Antioxidants in Cancer Therapy: Recent Trends in Application of Nanotechnology for Enhanced Delivery
Abstract
:1. Introduction
2. Nanotechnology for Antioxidants Delivery
2.1. Dendrimers
2.2. Micelles
2.3. Polymeric Nanoparticles
2.4. Liposomes
2.5. Solid Lipid Nanoparticles
3. Methods of Preparation of SLNs
3.1. High Pressure Homogenization Technique
3.2. Microemulsion Technique
3.3. Solvent Emulsification Evaporation Technique
3.4. Solvent Emulsification Diffusion Technique
3.5. Ultrasonication Technique
3.6. Melting Dispersion Technique (Hot Melt Encapsulation Method)
3.7. Double Emulsion Technique
3.8. Solvent Injection Technique
3.8.1. Desolvation Technique
3.8.2. Dialysis Technique
3.8.3. Nanoprecipitation Technique
3.8.4. Solvent Evaporation Technique
4. Examples on Utilizing Nanotechnology in the Delivery of Antioxidants for Cancer Therapy
4.1. Vitamin E
4.2. Coenzyme Q10 (Ubiquinone)
4.3. Vitamin C
4.4. β-Carotene
4.5. Resveratrol
4.6. Curcumin
4.7. Catechin
4.8. Rutin
4.9. Baicalin
5. Conclusions
Conflicts of Interest
References
- Shewach, D.S.; Kuchta, R.D. Introduction to Cancer Chemotherapeutics; ACS Publications: Washington, DC, USA, 2009. [Google Scholar]
- Visconti, R.; Grieco, D. New insights on oxidative stress in cancer. Curr. Opin. Drug Discov. Dev. 2009, 12, 240–245. [Google Scholar] [PubMed]
- Reuter, S.; Gupta, S.C.; Chaturvedi, M.M.; Aggarwal, B.B. Oxidative stress, inflammation, and cancer: How are they linked? Free Radic. Biol. Med. 2010, 49, 1603–1616. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moslen, M. Reactive Oxygen Species in Normal Physiology, Cell Injury and Phagocytosis, Free Radicals in Diagnostic Medicine; Armstrong Plenum Press: New York, NY, USA, 1994. [Google Scholar]
- Jagtap, P.; Szabó, C. Poly (ADP-ribose) polymerase and the therapeutic effects of its inhibitors. Nat. Rev. Drug Discov. 2005, 4, 421. [Google Scholar] [CrossRef] [PubMed]
- Liaudet, L.; Szabó, É.; Timashpolsky, L.; Virág, L.; Cziráki, A.; Szabó, C. Suppression of poly (ADP-ribose) polymerase activation by 3-aminobenzamide in a rat model of myocardial infarction: Long-term morphological and functional consequences. Br. J. Pharm. 2001, 133, 1424–1430. [Google Scholar] [CrossRef] [Green Version]
- Veskoukis, A.S.; Tsatsakis, A.M.; Kouretas, D. Dietary oxidative stress and antioxidant defense with an emphasis on plant extract administration. Cell Stress Chaperones 2012, 17, 11–21. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Müller, R.H.; Mäder, K.; Gohla, S. Solid lipid nanoparticles (SLN) for controlled drug delivery—A review of the state of the art. Eur. J. Pharm. Biopharm. 2000, 50, 161–177. [Google Scholar] [CrossRef]
- Hellman, S. Principles of radiation therapy. Cancer Princ. Pract. Oncol. 1993, 1, 269–270. [Google Scholar]
- Sangeetha, P.; Das, U.; Koratkar, R.; Suryaprabha, P. Increase in free radical generation and lipid peroxidation following chemotherapy in patients with cancer. Free Radic. Biol. Med. 1990, 8, 15–19. [Google Scholar] [CrossRef]
- Weijl, N.; Cleton, F.; Osanto, S. Free radicals and antioxidants in chemotherapyinduced toxicity. Cancer Treat. Rev. 1997, 23, 209–240. [Google Scholar] [CrossRef]
- Sharma, M.; Rajappa, M.; Kumar, G.; Sharma, A. Oxidant-antioxidant status in Indian patients with carcinoma of posterior one-third of tongue. Cancer Biomark. 2009, 5, 253–260. [Google Scholar] [CrossRef]
- St. Clair, D.K.; Jordan, J.A.; Wan, X.S.; Gairola, C.G. Protective role of manganese superoxide dismutase against cigarette smoke-induced cytotoxicity. J. Toxicol. Environ. Health Part A Curr. Issues 1994, 43, 239–249. [Google Scholar] [CrossRef] [PubMed]
- Wong, G.H. Protective roles of cytokines against radiation: Induction of mitochondrial MnSOD. Biochim. Biophys. Acta (BBA) Mol. Basis Dis. 1995, 1271, 205–209. [Google Scholar] [CrossRef] [Green Version]
