Fabrication of Direct Compressible Tablets Containing Chatuphalathika Extract Obtained through Microwave-Assisted Extraction: An Optimization Approach
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Plant Sample
2.3. Design of Experiments and Optimization of MAE
2.4. Determination of Total Phenolic Content
2.5. HPLC Analysis of Gallic Acid, Corilagin, Chebulagic Acid, and Chebulinic Acid Contents
2.6. Determination of Antioxidant Activity by DPPH Assay
2.7. Determination of Antioxidant Activity by FRAP Assay
2.8. In Vitro Cytotoxicity Test
2.9. Design of Experiments, Fabrication, and Optimization of Chatuphalathika Tablets
2.10. Evaluation of Chatuphalathika Tablet Properties
2.10.1. Average Weight and Weight Variation
2.10.2. Thickness and Diameter
2.10.3. Hardness
2.10.4. Friability
2.10.5. Disintegration Time
2.11. Statistical Analysis
3. Results
3.1. Extraction Yield, TPC, the Content of Some Phenolic Compounds, and Antioxidant Activity of Chatuphalathika Extracts
3.2. Optimal Condition of MAE
3.3. In Vitro Cytotoxicity
3.4. Optimal Fabricated Chatuphalathika Tablets
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sasidharan, S.; Chen, Y.; Saravanan, D.; Sundram, K.M.; Yoga Latha, L. Extraction, isolation and characterization of bioactive compounds from plants’ extracts. Afr. J. Tradit. Complement. Altern. Med. 2010, 8, 1–10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Uzel, R.A. Microwave-assisted green extraction technology for sustainable food processing. In Emerging Microwave Technologies in Industrial, Agricultural, Medical and Food Processing; You, K.Y., Ed.; IntechOpen: London, UK, 2018. [Google Scholar]
- Llompart, M.; Garcia-Jares, C.; Celeiro, M.; Dagnac, T. Extraction|Microwave-assisted extraction. In Encyclopedia of Analytical Science, 3rd ed.; Worsfold, P., Poole, C., Townshend, A., Miró, M., Eds.; Academic Press: Oxford, UK, 2019; pp. 67–77. [Google Scholar]
- Rodsamran, P.; Sothornvit, R. Extraction of phenolic compounds from lime peel waste using ultrasonic-assisted and microwave-assisted extractions. Food Biosci. 2019, 28, 66–73. [Google Scholar] [CrossRef]
- Song, Z.; Wei, X.; Xie, M.; Zhao, X.; Sun, J.; Mao, Y.; Wang, X.; Wang, W. Study on the microwave extraction process and product distribution of essential oils from citrus peel. Chem. Eng. Process. Process Intensif. 2022, 171, 108726. [Google Scholar] [CrossRef]
- Bener, M.; Burak Şen, F.; Nur Önem, A.; Bekdeşer, B.; Esin Çelik, S.; Lalikoglu, M.; Selim Aşçı, Y.; Capanoglu, E.; Apak, R. Microwave-assisted extraction of antioxidant compounds from by-products of Turkish hazelnut (Corylus avellana L.) using natural deep eutectic solvents: Modeling, optimization and phenolic characterization. Food Chem. 2022, 385, 132633. [Google Scholar] [CrossRef]
- Souza, O.A.; Ramalhão, V.G.d.S.; Trentin, L.d.M.; Funari, C.S.; Carneiro, R.L.; Bolzani, V.d.S.; Rinaldo, D. Combining natural deep eutectic solvent and microwave irradiation towards the eco-friendly and optimized extraction of bioactive phenolics from Eugenia uniflora L. Sustain. Chem. Pharm. 2022, 26, 100618. [Google Scholar] [CrossRef]
- Pengdee, C.; Sritularak, B.; Putalun, W. Optimization of microwave-assisted extraction of phenolic compounds in Dendrobium formosum Roxb. ex Lindl. and glucose uptake activity. S. Afr. J. Bot. 2020, 132, 423–431. [Google Scholar] [CrossRef]
