# The Optimization of Gel Preparations Using the Active Compounds of Arabica Coffee Ground Nanoparticles

^{1}

^{2}

^{3}

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Materials and Methods

#### 2.1. Tools and Materials

^{TM}Nano, Beckman Coulter, Inc. Indianapolis, IN 46268, USA), scanning electron microscope (Quanta

^{TM}650, FEI, Hillsboro, OR, USA) and UV-Vis spectrophotometer (UV-1700 pharmaspec, Shimadzu Corporation, Kyoto, Japan).

#### 2.2. Research Design

#### 2.3. Formulation of Gel Preparations

#### 2.4. Characterization of Gel Preparations

#### 2.4.1. Acidity Degree (pH) Test

#### 2.4.2. Spreadability Test

#### 2.4.3. Viscosity Test

#### 2.4.4. Total Phenolic Test

_{2}CO

_{3}solution, which was shaken homogeneously. The solution was then incubated for 2 h at room temperature. Uptake was measured by a UV-Vis spectrophotometer at a wavelength of 725 nm.

_{2}CO

_{3}20% of the solution was allowed to stand for 2 h at room temperature. Uptake was measured by a UV-Vis spectrophotometer at a wavelength of 725 nm.

## 3. Results and Discussion

#### 3.1. Prediction of Optimum Formulation

^{2}value and a low PRESS value for all responses compared to the linear model, the 2FI model, and the cubic model. The value of R

^{2}was expressed in %, which showed the contribution of the regression; The greater the value of R

^{2}, the greater the contribution or role of factor (x) to the response (y). An R

^{2}value above 70% is considered sufficient [28]. Even though the cubic model has a high R

^{2}value, it does not have a Pred-R

^{2}value and a PRESS value, so the effect of each variable that has a signal difference is not necessary or aliased [36]. An analysis of the variance of the designed models in this study is shown in Table 3.

#### 3.2. Organoleptic

#### 3.3. Acidity Degree

^{2}because they have p-values, respectively, of 0.0016; <0.0001, and 0.0005. The insignificance of the “lack of fit” with an F-value of 6.41 and a p-value of 5.23%, indicates that the quadratic design model is appropriate for analyzing the acidity test data, but this model has a low probability because its p-value is less than 10%. The relationship between the degree of acidity of the gel preparation with a factor (x) based on the coefficient value can be seen in Equation (3).

^{2}+ 0.28B

^{2}− 0.048C

^{2}

#### 3.4. Spreadibility

^{2}+ 0.033B

^{2}+ 8.333E-003C

^{2}

#### 3.5. Viscosity

^{2}, and C

^{2}, with p-values of <0.0001, <0.0001, 0.0113, <0.0001, and 0.0132. The “lack of fit” value shows insignificant results, with an F-value of 0.058 and p-value of 97.93%. These results demonstrate that the quadratic design model is very appropriate for the analysis of the viscosity test data. The interaction between the viscosity of the gel preparation and factor (x) can be seen from the coefficient value, as shown in Equation (5).

^{2}− 12.27B

^{2}− 20.23C

^{2}

#### 3.6. Total Phenolic

^{2}, with p-values <0.0001 and 0.0032. The “lack of fit” is not significant, with an F-value of 0.73 and a p-value of 58.62%. The interaction between the total phenolic gel preparation with a factor (x) can be seen from the coefficient value, as shown in Equation (6).