- Halliwell, B.; Gutteridge, J.M.C.; Cross, C.E. Free radicals, antioxidants, and human disease: Where are we now? Lab. Clin. Med. 1992, 19, 598–620. [Google Scholar]
- Singh, K.; Bhori, M.; Kasua, Y.A.; Bhatb, G.; Marar, T. Antioxidants as precision weapons in war against cancer chemotherapyinduced toxicity–Exploring the armoury of obscurity. Saudi Pharm. J. 2018, 26, 177–190. [Google Scholar] [CrossRef] [PubMed]
- Shinde, A.; Ganu, J.; Naik, P. Effect of free radicals & antioxidants on oxidative stress: A review. J. Dent. Allied Sci. 2012, 1, 63–66. [Google Scholar] [CrossRef]
- Simone II, C.B.; Simone, N.L.; Simone, V.; Simone, C.B. Antioxidants and other nutrients do not interfere with chemotherapy or radiation therapy and can increase kill and increase survival, Part 2. Altern. Ther. Health Med. 2007, 13, 22–29. [Google Scholar]
- Abbasi, E.; Aval, S.F.; Akbarzadeh, A.; Milani, M.; Nasrabadi, H.T.; Joo, S.W.; Hanifehpour, Y.; Nejati-Koshki, K.; Pashaei-Asl, R. Dendrimers: Synthesis, applications, and properties. Nanoscale Res. Lett. 2014, 9, 247. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Caban, S.; Aytekin, E.; Sahin, A.; Capan, Y. Nanosystems for drug delivery. Drug Des. Deliv. 2014, 2, 2. [Google Scholar]
- Moghimi, S.M.; Hunter, A.C.; Murray, J.C. Nanomedicine: Current status and future prospects. FASEB J. 2005, 19, 311–330. [Google Scholar] [CrossRef] [Green Version]
- Zhang, M.; Zhu, J.; Zheng, Y.; Guo, R.; Wang, S.; Mignani, S.; Caminade, A.-M.; Majoral, J.-P.; Shi, X. Doxorubicin-conjugated PAMAM dendrimers for pH-responsive drug release and folic acid-targeted cancer therapy. Pharmaceutics 2018, 10, 162. [Google Scholar] [CrossRef] [Green Version]
- Liu, Z.; Zhao, H.; Shu, L.; Zhang, Y.; Okeke, C.; Zhang, L.; Li, J.; Li, N. Preparation and evaluation of Baicalin-loaded cationic solid lipid nanoparticles conjugated with OX26 for improved delivery across the BBB. Drug Dev. Ind. Pharm. 2015, 41, 353–361. [Google Scholar] [CrossRef] [PubMed]
- Kabanov, A.V.; Batrakova, E.V.; Melik-Nubarov, N.S.; Fedoseev, N.A.; Dorodnich, T.Y.; Alakhov, V.Y.; Chekhonin, V.P.; Nazarova, I.R.; Kabanov, V.A. A new class of drug carriers: Micelles of poly (oxyethylene)-poly (oxypropylene) block copolymers as microcontainers for drug targeting from blood in brain. J. Control. Release 1992, 22, 141–157. [Google Scholar] [CrossRef]
- Torchilin, V.P. Micellar nanocarriers: Pharmaceutical perspectives. Pharm. Res. 2007, 24, 1. [Google Scholar] [CrossRef] [PubMed]
- Loppinet, B.; Monteux, C. Dynamics of surfactants and polymers at liquid interfaces. In Soft Matter at Aqueous Interfaces; Springer: Berlin/Heidelberg, Germany, 2016; pp. 137–157. [Google Scholar] [CrossRef]
- Schramm, L.L.; Stasiuk, E.N.; Marangoni, D.G. 2 Surfactants and their applications. Annu. Rep. Sect. C (Phys. Chem.) 2003, 99, 3–48. [Google Scholar] [CrossRef]
- Kellermann, M.; Bauer, W.; Hirsch, A.; Schade, B.; Ludwig, K.; Böttcher, C. The first account of a structurally persistent micelle. Angew. Chem. Int. Ed. 2004, 43, 2959–2962. [Google Scholar] [CrossRef]
- Moriyama, M.; Metzger, S.; van der Vlies, A.J.; Uyama, H.; Ehrbar, M.; Hasegawa, U. Inhibition of angiogenesis by antioxidant micelles. Adv. Healthc. Mater. 2015, 4, 569–575. [Google Scholar] [CrossRef]
- Esmaili, M.; Ghaffari, S.M.; Moosavi-Movahedi, Z.; Atri, M.S.; Sharifizadeh, A.; Farhadi, M.; Yousefi, R.; Chobert, J.-M.; Haertlé, T.; Moosavi-Movahedi, A.A. Beta casein-micelle as a nano vehicle for solubility enhancement of curcumin; food industry application. LWT Food Sci. Technol. 2011, 44, 2166–2172. [Google Scholar] [CrossRef]
- Prabhu, R.H.; Patravale, V.B.; Joshi, M.D. Polymeric nanoparticles for targeted treatment in oncology: Current insights. Int. J. Nanomed. 2015, 10, 1001. [Google Scholar]
- Mady, F.M.; Shaker, M.A. Enhanced anticancer activity and oral bioavailability of ellagic acid through encapsulation in biodegradable polymeric nanoparticles. Int. J. Nanomed. 2017, 12, 7405. [Google Scholar] [CrossRef] [Green Version]