- Bonomini, T.J.; Góes, J.A.; Machado, M.d.S.; Silva, R.M.L.d.; Malheiros, A. Development and optimization of a microwave-assisted extraction of plumieride from Allamanda cathartica L. flowers. Quím. Nova 2018, 41, 36–42. [Google Scholar] [CrossRef]
- Lateh, L.; Yuenyongsawad, S.; Chen, H.; Panichayupakaranant, P. A green method for preparation of curcuminoid-rich Curcuma longa extract and evaluation of its anticancer activity. Pharmacogn. Mag. 2019, 15, 730–735. [Google Scholar] [CrossRef]
- Kanchanathawornviboon, X.; Monton, C.; Urairong, H. Microwave-assisted extraction of curcuminoids from organic Curcuma longa L. in different oil types for cosmetic purpose: An optimization approach. J. Curr. Sci. Technol. 2021, 11, 71–89. [Google Scholar] [CrossRef]
- Sae-Lim, P.; Yuenyongsawad, S.; Panichayupakaranant, P. Chamuangone-enriched Garcinia cowa leaf extract with rice bran oil: Extraction and cytotoxic activity against cancer cells. Pharmacogn. Mag. 2019, 15, 183–188. [Google Scholar] [CrossRef]
- Akhtar, I.; Javad, S.; Ansari, M.; Ghaffar, N.; Tariq, A. Process optimization for microwave assisted extraction of Foeniculum vulgare Mill using response surface methodology. J. King Saud Univ. Sci. 2020, 32, 1451–1458. [Google Scholar] [CrossRef]
- Shang, X.; Guo, X.; Li, B.; Pan, H.; Zhang, J.; Zhang, Y.; Miao, X. Microwave-assisted extraction of three bioactive alkaloids from Peganum harmala L. and their acaricidal activity against Psoroptes cuniculi in vitro. J. Ethnopharmacol. 2016, 192, 350–361. [Google Scholar] [CrossRef] [PubMed]
- Monton, C.; Luprasong, C.; Charoenchai, L. Acceleration of turmeric drying using convection and microwave-assisted drying technique: An optimization approach. J. Food Process. Preserv. 2019, 43, e14096. [Google Scholar] [CrossRef]
- Monton, C.; Luprasong, C.; Charoenchai, L. Convection combined microwave drying affect quality of volatile oil compositions and quantity of curcuminoids of turmeric raw material. Rev. Bras. Farmacogn. 2019, 29, 434–440. [Google Scholar] [CrossRef]
- Charoenchai, L.; Monton, C.; Luprasong, C.; Kraisintu, K. Pretreatment study of turmeric rhizomes and optimization of drying methods using microwave oven and hot air oven to obtain high quality of turmeric powder. J. Curr. Sci. Technol. 2020, 10, 49–57. [Google Scholar] [CrossRef]
- Rosa, R.; Ferrari, E.; Veronesi, P. From field to shelf: How microwave-assisted extraction techniques foster an integrated green approach. In Emerging Microwave Technologies in Industrial, Agricultural, Medical and Food Processing; You, K.Y., Ed.; IntechOpen: London, UK, 2018. [Google Scholar]
- Amalraj, A.; Gopi, S. Medicinal properties of Terminalia arjuna (Roxb.) Wight & Arn.: A review. J. Tradit. Complement. Med. 2017, 7, 65–78. [Google Scholar] [CrossRef] [Green Version]
- Dharmaratne, M.P.J.; Manoraj, A.; Thevanesam, V.; Ekanayake, A.; Kumar, N.S.; Liyanapathirana, V.; Abeyratne, E.; Bandara, B.M.R. Terminalia bellirica fruit extracts: In-vitro antibacterial activity against selected multidrug-resistant bacteria, radical scavenging activity and cytotoxicity study on BHK-21 cells. BMC Complement. Altern. Med. 2018, 18, 325. [Google Scholar] [CrossRef] [Green Version]
- Naik, G.H.; Priyadarsini, K.I.; Naik, D.B.; Gangabhagirathi, R.; Mohan, H. Studies on the aqueous extract of Terminalia chebula as a potent antioxidant and a probable radioprotector. Phytomedicine 2004, 11, 530–538. [Google Scholar] [CrossRef]