^{2}− 4.55B

^{2}+ 9.62C

^{2}

#### 3.7. Optimization of Gel Preparations

## 4. Conclusions

## Author Contributions

## Funding

## Conflicts of Interest

## References

- Mohanraj, V.J.; Chen, Y. Nanoparticles – A Review. Trop. J. Pharm. Res.
**2006**, 5, 561–573. [Google Scholar] [CrossRef] - Ariningsih, E. Prospects of Nanotechnology Application in Agriculture and Food Processing in Indonesia. Forum Penelit. Agro Ekon.
**2016**, 34, 1–20. [Google Scholar] [CrossRef] - Sudibyo, A.; Hutajulu, T.F. Potensi penerapan polimer nanokomposit dalam kemasan pangan. J. Kim. dan Kemasan
**2013**, 35, 6–19. [Google Scholar] [CrossRef] - Berekaa, M.M. Review Article Nanotechnology in Food Industry ; Advances in Food processing, Packaging and Food Safety. Int. J. Curr. Microbiol. Appl. Sci.
**2015**, 4, 345–357. [Google Scholar] - Liu, Y.; Niu, T.; Zhang, L.; Yang, J. Review on nano-drugs. Nat. Sci.
**2010**, 2, 41–48. [Google Scholar] [CrossRef] - Astruc, D. Introduction to Nanomedicine. Molecule
**2016**, 21, 4. [Google Scholar] [CrossRef] - Rizvi, S.A.A.; Saleh, A.M. Applications of Nanoparticle Systems in Drug Delivery Technology. Saudi Pharm. J.
**2018**, 26, 64–70. [Google Scholar] [CrossRef] - Sawasdee, K.; Choksawad, P.; Pimcharoen, S.; Prapainop, K. Development of Size-Tunable Polymeric Nanoparticles for Drug Delivery Applications. Glob. Heal. Manag. J.
**2017**, 1, 31–36. [Google Scholar] [CrossRef] - Prasetyo, Y.A.; Abdassah, M.; Rusdiana, T. Preparation and Characterization of Glucosamine Nanoparticle by Ionic Gelation Method Using Chitosan and Alginate. Indones. J. Pharm.
**2019**, 1, 1–10. [Google Scholar] [CrossRef] - Hanutami, N.B.; Budiman, A. Review Artikel : Penggunaan Teknologi Nano pada Formulasi Obat Herbal. Farmaka
**2017**, 15, 29–41. [Google Scholar] - Cruz, R.; Gomes, T.; Ferreie, A.; Mendes, E.; Baptista, P.; Cunha, S.; Pereira, J.A.; Ramalhosa, E.; Casal, S. Antioxidant activity and bioactive compounds of lettuce improved by espresso coffee residues. Food Chem.
**2014**, 145, 95–101. [Google Scholar] [CrossRef] [PubMed] - Sant’Anna, V.; Biondo, E.; Kolchinski, E.M.; da Silva, L.F.S.; Correa, A.P.F.; Bach, E.; Brandelli, A. Total Polyphenols, Antioxidant, Antimicrobial and Allelopathic Activities of Spend Coffee Ground Aqueous Extract. Waste and Biomass Valorization
**2017**, 8, 439–442. [Google Scholar] [CrossRef] - Yoo, D.E.; Jeong, K.M.; Han, S.Y.; Kim, E.M.; Jin, Y.; Lee, J. Deep eutectic solvent-based valorization of spent co ff ee grounds. Food Chem.
**2018**, 255, 357–364. [Google Scholar] [CrossRef] [PubMed] - Jeon, J.; Kim, H.; Jeong, I.; Hong, S.; Oh, M.; Yoon, M. Contents of chlorogenic acids and caffeine in various coffee-related products. J. Adv. Res.
**2019**, 17, 85–94. [Google Scholar] [CrossRef] [PubMed] - Petrik, S.; Obruča, S.; Benešová, P.; Márová, I. Bioconversion of spent coffee grounds into carotenoids and other valuable metabolites by selected red yeast strains. Biochem. Eng. J.
**2014**, 90, 307–315. [Google Scholar] [CrossRef] - Obruca, S.; Benesova, P.; Kucera, D.; Petrik, S.; Marova, I. Biotechnological conversion of spent coffee grounds into polyhydroxyalkanoates and carotenoids. N. Biotechnol.