- Rocha, S.; Generalov, R.; Pereira, M.d.C.; Peres, I.; Juzenas, P.; Coelho, M.A. Epigallocatechin gallate-loaded polysaccharide nanoparticles for prostate cancer chemoprevention. Nanomedicine 2011, 6, 79–87. [Google Scholar] [CrossRef] [PubMed]
- Safra, T.; Muggia, F.; Jeffers, S.; Tsao-Wei, D.; Groshen, S.; Lyass, O.; Henderson, R.; Berry, G.; Gabizon, A. Pegylated liposomal doxorubicin (doxil): Reduced clinical cardiotoxicity in patients reaching or exceeding cumulative doses of 500 mg/m2. Ann. Oncol. 2000, 11, 1029–1033. [Google Scholar] [CrossRef] [PubMed]
- Swenson, C.; Perkins, W.; Roberts, P.; Janoff, A. Liposome technology and the development of Myocet™ (liposomal doxorubicin citrate). Breast 2001, 10, 1–7. [Google Scholar] [CrossRef]
- Boman, N.L.; Bally, M.B.; Cullis, P.R.; Mayer, L.D.; Webb, M.S. Encapsulation of vincristine in liposomes reduces its toxicity and improves its anti-tumor efficacy. J. Liposome Res. 1995, 5, 523–541. [Google Scholar] [CrossRef]
- Koudelka, S.; Knotigova, P.T.; Masek, J.; Prochazka, L.; Lukac, R.; Miller, A.D.; Neuzil, J.; Turanek, J. Liposomal delivery systems for anti-cancer analogues of vitamin E. J. Control. Release 2015, 207, 59–69. [Google Scholar] [CrossRef]
- Muthu, M.S.; Kulkarni, S.A.; Xiong, J.; Feng, S.-S. Vitamin E TPGS coated liposomes enhanced cellular uptake and cytotoxicity of docetaxel in brain cancer cells. Int. J. Pharm. 2011, 421, 332–340. [Google Scholar] [CrossRef]
- Yoon, G.; Park, J.W.; Yoon, I.-S. Solid lipid nanoparticles (SLNs) and nanostructured lipid carriers (NLCs): Recent advances in drug delivery. J. Pharm. Investig. 2013, 43, 353–362. [Google Scholar] [CrossRef]
- Müller, R.; Dingler, A.; Schneppe, T.; Gohla, S. Large scale production of solid lipid nanoparticles (SLN™) and nanosuspensions (DissoCubes™). Handb. Pharm. Control. Release Technol. 2000, 359–376. [Google Scholar]
- Gregoriadis, G. Liposomes as Drug Carriers: Recent Trends and Progress; John Wiley & Sons: Hoboken, NJ, USA, 1988. [Google Scholar]
- Mehnert, W.; Mäder, K. Solid lipid nanoparticles: Production, characterization and applications. Adv. Drug Deliv. Rev. 2012, 64, 83–101. [Google Scholar] [CrossRef]
- Üner, M. Preparation, characterization and physico-chemical properties of solid lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC): Their benefits as colloidal drug carrier systems. Die Pharm. Int. J. Pharm. Sci. 2006, 61, 375–386. [Google Scholar]
- Mukherjee, S.; Ray, S.; Thakur, R. Solid lipid nanoparticles: A modern formulation approach in drug delivery system. Indian J. Pharm. Sci. 2009, 71, 349. [Google Scholar] [CrossRef] [Green Version]
- Muller, R.H. Solid lipid nanoparticles (SLN)-an alternative colloidal carrier system for controlled drug delivery. Eur. J. Biopharm. 1995, 41, 62–69. [Google Scholar]
- Muller, R.; Dingler, A.; Weyhers, H.; Zur Muhlen, A. Feste lipid nanopartikel (SLN). Pharm. Technol. Mod. Arzneiformen 1997, 265–272. [Google Scholar]
- Hoar, T.P.; Schulman, J.H. Transparent water-in-oil dispersions the oleopathic hydro micelle Nature. Int. J. Pharm. Sci. 1943, 152, 102–103. [Google Scholar] [CrossRef]
- Moghimipour, E.; Salimi, A.; Eftekhari, S. Design and characterization of microemulsion systems for naproxen. Adv. Pharm. Bull. 2013, 3, 63. [Google Scholar] [PubMed]
- Jin, C.; Bai, L.; Wu, H.; Tian, F.; Guo, G. Radiosensitization of paclitaxel, etanidazole and paclitaxel+ etanidazole nanoparticles on hypoxic human tumor cells in vitro. Biomaterials 2007, 28, 3724–3730. [Google Scholar] [CrossRef]
- Tan, C.P.; Nakajima, M. β-Carotene nanodispersions: Preparation, characterization and stability evaluation. Food Chem. 2005, 92, 661–671. [Google Scholar] [CrossRef]
- Hwisa, N.; Katakam, P.; Chandu, B.; Adiki, S. Solvent evaporation techniques as promising advancement in microencapsulation. Vri Biol. Med. Chem. 2013, 1, 8–22. [Google Scholar] [CrossRef]