- Pientaweeratch, S.; Panapisal, V.; Tansirikongkol, A. Antioxidant, anti-collagenase and anti-elastase activities of Phyllanthus emblica, Manilkara zapota and silymarin: An in vitro comparative study for anti-aging applications. Pharm. Biol. 2016, 54, 1865–1872. [Google Scholar] [CrossRef] [Green Version]
- Monton, C.; Suksaeree, J. Interaction of plant ingredients contained in Chatuphalathika herbal remedy based on chemical analysis aspect: Four-component simplex lattice design. Adv. Tradit. Med. 2021, 21, 535–544. [Google Scholar] [CrossRef]
- Suksaeree, J.; Wunnakup, T.; Monton, C. Synergistic antioxidant activity of plant compositions contained in Chatuphalathika herbal recipe: Terminalia chebula Retz. var. chebula, Terminalia arjuna Wight and Arn., Terminalia bellirica (Gaertn.) Roxb., and Phyllanthus emblica L. Adv. Tradit. Med. 2022, 22, 547–556. [Google Scholar] [CrossRef]
- Monton, C.; Kittiratpattana, P.; Nakyai, S.; Sutapakul, T.; Navabhatra, A.; Wunnakup, T.; Chankana, N.; Suksaeree, J. Microwave-assisted extraction of Clausena anisata leaves and Vernonia cinerea whole plants to maximize nitrate content: Optimization approach, antioxidant activity, and cytotoxicity. Adv. Tradit. Med. 2022, 22, 697–711. [Google Scholar] [CrossRef]
- Vera Candioti, L.; De Zan, M.M.; Cámara, M.S.; Goicoechea, H.C. Experimental design and multiple response optimization. Using the desirability function in analytical methods development. Talanta 2014, 124, 123–138. [Google Scholar] [CrossRef] [PubMed]
- Ford, L.; Theodoridou, K.; Sheldrake, G.N.; Walsh, P.J. A critical review of analytical methods used for the chemical characterisation and quantification of phlorotannin compounds in brown seaweeds. Phytochem. Anal. 2019, 30, 587–599. [Google Scholar] [CrossRef] [PubMed]
- Monton, C.; Wunnakup, T.; Suksaeree, J.; Charoenchai, L.; Chankana, N. Investigation of the interaction of herbal ingredients contained in Triphala recipe using simplex lattice design: Chemical analysis point of view. Int. J. Food Sci. 2020, 2020, 5104624. [Google Scholar] [CrossRef]
- Lacopini, P.; Baldi, M.; Storchi, P.; Sebastiani, L. Catechin, epicatechin, quercetin, rutin and resveratrol in red grape: Content, in vitro antioxidant activity and interactions. J. Food Compos. Anal. 2008, 21, 589–598. [Google Scholar] [CrossRef]
- Xiao, F.; Xu, T.; Lu, B.; Liu, R. Guidelines for antioxidant assays for food components. Food Front. 2020, 1, 60–69. [Google Scholar] [CrossRef] [Green Version]
- Chiangsom, A.; Maniratanachote, R.; Meksuriyen, D.; Luechapudiporn, R.; Kulthong, K.; Aueviriyavit, S.; Oda, S.; Yokoi, T.; Lawanprasert, S. Protective effect of Phikud Navakot extract against hydrogen peroxide-induced oxidative stress in HepG2 cells. Thai J. Pharm. Sci. 2019, 4, 186–194. [Google Scholar]
- Alara, O.R.; Abdurahman, N.H.; Ukaegbu, C.I.; Azhari, N.H. Vernonia cinerea leaves as the source of phenolic compounds, antioxidants, and anti-diabetic activity using microwave-assisted extraction technique. Ind. Crop. Prod. 2018, 122, 533–544. [Google Scholar] [CrossRef]
- Alara, O.R.; Abdurahman, N.H.; Abdul Mudalip, S.K. Optimizing microwave-assisted extraction conditions to obtain phenolic-rich extract from Chromolaena odorata leaves. Chem. Eng. Technol. 2019, 42, 1733–1740. [Google Scholar] [CrossRef]
