRef]
- Le Bars, D.; Gozariu, M.; Cadden, S.W. Animal models of nociception. Pharmacol. Rev. 2001, 53, 597–652. [Google Scholar]
- Winter, C.A.; Risley, E.A.; Nuss, G.W. Carrageenin-induced edema in hind paw of the rat as an assay for antiiflammatory drugs. Proc. Soc. Exp. Biol. Med. 1962, 111, 544–547. [Google Scholar] [CrossRef]
- Maniak, H.; Talma, M.; Matyja, K.; Trusek, A.; Giurg, M. Synthesis and Structure-Activity Relationship Studies of Hydrazide-Hydrazones as Inhibitors of Laccase from Trametes Versicolor. Molecules 2020, 25, 1255. [Google Scholar] [CrossRef]
- Maxwell, J.R.; Wasdahl, D.A.; Wolfson, A.C.; Stenberg, V.I. Synthesis of 5-Aryl-2H-Tetrazoles, 5-Aryl-2H-Tetrazole-2-Acetic Acids, and [(4-Phenyl-5-Aryl-4H-1,2,4-Triazol-3-Yl)Thio]Acetic Acids as Possible Superoxide Scavengers and Anti-inflammatory Agents. J. Med. Chem. 1984, 27, 1565–1570. [Google Scholar] [CrossRef]
- Kawano, T.; Hirano, K.; Satoh, T.; Miura, M. A New Entry of Amination Reagents for Heteroaromatic C−H Bonds: Copper-Catalyzed Direct Amination of Azoles with Chloroamines at Room Temperature. J. Am. Chem. Soc. 2010, 132, 6900–6901. [Google Scholar] [CrossRef] [PubMed]
- Haranahalli, K.; Lazzarini, C.; Sun, Y.; Zambito, J.; Pathiranage, S.; McCarthy, J.B.; Mallamo, J.; Del Poeta, M.; Ojima, I. SAR Studies on Aromatic Acylhydrazone-Based Inhibitors of Fungal Sphingolipid Synthesis as Next-Generation Antifungal Agents. J. Med. Chem. 2019, 62, 8249–8273. [Google Scholar] [CrossRef] [PubMed]
- SwissADME. Available online: http://www.swissadme.ch/ (accessed on 25 January 2022).
Compound/Parameter | Lipinski Rules | Veber Rules | Fraction Csp3 ≥0.25 | GI Absorption | BBB Permeant | P-gp Substrate | ||||
---|---|---|---|---|---|---|---|---|---|---|
MW ≤500 | Log P ≤5 | NHD ≤5 | NHA ≤10 | NBR ≤10 | TPSA ≤140 | |||||
7a | 213.28 | 1.96 | 0 | 2 | 1 | 30.71 | 0.38 | High | Yes | Yes |
7b | 229.28 | 2.10 | 1 | 3 | 1 | 50.94 | 0.38 | High | Yes | Yes |
7c | 229.28 | 2.04 | 1 | 3 | 1 | 50.94 | 0.38 | High | Yes | Yes |
7d | 243.30 | 2.45 | 0 | 3 | 2 | 39.94 | 0.43 | High | Yes | Yes |
7e | 303.36 | 2.43 | 0 | 5 | 4 | 58.40 | 0.50 | High | Yes | Yes |
7f | 227.30 | 2.79 | 0 | 2 | 1 | 30.71 | 0.43 | High | Yes | Yes |
7g | 270.33 | 2.04 | 1 | 3 | 3 | 59.81 | 0.40 | High | Yes | Yes |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Demchenko, S.; Lesyk, R.; Yadlovskyi, O.; Holota, S.; Yarmoluk, S.; Tsyhankov, S.; Demchenko, A. Fused Triazole-Azepine Hybrids as Potential Non-Steroidal Antiinflammatory Agents. Sci. Pharm. 2023, 91, 26. https://doi.org/10.3390/scipharm91020026
Demchenko S, Lesyk R, Yadlovskyi O, Holota S, Yarmoluk S, Tsyhankov S, Demchenko A. Fused Triazole-Azepine Hybrids as Potential Non-Steroidal Antiinflammatory Agents. Scientia Pharmaceutica. 2023; 91(2):26. https://doi.org/10.3390/scipharm91020026
Chicago/Turabian StyleDemchenko, Sergii, Roman Lesyk, Oleh Yadlovskyi, Serhii Holota, Sergii Yarmoluk, Sergii Tsyhankov, and Anatolii Demchenko. 2023. "Fused Triazole-Azepine Hybrids as Potential Non-Steroidal Antiinflammatory Agents" Scientia Pharmaceutica 91, no. 2: 26. https://doi.org/10.3390/scipharm91020026
APA StyleDemchenko, S., Lesyk, R., Yadlovskyi, O., Holota, S., Yarmoluk, S., Tsyhankov, S., & Demchenko, A. (2023). Fused Triazole-Azepine Hybrids as Potential Non-Steroidal Antiinflammatory Agents. Scientia Pharmaceutica, 91(2), 26. https://doi.org/10.3390/scipharm91020026