- Jia, L.-J.; Zhang, D.-R.; Li, Z.-Y.; Feng, F.-F.; Wang, Y.-C.; Dai, W.-T.; Duan, C.-X.; Zhang, Q. Preparation and characterization of silybin-loaded nanostructured lipid carriers. Drug Deliv. 2010, 17, 11–18. [Google Scholar] [CrossRef] [PubMed]
- Ekambaram, P.; Sathali, A.A.H.; Priyanka, K. Solid lipid nanoparticles: A review. Sci. Rev. Chem. Commun. 2012, 2, 80–102. [Google Scholar]
- Reithmeier, H.; Herrmann, J.; Göpferich, A. Lipid microparticles as a parenteral controlled release device for peptides. J. Control. Release 2001, 73, 339–350. [Google Scholar] [CrossRef]
- Reithmeier, H.; Herrmann, J.; Göpferich, A. Development and characterization of lipid microparticles as a drug carrier for somatostatin. Int. J. Pharm. 2001, 218, 133–143. [Google Scholar] [CrossRef]
- Cortesi, R.; Esposito, E.; Luca, G.; Nastruzzi, C. Production of lipospheres as carriers for bioactive compounds. Biomaterials 2002, 23, 2283–2294. [Google Scholar] [CrossRef]
- Jaganathan, K.; Rao, Y.; Singh, P.; Prabakaran, D.; Gupta, S.; Jain, A.; Vyas, S.P. Development of a single dose tetanus toxoid formulation based on polymeric microspheres: A comparative study of poly (d,l-lactic-co-glycolic acid) versus chitosan microspheres. Int. J. Pharm. 2005, 294, 23–32. [Google Scholar] [CrossRef] [PubMed]
- Garcıa-Fuentes, M.; Torres, D.; Alonso, M. Design of lipid nanoparticles for the oral delivery of hydrophilic macromolecules. Colloids Surf. B Biointerfaces 2003, 27, 159–168. [Google Scholar] [CrossRef]
- Reis, C.P.; Neufeld, R.J.; Ribeiro, A.J.; Veiga, F.; Nanoencapsulation, I. Methods for preparation of drug-loaded polymeric nanoparticles. Nanomed. Nanotechnol. Biol. Med. 2006, 2, 8–21. [Google Scholar] [CrossRef] [Green Version]
- Rao, J.P.; Geckeler, K.E. Polymer nanoparticles: Preparation techniques and size-control parameters. Prog. Polym. Sci. 2011, 36, 887–913. [Google Scholar] [CrossRef]
- Fessi, H.; Puisieux, F.; Devissaguet, J.P.; Ammoury, N.; Benita, S. Nanocapsule formation by interfacial polymer deposition following solvent displacement. Int. J. Pharm. 1989, 55, R1–R4. [Google Scholar] [CrossRef]
- Jaiswal, J.; Gupta, S.K.; Kreuter, J. Preparation of biodegradable cyclosporine nanoparticles by high-pressure emulsification-solvent evaporation process. J. Control. Release 2004, 96, 169–178. [Google Scholar] [CrossRef]
- Rizvi, S.; Raza, S.T.; Ahmed, F.; Ahmad, A.; Abbas, S.; Mahdi, F. The role of vitamin E in human health and some diseases. Sultan Qaboos Univ. Med. J. 2014, 14, e157. [Google Scholar] [PubMed]
- Waxman, S.; Bruckner, H. The enhancement of 5-fluorouracil antimetabolic activity by leucovorin, menadione and α-tocopherol. Eur. J. Cancer 1982, 18, 685–692. [Google Scholar] [CrossRef]
- Prasad, K.N.; Edwards-Prasad, J.; Ramanujam, S.; Sakamoto, A. Vitamin E increases the growth inhibitory and differentiating effects of tumor therapeutic agents on neuroblastoma and glioma cells in culture. Proc. Soc. Exp. Biol. Med. 1980, 164, 158–163. [Google Scholar] [CrossRef]
- Chinery, R.; Brockman, J.A.; Peeler, M.O.; Shyr, Y.; Beauchamp, R.D.; Coffey, R.J. Antioxidants enhance the cytotoxicity of chemotherapeutic agents in colorectal cancer: A p53-independent induction of p21WAF1/CIP1 via C/EBPβ. Nat. Med. 1997, 3, 1233. [Google Scholar] [CrossRef]
- Ripoll, E.A.P.; Rama, B.N.; Webber, M.M. Vitamin E enhances the chemotherapeutic effects of adriamycin on human prostatic carcinoma cells in vitro. J. Urol. 1986, 136, 529–531. [Google Scholar] [CrossRef]
- Sue, K.; Nakagawara, A.; Okuzono, S.-I.; Fukushige, T.; Ikeda, K. Combined effects of vitamin E (alpha-tocopherol) and cisplatin on the growth of murine neuroblastoma in vivo. Eur. J. Cancer Clin. Oncol. 1988, 24, 1751–1758. [Google Scholar] [CrossRef]
- Sonneveld, P. Effect of alpha-tocopherol on the cardiotoxicity of adriamycin in the rat. Cancer Treat. Rep. 1978, 62, 1033–1036. [Google Scholar] [PubMed]