- Alara, O.R.; Abdurahman, N.H.; Alara, J.A. Two-level factorial screening of microwave-assisted extraction parameters for the recovery of phenolic compounds from Vernonia cinerea leaf. J. Chem. Eng. Ind. Biotechnol. 2019, 25, 16–28. [Google Scholar] [CrossRef]
- Deo, S.; Janghel, A.; Raut, P.; Bhosle, D.; Verma, C.; Kumar, S.S.; Agrawal, M.; Amit, N.; Sharma, M.; Giri, T.; et al. Emerging microwave assisted extraction (MAE) techniques as an innovative green technologies for the effective extraction of the active phytopharmaceuticals. Res. J. Pharm. Technol. 2015, 8, 655–666. [Google Scholar] [CrossRef]
- Bouras, M.; Chadni, M.; Barba, F.J.; Grimi, N.; Bals, O.; Vorobiev, E. Optimization of microwave-assisted extraction of polyphenols from Quercus bark. Ind. Crop. Prod. 2015, 77, 590–601. [Google Scholar] [CrossRef]
- Yang, L.; Sun, X.; Yang, F.; Zhao, C.; Zhang, L.; Zu, Y. Application of ionic liquids in the microwave-assisted extraction of proanthocyanidins from Larix gmelini bark. Int. J. Mol. Sci. 2012, 13, 5163–5178. [Google Scholar] [CrossRef] [Green Version]
- Bhuyan, D.J.; Van Vuong, Q.; Chalmers, A.C.; van Altena, I.A.; Bowyer, M.C.; Scarlett, C.J. Microwave-assisted extraction of Eucalyptus robusta leaf for the optimal yield of total phenolic compounds. Ind. Crop. Prod. 2015, 69, 290–299. [Google Scholar] [CrossRef]
- ISO 10993-5; Biological Evaluation of Medical Devices—Part 5: Tests for In Vitro Cytotoxicity. International Organization for Standardization: Geneva, Switzerland, 2009.
- Sahragard, A.; Alavi, Z.; Abolhassanzadeh, Z.; Moein, M.; Mohammadi-Bardbori, A.; Omidi, M.; Zarshenas, M.M. Assessment of the cytotoxic activity of Triphala: A semisolid traditional formulation on HepG2 cancer cell line. BioMed Res. Int. 2021, 2021, 6689568. [Google Scholar] [CrossRef]
- Phetkate, P.; Kummalue, T.; Rinthong, P.; Kietinun, S.; Sriyakul, K. Study of the safety of oral Triphala aqueous extract on healthy volunteers. J. Integr. Med. 2020, 18, 35–40. [Google Scholar] [CrossRef]
- Manley, L.; Hilden, J.; Valero, P.; Kramer, T. Tablet compression force as a process analytical technology (PAT): 100% inspection and control of tablet weight uniformity. J. Pharm. Sci. 2019, 108, 485–493. [Google Scholar] [CrossRef] [Green Version]
- Marais, A.F.; Song, M.; Villiers, M.M.d. Effect of compression force, humidity and disintegrant concentration on the disintegration and dissolution of directly compressed furosemide tablets using croscarmellose sodium as disintegrant. Trop. J. Pharm. Res. 2003, 2, 125–135. [Google Scholar]
- Suksaeree, J.; Monton, C.; Chankana, N.; Charoenchai, L. Microcrystalline cellulose promotes superior direct compressed Boesenbergia rotunda (L.) Mansf. extract tablet properties to spray-dried rice starch and spray-dried lactose. Arab J. Basic Appl. Sci. 2023, 30, 13–25. [Google Scholar] [CrossRef]
- Suksaeree, J.; Monton, C.; Charoenchai, L.; Chankana, N.; Wunnakup, T. Optimization of process and formulation variables for Semha-Pinas extract effervescent tablets using the Box-Behnken design. AAPS PharmSciTech 2023, 24, 52. [Google Scholar] [CrossRef] [PubMed]
- Rowe, R.C.; Sheskey, P.J.; Quinn, M.E. (Eds.) Handbook of Pharmaceutical Excipients, 6th ed.; Pharmaceutical Press: London, UK, 2009. [Google Scholar]
- Markl, D.; Zeitler, J.A. A review of disintegration mechanisms and measurement techniques. Pharm. Res. 2017, 34, 890–917. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Apeji, Y.E.; Zechariah, F.D.; Anyebe, S.N.; Tytler, B.; Olowosulu, A.K.; Oyi, A.R. Effect of mode of superdisintegrant incorporation on tableting properties of metronidazole granules. Pharm. Sci. Asia 2019, 46, 25–32. [Google Scholar] [CrossRef]