**2015**, 32, 569–574. [Google Scholar] [CrossRef] - Page, J.C.; Arruda, N.P.; Freitas, S.P. Crude ethanolic extract from spent coffee grounds : Volatile and functional properties. Waste Manag.
**2017**, 69, 463–469. [Google Scholar] [CrossRef] - Passos, C.P.; Moreira, A.S.P.; Domingues, M.R.M.; Evtuguin, D.V.; Coimbra, M.A. Sequential microwave superheated water extraction of mannans from spent coffee grounds. Carbohydr. Polym.
**2014**, 103, 333–338. [Google Scholar] [CrossRef] - Passos, C.P.; Coimbra, M.A. Microwave superheated water extraction of polysaccharides from spent coffee grounds. Carbohydr. Polym.
**2013**, 94, 626–633. [Google Scholar] [CrossRef] - Tuntiwiwattanapun, N.; Tongcumpou, C. Industrial Crops & Products Sequential extraction and reactive extraction processing of spent co ff ee grounds : An alternative approach for pretreatment of biodiesel feedstocks and biodiesel production. Ind. Crop. Prod.
**2018**, 117, 359–365. [Google Scholar] - Nurman, S.; Lamona, A.; Nasir, M. Optimization and Characterization of N-Hexane Extracts of Arabica Coffee Ground ( Coffea arabica L.) from Gayo Plateau as Source of Natural Antioxidant. In Proceedings of the International Conference on Education, Science and Technology (ICON-EST 2018) at Serambi Mekkah University, Banda Aceh, Indonesia, 17–18th October 2018; 2019; pp. 1–9. [Google Scholar]
- Palupi, N.W.; Praptiningsih, Y. Oxidized Tapioca Starch As an Alginate Substitute for Encapsulation of Antioxidant from Coffee Residue. Agric. Agric. Sci. Procedia
**2016**, 9, 304–308. [Google Scholar] [CrossRef] - Cheong, M.W.; Tong, K.H.; Ong, J.J.M.; Liu, S.Q.; Curran, P.; Yu, B. Volatile composition and antioxidant capacity of Arabica coffee. Food Res. Int.
**2013**, 51, 388–396. [Google Scholar] [CrossRef] - Kasman, B.B.S.; Saputri, F.A. Artikel Review: Formulasi dan Evaluasi Sediaan Gel dari Ekstrak Seledri Apium graveolens Linn Sebagai Anti-Inflamasi. Farmaka
**2018**, 16, 63–71. [Google Scholar] - Ulfa, M.; Hendrarti, W.; Muhram, P.N. Formulasi Gel Ekstrak Daun Kelor ( Moringa oleifera Lam.) Sebagai Anti Inflamasi Topikal Pada Tikus ( Rattus novergicus ). J. Pharm. Med. Sci.
**2016**, 1, 30–35. [Google Scholar] - Oramahi, H. Optimasi dengan RSM dan Rancangan Percobaan (Aplikasi dengan SPSS dan SAS), 1st ed.; Gava Media: Yogyakarta, Indonesia, 2016. [Google Scholar]
- Getachew, A.T.; Cho, Y.J.; Chun, B.S. Effect of pretreatments on isolation of bioactive polysaccharides from spent coffee grounds using subcritical water. Int. J. Biol. Macromol.
**2018**, 109, 711–719. [Google Scholar] [CrossRef] - Tekindal, M.A.; Bayrak, H.; Ozkaya, B.; Genc, Y. Box- Behnken Experimental Design in Factorial Experiments: The Importance of Bread For Nutrition and Health. Turkish J. F. Crop.
**2012**, 17, 115–123. [Google Scholar] - Megha, M.A.; Unnma, U.; Rameshpathy, M.; Karikalan, K.; Vickram, S.; Kumar, S.V.; Sridharan, B. Formulation of nano-encapsulated poly-herbal ointment for anti- inflammation. Der Pharm. Lett.
**2013**, 5, 164–170. [Google Scholar] - Ruiz-ruiz, J.C.; Matus-basto, A.J.; Acereto-escoffié, P.; Segura-Campos, M.R. Antioxidant and anti-inflammatory activities of phenolic compounds isolated from Melipona beecheii honey. Food Agric. Immunol.