- Feng, S.-S.; Mei, L.; Anitha, P.; Gan, C.W.; Zhou, W. Poly (lactide)–vitamin E derivative/montmorillonite nanoparticle formulations for the oral delivery of Docetaxel. Biomaterials 2009, 30, 3297–3306. [Google Scholar] [CrossRef] [PubMed]
- Hurley, L.H.; Allen, C.S.; Feola, J.M.; Lubawy, W.C. In vitro and in vivo stability of anthramycin-DNA conjugate and its potential application as an anthramycin prodrug. Cancer Res. 1979, 39, 3134–3140. [Google Scholar] [PubMed]
- Nehilla, B.J.; Bergkvist, M.; Popat, K.C.; Desai, T.A. Purified and surfactant-free coenzyme Q10-loaded biodegradable nanoparticles. Int. J. Pharm. 2008, 348, 107–114. [Google Scholar] [CrossRef] [PubMed]
- Spitz, M.R.; McPherson, R.S.; Jiang, H.; Hsu, T.; Trizna, Z.; Lee, J.J.; Lippman, S.M.; Khuri, F.R.; Steffen-Batey, L.; Chamberlain, R.M. Correlates of mutagen sensitivity in patients with upper aerodigestive tract cancer. Cancer Epidemiol. Prev. Biomark. 1997, 6, 687–692. [Google Scholar] [PubMed]
- Duarah, S.; Durai, R.D.; Narayanan, V.B. Nanoparticle-in-gel system for delivery of vitamin C for topical application. Drug Deliv. Transl. Res. 2017, 7, 750–760. [Google Scholar] [CrossRef]
- Teicher, B.A.; Schwartz, J.L.; Holden, S.A.; Ara, G.; Northey, D. In vivo modulation of several anticancer agents by β-carotene. Cancer Chemother. Pharmacol. 1994, 34, 235–241. [Google Scholar] [CrossRef] [PubMed]
- Prasad, K.N.; Hernandez, C.; Edwards-Prasad, J.; Nelson, J.; Borus, T.; Robinson, W.A. Modification of the effect of tamoxifen, cis-platin, DTIC, and interferon-α2b on human melanoma cells in culture by a mixture of vitamins. Nutr. Cancer 1994, 22, 233–245. [Google Scholar] [CrossRef]
- Chu, B.S.; Ichikawa, S.; Kanafusa, S.; Nakajima, M. Preparation of protein-stabilized β-carotene nanodispersions by emulsification–evaporation method. J. Am. Oil Chem. Soc. 2007, 84, 1053–1062. [Google Scholar] [CrossRef]
- Kampa, M.; Hatzoglou, A.; Notas, G.; Damianaki, A.; Bakogeorgou, E.; Gemetzi, C.; Kouroumalis, E.; Martin, P.-M.; Castanas, E. Wine antioxidant polyphenols inhibit the proliferation of human prostate cancer cell lines. Nutr. Cancer 2000, 37, 223–233. [Google Scholar] [CrossRef] [PubMed]
- Manna, S.K.; Mukhopadhyay, A.; Aggarwal, B.B. Resveratrol suppresses TNF-induced activation of nuclear transcription factors NF-κB, activator protein-1, and apoptosis: Potential role of reactive oxygen intermediates and lipid peroxidation. J. Immunol. 2000, 164, 6509–6519. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thipe, V.C.; Panjtan Amiri, K.; Bloebaum, P.; Raphael Karikachery, A.; Khoobchandani, M.; Katti, K.K.; Jurisson, S.S.; Katti, K.V. Development of resveratrol-conjugated gold nanoparticles: Interrelationship of increased resveratrol corona on anti-tumor efficacy against breast, pancreatic and prostate cancers. Int. J. Nanomed. 2019, 14, 4413–4428. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Penalva, R.; Morales, J.; Gonzalez-Navarro, C.J.; Larraneta, E.; Quincoces, G.; Penuelas, I.; Irache, J.M. Increased Oral Bioavailability of Resveratrol by Its Encapsulation in Casein Nanoparticles. Int. J. Mol. Sci. 2018, 19, 2816. [Google Scholar] [CrossRef] [Green Version]
- Menon, V.P.; Sudheer, A.R. Antioxidant and anti-inflammatory properties of curcumin. In The Molecular Targets and Therapeutic Uses of Curcumin in Health and Disease; Springer: Berlin/Heidelberg, Germany, 2007; pp. 105–125. [Google Scholar]
- Modasiya, M.; Patel, V. Studies on solubility of curcumin. Int. J. Pharm. Life Sci. 2012, 3, 1490–1497. [Google Scholar]
- Modasiya, M.; Patel, V. Curcumin nanoparticles: Preparation, characterization, and antimicrobial study. J. Agric. Food Chem. 2011, 59, 2056–2061. [Google Scholar] [CrossRef] [PubMed]
- Das, R.K.; Kasoju, N.; Bora, U. Encapsulation of curcumin in alginate-chitosan-pluronic composite nanoparticles for delivery to cancer cells. Nanomed. Nanotechnol. Biol. Med. 2010, 6, 153–160. [Google Scholar] [CrossRef]