- Rojas, J.; Guisao, S.; Ruge, V. Functional assessment of four types of disintegrants and their effect on the spironolactone release properties. AAPS PharmSciTech 2012, 13, 1054–1062. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, J.; Wu, Y. Lubricants in pharmaceutical solid dosage forms. Lubricants 2014, 2, 21–43. [Google Scholar] [CrossRef]
- Osei-Yeboah, F.; Sun, C.C. Validation and applications of an expedited tablet friability method. Int. J. Pharm. 2015, 484, 146–155. [Google Scholar] [CrossRef] [PubMed]
Factors | Levels * | ||
---|---|---|---|
−1 | 0 | +1 | |
Microwave-assisted extraction | |||
X1 (W) | 300 | 450 | 600 |
X2 (s) | 10 | 20 | 30 |
X3 (cycle) | 1 | 2 | 3 |
Tablet fabrication | |||
X1 (psi) | 1000 | 1500 | 2000 |
X2 (%) | 0 | 2 | 4 |
X3 (%) | 0.5 | 1.0 | 1.5 |
Responses | Models | Equations * |
Y1 (%) | Linear | |
Y2 (mg GAE/g extract) | Quadratic | |
Y3 (%) | Quadratic | |
Y4 (%) | Quadratic | |
Y5 (%) | Linear | |
Y6 (%) | Linear | |
Y7 (μg/mL) | Quadratic | |
Y8 (μg/mL) | Quadratic |
Responses * | Predicted Values | Experimental Values ** | Percentage Error (%) |
---|---|---|---|
Y1 (%) | 35.46 | 37.77 ± 0.60 | 6.12 |
Y2 (mg GAE/g extract) | 417.80 | 421.90 ± 6.19 | 0.97 |
Y7 (μg/mL) | 15.97 | 14.65 ± 0.87 | −9.01 |
Y8 (μg/mL) | 15.17 | 13.39 ± 0.64 | −13.29 |
Responses | Models | Equations * |
---|---|---|
Y3 (mm) | Quadratic | |
Y5 (kP) | Linear | |
Y6 (%) | Quadratic | |
Y7 (s) | Quadratic |
Responses * | Predicted Values | Experimental Values ** | Percentage Error (%) |
---|---|---|---|
Y3 (mm) | 4.28 | 4.30 ± 0.06 | 0.93 |
Y5 (kP) | 4.58 | 4.30 ± 0.50 | −6.51 |
Y6 (%) | 0.00 | 0.37 | 100 |
Y7 (s) | 77.62 | 75.26 ± 9.62 | −3.14 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Monton, C.; Keawchay, P.; Pokkrong, C.; Kamnoedthapaya, P.; Navabhatra, A.; Suksaeree, J.; Wunnakup, T.; Chankana, N.; Songsak, T. Fabrication of Direct Compressible Tablets Containing Chatuphalathika Extract Obtained through Microwave-Assisted Extraction: An Optimization Approach. Sci. Pharm. 2023, 91, 17. https://doi.org/10.3390/scipharm91020017
Monton C, Keawchay P, Pokkrong C, Kamnoedthapaya P, Navabhatra A, Suksaeree J, Wunnakup T, Chankana N, Songsak T. Fabrication of Direct Compressible Tablets Containing Chatuphalathika Extract Obtained through Microwave-Assisted Extraction: An Optimization Approach. Scientia Pharmaceutica. 2023; 91(2):17. https://doi.org/10.3390/scipharm91020017
Chicago/Turabian StyleMonton, Chaowalit, Piyapa Keawchay, Chantisa Pokkrong, Pariyakorn Kamnoedthapaya, Abhiruj Navabhatra, Jirapornchai Suksaeree, Thaniya Wunnakup, Natawat Chankana, and Thanapat Songsak. 2023. "Fabrication of Direct Compressible Tablets Containing Chatuphalathika Extract Obtained through Microwave-Assisted Extraction: An Optimization Approach" Scientia Pharmaceutica 91, no. 2: 17. https://doi.org/10.3390/scipharm91020017
APA StyleMonton, C., Keawchay, P., Pokkrong, C., Kamnoedthapaya, P., Navabhatra, A., Suksaeree, J., Wunnakup, T., Chankana, N., & Songsak, T. (2023). Fabrication of Direct Compressible Tablets Containing Chatuphalathika Extract Obtained through Microwave-Assisted Extraction: An Optimization Approach. Scientia Pharmaceutica, 91(2), 17. https://doi.org/10.3390/scipharm91020017