**2017**, 28, 1424–1437. [Google Scholar] [CrossRef] - Shahidi, F.; Yeo, J. Bioactivities of Phenolics by Focusing on Suppression of Chronic Diseases : A Review. Int. J. Mol. Sci.
**2018**, 19, 1573. [Google Scholar] [CrossRef] - Lamona, A.; Nurman, S. Studi Awal Komponen Minyak Biji Kopi Arabika ( Coffea arabica L.) dari Kabupaten Bener Meriah, Provinsi Aeh Menggunakan GC-MS. Agriovet
**2018**, 1, 61–72. [Google Scholar] - Nurman, S.; Yulia, R. The Potency of Gayo Arabica Coffee Powder Oil ( Coffea arabica L.) as a Source of Natural Antioxidants. J. Food, Agric. Environ.
**2019**, 17, 59–64. [Google Scholar] - Złotek, U.; Szymanowska, U.; Pecio, L.; Kozachok, S.; Jakubczyk, A. Antioxidative and Potentially Anti-inflammatory Activity of Phenolics from Lovage Leaves Levisticum officinale Koch Elicited with Jasmonic Acid and Yeast Extract. Molecules
**2019**, 24, 2–12. [Google Scholar] - Irianto, H.E.; Muljanah, I. Proses dan Aplikasi Nanopartikel Kitosan Sebagai Penghantar Obat. Squalen
**2011**, 6, 1–8. [Google Scholar] - Yulia, R.; Meilina, H.; Adisalamun, A.; Darmadi, D. Aplikasi Metode Advance Oxidation Process (AOP) Fenton pada Pengolahan Limbah Cair Pabrik Kelapa Sawit Application of Advanced Oxidation Process (AOP) Fenton on Palm Oil Mill Effluent Treatment. J. Rekayasa Kim. dan Lingkung.
**2016**, 11, 1–9. [Google Scholar] [CrossRef] - Saryanti, D.; Zulfa, I.N. Optimization Carbopol And Glycerol As Basis Of Hand Gel Antiseptics Extract Ethanol Ceremai Leaf (Phyllantus Acidus (L.) Skeels) With Simplex Lattice Design. J. Pharm. Sci. Clin. Res.
**2017**, 02, 35–43. [Google Scholar] [CrossRef] - Rowe, R.C.; Sheskey, P.J.; Quinn, M.E. Handbook of Pharmaceutical Excipients, 6th ed.; Pharmaceutical Press and American Pharmacists Association: London, UK; Washington, DC, USA, 2009. [Google Scholar]
- Danimayostu, A.A.; Shofiana, N.M.; Permatasari, D. Pengaruh Penggunaan Pati Kentang (Solanum tuberosum) Termodifikasi Asetilasi- Oksidasi sebagai Gelling agent terhadap Stabilitas Gel Natrium Diklofenak. Phamaceutical J. Indones.
**2017**, 3, 25–32. [Google Scholar] [CrossRef] - Pristiana, D.Y.; Susanti, S.; Nurwantoro, N. Antioksidan dan Kadar Fenol Berbagai Ekstrak Daun Kopi (Coffea sp.): Potensi Aplikasi Bahan Alami untuk Fortifikasi Pangan. J. Apl. Teknol. Pangan
**2017**, 6, 89–92. [Google Scholar] - Gómez-Ruiz, J.Á.; Ames, J.M.; Leake, D.S. Antioxidant activity and protective effects of green and dark coffee components against human low density lipoprotein oxidation. Eur. Food Res. Technol.
**2008**, 227, 1017–1024. [Google Scholar] [CrossRef] - García, R.L.P.; Biasetto, C.R.; Araujo, A.R.; Luiz, V.; Bianchi, D. Enhanced Extraction of Phenolic Compounds from Coffee Industry’s Residues Through Solid State Fermentation by Penicillium Purpurogenum. Food Sci. Technol.
**2015**, 35, 704–711. [Google Scholar] [CrossRef] - Shang, Y.F.; Xu, J.L.; Lee, W.J.; Um, B.H. Antioxidative Polyphenolics Obtained from Spent Coffee Grounds by Pressurized Liquid Extraction. South African J. Bot.
**2017**, 109, 75–80. [Google Scholar] [CrossRef]