- Xu, J.Z.; Yeung, S.Y.V.; Chang, Q.; Huang, Y.; Chen, Z.-Y. Comparison of antioxidant activity and bioavailability of tea epicatechins with their epimers. Br. J. Nutr. 2004, 91, 873–881. [Google Scholar] [PubMed]
- Zhu, M.; Chen, Y.; Li, R.C. Oral absorption and bioavailability of tea catechins. Planta Med. 2000, 66, 444–447. [Google Scholar] [CrossRef] [PubMed]
- Kaur, S.; Greaves, P.; Cooke, D.N.; Edwards, R.; Steward, W.P.; Gescher, A.J.; Marczylo, T.H. Breast cancer prevention by green tea catechins and black tea theaflavins in the C3 (1) SV40 T, t antigen transgenic mouse model is accompanied by increased apoptosis and a decrease in oxidative DNA adducts. J. Agric. Food Chem. 2007, 55, 3378–3385. [Google Scholar] [CrossRef] [PubMed]
- Hu, B.; Pan, C.; Sun, Y.; Hou, Z.; Ye, H.; Zeng, X. Optimization of fabrication parameters to produce chitosan–tripolyphosphate nanoparticles for delivery of tea catechins. J. Agric. Food Chem. 2008, 56, 7451–7458. [Google Scholar] [CrossRef]
- Iriti, M.; Kubina, R.; Cochis, A.; Sorrentino, R.; Varoni, E.M.; Kabała-Dzik, A.; Azzimonti, B.; Dziedzic, A.; Rimondini, L.; Wojtyczka, R.D. Rutin, a quercetin glycoside, restores chemosensitivity in human breast cancer cells. Phytother. Res. 2017, 31, 1529–1538. [Google Scholar] [CrossRef]
- Zhang, S.; Han, Y. Preparation, characterisation and antioxidant activities of rutin-loaded zein-sodium caseinate nanoparticles. PLoS ONE 2018, 13, e0194951. [Google Scholar] [CrossRef]
- Qi, L.; Zhou, R.; Wang, Y.; Zhu, Y. Study of major flavonoids in crude Scutellariae Radix by micellar electrokinetic capillary chromatography. J. Capill. Electrophor. 1998, 5, 181–184. [Google Scholar] [PubMed]
- Cheng, G.; Feng, N.; Tang, Q.; Li, L. Studies on in vitro antibacterial action of baicalin in vitro. Chin. J. Hosp. Pharm. 2001, 21, 347–348. [Google Scholar]
- Chung, H.; Choi, H.S.; Seo, E.-K.; Kang, D.-H.; Oh, E.-S. Baicalin and baicalein inhibit transforming growth factor-β1-mediated epithelial-mesenchymal transition in human breast epithelial cells. Biochem. Biophys. Res. Commun. 2015, 458, 707–713. [Google Scholar] [CrossRef]
- Zhang, H.-B.; Lu, P.; Guo, Q.-Y.; Zhang, Z.-H.; Meng, X.-Y. Baicalein induces apoptosis in esophageal squamous cell carcinoma cells through modulation of the PI3K/Akt pathway. Oncol. Lett. 2013, 5, 722–728. [Google Scholar] [CrossRef] [Green Version]
- Chen, J.; Li, Z.; Chen, A.Y.; Ye, X.; Luo, H.; Rankin, G.O.; Chen, Y.C. Inhibitory effect of baicalin and baicalein on ovarian cancer cells. Int. J. Mol. Sci. 2013, 14, 6012–6025. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, X.-F.; Zhou, Q.-M.; Du, J.; Zhang, H.; Lu, Y.-Y.; Su, S.-B. Baicalin suppresses migration, invasion and metastasis of breast cancer via p38MAPK signaling pathway. Anti-Cancer Agents Med. Chem. (Former Curr. Med. Chem. Anti-Cancer Agents) 2013, 13, 923–931. [Google Scholar]
- Li, K.; Wang, J.; Shi, M.; Li, J.; Yan, L.; Zhang, H.; Lu, C. Prescription consisting of vitamin C and baicalin inhibits tumor growth by enhancing the antioxidant capacity in vivo. J. Buon. 2015, 20, 1368–1372. [Google Scholar] [PubMed]
- Du, G.; Han, G.; Zhang, S.; Lin, H.; Wu, X.; Wang, M.; Ji, L.; Lu, L.; Yu, L.; Liang, W. Baicalin suppresses lung carcinoma and lung metastasis by SOD mimic and HIF-1α inhibition. Eur. J. Pharmacol. 2010, 630, 121–130. [Google Scholar] [CrossRef] [PubMed]
- Yu, Y.; Pei, M.; Li, L. Baicalin induces apoptosis in hepatic cancer cells in vitro and suppresses tumor growth in vivo. Int. J. Clin. Exp. Med. 2015, 8, 8958. [Google Scholar] [PubMed]
- Alishahia, A.; Mirvaghefi, A.; Tehrani, M.R.; Farahmand, H.; Shojaosadati, S.A.; Dorkoosh, F.A.; Elsabee, Z.M. Shelf life and delivery enhancement of vitamin C using chitosan nanoparticles. Food Chem. 2011, 126, 935–940. [Google Scholar] [CrossRef]
- Banjare, L.; Ghillare, N. Development of biocompatible nanoparticles for sustained topical delivery of Rutin. Int. J. Pharm. Biol. Arch. 2012, 3, 326–332. [Google Scholar]
- Patrignani, F.; Lanciotti, R. Applications of high and ultra high pressure homogenization for food safety. Front. Microbiol. 2016, 7, 1132. [Google Scholar] [CrossRef] [Green Version]
- Trotta, M.; Debernardi, F.; Caputo, O. Preparation of solid lipid nanoparticles by a solvent emulsification–diffusion technique. Int. J. Pharm. 2003, 257, 153–160. [Google Scholar] [CrossRef]
- Ambroziak, K.; Kielczewska, K.; Mickiewicz, D.; Dabrowska, A. Advantages and disadvantages of partial high pressure homogenisation of milk in relation to full-stream homogenisation. Pol. J. Food Nutr. Sci. 2019, 69, 279–287. [Google Scholar] [CrossRef]
- Madhav, S.; Gupta, D. A review on microemulsion based system. Int. J. Pharm. Sci. Res. 2011, 2, 1888. [Google Scholar]
- Paul, B.K.; Moulik, S.P. Microemulsions: An overview. J. Dispers. Sci. Technol. 1997, 18, 301–367. [Google Scholar] [CrossRef]
- Li, M.; Rouaud, O.; Poncelet, D. Microencapsulation by solvent evaporation: State of the art for process engineering approaches. Int. J. Pharm. 2008, 363, 26–39. [Google Scholar] [CrossRef]
- Quintanar-Guerrero, D.; Allémann, E.; Fessi, H.; Doelker, E. Preparation techniques and mechanisms of formation of biodegradable nanoparticles from preformed polymers. Drug Dev. Ind. Pharm. 1998, 24, 1113–1128. [Google Scholar] [CrossRef]
- Gholizadeh, S. A review of non-destructive testing methods of composite materials. Procedia Struct. Integr. 2016, 1, 50–57. [Google Scholar] [CrossRef] [Green Version]
- Patil, H.; Tiwari, R.V.; Repka, M.A. Hot-melt extrusion: From theory to application in pharmaceutical formulation. Aaps Pharmscitech 2016, 17, 20–42. [Google Scholar] [CrossRef] [Green Version]
- Maniruzzaman, M.; Boateng, J.S.; Snowden, M.J.; Douroumis, D. A review of hot-melt extrusion: Process technology to pharmaceutical products. ISRN Pharm. 2012, 2012, 436763. [Google Scholar] [CrossRef] [Green Version]
- Schubert, M.; Müller-Goymann, C. Solvent injection as a new approach for manufacturing lipid nanoparticles–evaluation of the method and process parameters. Eur. J. Pharm. Biopharm. 2003, 55, 125–131. [Google Scholar] [CrossRef]
- Deamer, D.; Bangham, A. Large volume liposomes by an ether vaporization method. Biochim. Biophys. Acta (BBA) Nucleic Acids Protein Synth. 1976, 443, 629–634. [Google Scholar] [CrossRef]
- Schieren, H.; Rudolph, S.; Finkelstein, M.; Coleman, P.; Weissmann, G. Comparison of large unilamellar vesicles prepared by a petroleum ether vaporization method with multilamellar vesicles: ESR, diffusion and entrapment analyses. Biochim. Biophys. Acta (BBA) Gen. Subj. 1978, 542, 137–153. [Google Scholar] [CrossRef]
Method | Advantages | Disadvantages |
---|---|---|
High pressure homogenization Technique | -Low impact on the environment | Low efficiency of the process [103] |
-Sustainable | ||
-Saving energy, time and additional costs [101] | ||
-Hot homogenization has a problem of drug entrapment and crystallization, Cold homogenization minimizes thermal exposure of the drug but does not avoid it completely, due to the melting of the drug-lipid mixture in the initial step [102]. | ||
Microemulsion Technique | -Spontaneous formation | Their formation requires large amounts of surfactant which are irritating at high concentrations [105] |
-Ease of manufacturing | ||
-Scale-up | ||
-Thermodynamic stability | ||
-Improved drug solubilization and bioavailability [104] | ||
Solvent evaporation method | -Controlled delivery of peptide | Difficulty of controlling the evaporation rate (and hence the growth rate), and the poisonous and corrosive nature of the solvent vapor released [106] |
-Drugs and vaccines | ||
-Controlled delivery of peptide | ||
-Drugs and vaccines | ||
-Controlled delivery of peptides, drugs and vaccines [51] | ||