**Figure 3.**A 3D plot of the relationship between (

**a**) carbopol 940 and TEA and the acidity degree, (

**b**) TEA and nanoparticles and the acidity degree, and (

**c**) carbopol 940 and nanoparticles and the acidity degree.

**Figure 4.**3D plot of the relationship between (

**a**) carbopol 940 and TEA and the spreadability, (

**b**) carbopol 940 and nanoparticles and the spreadability, and (

**c**) TEA and nanoparticles and the spreadability.

**Figure 5.**A 3D plot of the relationship between (

**a**) carbopol 940 and TEA and the viscosity, (

**b**) carbopol 940 and nanoparticles and the viscosity, and (

**c**) TEA and nanoparticles and the viscosity.

**Figure 6.**A 3D plot of the relationship between (

**a**) carbopol 940 and TEA and the total phenolic content, (

**b**) carbopol 940 and nanoparticles and the total phenolic content, and (

**c**) TEA and nanoparticles and the total phenolic content.

**Table 1.**Design level of Arabica coffee ground nanoparticles gel formulation with three factors (x) and three levels.

Factor | Parameters | Levels | ||
---|---|---|---|---|

Low (-) | Medium (0) | High (+) | ||

x_{1} | Carbopol 940 (%) | 0.50 | 0.75 | 1.00 |

x_{2} | TEA (%) | 0.40 | 0.50 | 0.60 |

x_{3} | Nanoparticles (%) | 1.50 | 2.25 | 3.00 |

**Table 2.**Formulation design and dan characterization results of arabica coffee ground nanoparticles gel formulation with three factors (x) and three levels.

Run | Factor 1 A: Carbopol 940 % | Factor 2 B: TEA % | Factor 3 C: Nanoparticles % | Response 1 Acidity Degree pH | Response 2 Spreadability cm | Response 3 Viscosity cps | Response 4 Total Phenolic µgGAE/g |
---|---|---|---|---|---|---|---|

1 | 1.00 | 0.50 | 1.50 | 5.67 | 5.27 | 4455.05 | 540.86 |

2 | 0.75 | 0.50 | 2.25 | 5.50 | 5.50 | 3965.05 | 590.17 |

3 | 1.00 | 0.40 | 2.25 | 5.37 | 5.13 | 4535.08 | 595.41 |

4 | 0.50 | 0.40 | 2.25 | 5.33 | 6.33 | 3523.39 | 602.42 |

5 | 0.50 | 0.50 | 3.00 | 5.20 | 6.03 | 3641.82 | 672.10 |

6 | 0.75 | 0.60 | 1.50 | 6.20 | 5.93 | 3845.48 | 543.83 |

7 | 0.75 | 0.40 | 1.50 | 5.43 | 6.00 | 3823.57 | 548.10 |

8 | 0.75 | 0.50 | 2.25 | 5.60 | 5.60 | 3942.74 | 601.13 |

9 | 0.75 | 0.50 | 2.25 | 5.60 | 5.63 | 3979.20 | 602.51 |

10 | 0.75 | 0.50 | 2.25 | 5.50 | 5.70 | 3956.10 | 597.44 |

11 | 0.75 | 0.40 | 3.00 | 5.30 | 5.50 | 4033.90 | 663.14 |

12 | 0.75 | 0.60 | 3.00 | 6.20 | 5.27 | 4027.11 | 657.02 |

13 | 0.50 | 0.50 | 1.50 | 5.33 | 6.43 | 3405.97 | 553.75 |

14 | 0.75 | 0.50 | 2.25 | 5.57 | 5.73 | 3981.97 | 598.54 |

15 | 1.00 | 0.50 | 3.00 | 5.80 | 5.10 | 4604.96 | 669.76 |

16 | 0.50 | 0.60 | 2.25 | 6.13 | 6.27 | 3532.03 | 593.45 |

17 | 1.00 | 0.60 | 2.25 | 6.47 | 5.20 | 4549.12 | 588.52 |

**Table 3.**Characterization for the statistical design model of arabica coffee ground nanoparticles gel formulation.

Response | Source | Std.Dev | R-Square | Adj R-Square | Pred R-Square | Adeq Precisior | PRESS |
---|---|---|---|---|---|---|---|

Acidity Degree | Linear | 0.180 | 0.8064 | 0.7617 | 0.6231 | 13.741 | 0.84 |

2FI | 0.200 | 0.8264 | 0.7222 | 0.2259 | 9.621 | 1.73 | |

Quadratic | 0.092 | 0.9734 | 0.9393 | 0.6412 | 17.753 | 0.80 | |

Cubic | 0.051 | 0.9954 | 0.9817 | - | 28.653 | - | |

Spreadability | Linear | 0.100 | 0.9508 | 0.9395 | 0.9124 | 29.942 | 0.26 |

2FI | 0.110 | 0.9594 | 0.9350 | 0.8551 | 21.849 | 0.42 | |

Quadratic | 0.120 | 0.9681 | 0.9270 | 0.6542 | 17.245 | 1.01 | |

Cubic | 0.091 | 0.9886 | 0.9542 | - | 16.703 | - | |

Viscosity | Linear | 50.380 | 0.9847 | 0.9811 | 0.9696 | 49.298 | 65,402.03 |

2FI | 55.620 | 0.9856 | 0.9770 | 0.9332 | 33.755 | 143,700.00 | |

Quadratic | 12.600 | 0.9995 | 0.9988 | 0.9989 | 124.683 | 2403.64 | |

Cubic | 16.310 | 0.9995 | 0.9980 | - | 84.042 | - | |

Total Phenolic | Linear | 7.040 | 0.9778 | 0.9727 | 0.9583 | 36.788 | 1214.05 |

Content | 2FI | 7.840 | 0.9789 | 0.9662 | 0.9107 | 25.565 | 2596.65 |

Quadratic | 4.510 | 0.9951 | 0.9888 | 0.9674 | 37.169 | 948.55 | |

Cubic | 4.800 | 0.9968 | 0.9873 | - | 31.288 | - |

**Table 4.**ANOVA analysis for the quadratic model of the acidity degree of arabica coffee ground nanoparticles gel preparations.

Source | Sum of Squares | df | Mean Square | F Value | p-Value Prob > F | Characterization |
---|---|---|---|---|---|---|