Solvent Emulsification Diffusion Technique | -Avoidance of any heat [102] | Solvents used may cause toxicity [107] |
-Possible incorporation of high amounts of polymer and drug | ||
-The excellent yields generally obtained | ||
-The easy scaling-up of the process [107] | ||
Ultrasonication method | -It can reduce the separation time to less than 30 min. | Misreading of signals, can result in unnecessary repairs [108] |
-It helps to decrease the amount of catalyst required by 50–60% due to the increased chemical activity in the presence of cavitation | ||
-Increase in purity of the glycerol | ||
Melting Dispersion Technique (Hot Melt Encapsulation Method) | -More efficient time to achieve the final product | -Use of a limited number of polymers |
-Environmental advantages due to the elimination of solvent use | -Not suitable for high heat sensitive molecules such as microbial species and proteins | |
-Increased efficiency of drug delivery to the patient [109] | -Thermal process (drug/polymer) stability [110] | |
Solvent Injection Technique | -Use of pharmaceutically acceptable organic solvents | -Population is heterogeneous (70 to 200 nm) |
-No need for high pressure homogenization | -Exposure of compounds to be encapsulated to organic solvents at high temperature [112,113] | |
-Easy handling and a fast production process without technically sophisticated equipment [111] |
Antioxidant | Nano-System | Result | Reference |
---|---|---|---|
Coenzyme Q10 | Ubiquinone (CoQ10)-loaded biodegradable nanoparticles nanoparticles prepared by nanoprecipitation | Sustained drug release | Nehilla et al., 2008 [72] |
Vitamin C | Chitosan/vitamin C nanoparticles were prepared via ionotropic gelation between the amino groups of chitosan and vitamin C | Enhancement of delivery of Vitamin C and increase of shelf life | Alishahi et al., 2011 [114] |
Curcumin | Composite nanoparticles of three biocompatible polymers (Alginate, chitosan and pluronic) | Delivery of hydrophobic drugs into cancer cells | Das et al., 2010 [85] |
Micelles | Increase in curcumin solubility and bioavailability | Esmaili et al., 2011 [30] | |
Catechin | Chitosan-tripolyphosphate nanoparticles prepared by polyanion-initiated gelation process | Controlled release of catechin | Hu et al., 2008 [89] |
Polymeric nanoparticles | Increased stability of catechin during storage and after administration | Rocha et al., 2011 [33] | |
Baicalin | PEGylated cationic solid lipid nanoparticles prepared by emulsion evaporation-solidification at low temperature method | Crossing blood brain barrier | Liu et al., 2015 [23] |
B-carotene | Protein-Stabilized β-Carotene nanodispersions prepared by emulsification–evaporation method | Increased gastrointestinal absorption of lipophilic drugs | Chu et al., 2007 [77] |
Vitamin E | Nanoparticles prepared by modified solvent extraction/evaporation method | Enhancement of oral chemotherapy | Feng et al., 2009 [70] |
Liposomes | Enhancement in targeting brain cancer cells | Muthu et al., 2011 [38] | |
Rutin | Nanoparticles prepared by nanoprecipitation technique | Sustained release of rutin | Banjare and Ghillare, 2012 [115] |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ammar, H.O.; Shamma, R.N.; Elbatanony, R.S.E.; Khater, B. Antioxidants in Cancer Therapy: Recent Trends in Application of Nanotechnology for Enhanced Delivery. Sci. Pharm. 2020, 88, 5. https://doi.org/10.3390/scipharm88010005
Ammar HO, Shamma RN, Elbatanony RSE, Khater B. Antioxidants in Cancer Therapy: Recent Trends in Application of Nanotechnology for Enhanced Delivery. Scientia Pharmaceutica. 2020; 88(1):5. https://doi.org/10.3390/scipharm88010005
Chicago/Turabian StyleAmmar, Hussein O., Rehab N. Shamma, Rasha S. E. Elbatanony, and Basma Khater. 2020. "Antioxidants in Cancer Therapy: Recent Trends in Application of Nanotechnology for Enhanced Delivery" Scientia Pharmaceutica 88, no. 1: 5. https://doi.org/10.3390/scipharm88010005