Model | 2.18 | 9 | 0.24 | 28.52 | 0.0001 | significant |

A-Carbopol 940 | 0.21 | 1 | 0.21 | 24.90 | 0.0016 | |

B-TEA | 1.59 | 1 | 1.59 | 187.43 | <0.0001 | |

C-Nanopartikel | 2.222 × 10^{−3} | 1 | 2.222 × 10^{−3} | 0.26 | 0.6245 | |

AB | 0.022 | 1 | 0.022 | 2.65 | 0.1474 | |

AC | 0.018 | 1 | 0.018 | 2.10 | 0.1910 | |

BC | 4.444 × 10^{−3} | 1 | 4.444 × 10^{−3} | 0.52 | 0.4927 | |

A^{2} | 1.433 × 10^{−4} | 1 | 1.433 × 10^{−4} | 0.017 | 0.9003 | |

B^{2} | 0.32 | 1 | 0.32 | 38.22 | 0.0005 | |

C^{2} | 9.500 × 10^{−3} | 1 | 9.500 × 10^{−3} | 1.12 | 0.3251 | |

Residual | 0.059 | 7 | 8.484 × 10^{−3} | |||

Lack of Fit | 0.049 | 3 | 0.016 | 6.41 | 0.0523 | not significant |

Pure Error | 0.010 | 4 | 2.556 × 10^{−3} | |||

Cor Total | 2.24 | 16 |

**Table 5.**ANOVA analysis for the quadratic model of the spreadability of the arabica coffee ground nanoparticles gel preparations.

Source | Sum of Squares | df | Mean Square | F Value | p-Value Prob > F | Characterization |
---|---|---|---|---|---|---|

Model | 2.82 | 9 | 0.31 | 23.57 | 0.0002 | significant |

A-Carbopol 940 | 2.38 | 1 | 2.38 | 179.29 | < 0.0001 | |

B-TEA | 0.011 | 1 | 0.011 | 0.85 | 0.3882 | |

C-Nanoparticles | 0.38 | 1 | 0.38 | 28.25 | 0.0011 | |

AB | 4.444 × 10^{−3} | 1 | 4.444 × 10^{−3} | 0.33 | 0.5812 | |

AC | 0.014 | 1 | 0.014 | 1.02 | 0.3453 | |

BC | 6.944 × 10^{−3} | 1 | 6.944 × 10^{−3} | 0.52 | 0.4933 | |

A^{2} | 0.019 | 1 | 0.019 | 1.41 | 0.2741 | |

B^{2} | 4.678 × 10^{−3} | 1 | 4.678 × 10^{−3} | 0.35 | 0.5717 | |

C^{2} | 2.924 × 10^{−4} | 1 | 2.924 × 10^{−4} | 0.022 | 0.8863 | |

Residual | 0.093 | 7 | 0.013 | |||

Lack of Fit | 0.060 | 3 | 0.020 | 2.39 | 0.2096 | not significant |

Pure Error | 0.033 | 4 | 8.333 × 10^{−3} | |||

Cor Total | 2.91 | 16 |

**Table 6.**ANOVA analysis of quadratic model for the viscosity of the arabica coffee ground nanoparticles gel preparations.

Source | Sum of Squares | df | Mean Square | F Value | p-Value Prob > F | Characterization |
---|---|---|---|---|---|---|

Model | 2.149 × 10^{6} | 9 | 2.388 × 10^{5} | 1504.50 | < 0.0001 | significant |

A-Carbopol 940 | 2.041 × 10^{6} | 1 | 2.041 × 10^{6} | 12,862.08 | < 0.0001 | |

B-TEA | 178.67 | 1 | 178.67 | 1.13 | 0.3239 | |

C-Nanopartikel | 75,606.37 | 1 | 75,606.37 | 476.41 | < 0.0001 | |

AB | 7.28 | 1 | 7.28 | 0.046 | 0.8365 | |

AC | 1846.35 | 1 | 1846.35 | 11.63 | 0.0113 | |

BC | 205.87 | 1 | 205.87 | 1.30 | 0.2922 | |

A^{2} | 28,424.39 | 1 | 28,424.39 | 179.11 | < 0.0001 | |

B^{2} | 634.39 | 1 | 634.39 | 4.00 | 0.0857 | |

C^{2} | 1722.34 | 1 | 1722.34 | 10.85 | 0.0132 | |

Residual | 1110.90 | 7 | 158.70 | |||

Lack of Fit | 46.26 | 3 | 15.42 | 0.058 | 0.9793 | not significant |

Pure Error | 1064.64 | 4 | 266.16 | |||

Cor Total | 2.150 × 10^{6} | 16 |

**Table 7.**ANOVA analysis for the quadratic model of the total phenolic content of the arabica coffee ground nanoparticles gel preparations.

Source | Sum of Squares | df | Mean Square | F Value | p-Value Prob > F | Characterization |
---|---|---|---|---|---|---|

Model | 28,940.33 | 9 | 3215.59 | 158.15 | < 0.0001 | significant |

A-Carbopol 940 | 92.27 | 1 | 92.27 | 4.54 | 0.0706 | |

B-TEA | 86.11 | 1 | 86.11 | 4.24 | 0.0786 | |

C-Nanopartikel | 28,259.62 | 1 | 28,259.62 | 1389.87 | < 0.0001 | |

AB | 1.09 | 1 | 1.09 | 0.054 | 0.8233 | |

AC | 27.78 | 1 | 27.78 | 1.37 | 0.2807 | |

BC | 0.84 | 1 | 0.84 | 0.042 | 0.8443 | |

A^{2} | 10.02 | 1 | 10.02 | 0.49 | 0.5053 | |

B^{2} | 87.24 | 1 | 87.24 | 4.29 | 0.0771 | |

C^{2} | 389.40 | 1 | 389.40 | 19.15 | 0.0032 | |

Residual | 142.33 | 7 | 20.33 | |||

Lack of Fit | 50.30 | 3 | 16.77 | 0.73 | 0.5862 | not significant |

Pure Error | 92.03 | 4 | 23.01 | |||

Cor Total | 29,082.65 | 16 |

No | Carbopol 940 | TEA | Nanoparticles | Acidity Degree | Spreadability | Viscosity | Total Phenolic | Desirability | w/o Intervals |
---|---|---|---|---|---|---|---|---|---|

1 | 0.577 | 0.467 | 3.000 | 5.216 | 5.831 | 3746.158 | 669.138 | 0.981 | 0.993 |

2 | 0.575 | 0.468 | 3.000 | 5.217 | 5.826 | 3743.249 | 669.151 | 0.981 | 0.994 |

3 | 0.580 | 0.467 | 3.000 | 5.220 | 5.836 | 3750.518 | 669.098 | 0.981 | 0.993 |

4 | 0.577 | 0.468 | 3.000 | 5.219 | 5.840 | 3745.906 | 669.128 | 0.981 | 0.993 |

5 | 0.584 | 0.467 | 3.000 | 5.224 | 5.839 | 3757.318 | 669.044 | 0.981 | 0.993 |

6 | 0.582 | 0.466 | 3.000 | 5.220 | 5.832 | 3754.542 | 669.075 | 0.981 | 0.993 |

7 | 0.578 | 0.466 | 3.000 | 5.214 | 5.811 | 3747.527 | 669.138 | 0.981 | 0.993 |

8 | 0.569 | 0.468 | 3.000 | 5.212 | 5.850 | 3734.244 | 669.227 | 0.981 | 0.994 |

9 | 0.587 | 0.466 | 3.000 | 5.223 | 5.817 | 3760.642 | 669.027 | 0.981 | 0.993 |

10 | 0.582 | 0.470 | 3.000 | 5.228 | 5.805 | 3753.348 | 669.046 | 0.981 | 0.993 |

11 | 0.584 | 0.465 | 3.000 | 5.218 | 5.788 | 3756.707 | 669.069 | 0.981 | 0.993 |

12 | 0.591 | 0.467 | 3.000 | 5.229 | 5.792 | 3767.803 | 668.965 | 0.981 | 0.993 |

13 | 0.579 | 0.464 | 3.000 | 5.211 | 5.875 | 3749.066 | 669.142 | 0.981 | 0.993 |

14 | 0.599 | 0.467 | 3.000 | 5.235 | 5.853 | 3779.763 | 668.878 | 0.981 | 0.993 |

15 | 0.574 | 0.473 | 3.000 | 5.229 | 5.885 | 3741.851 | 669.094 | 0.981 | 0.993 |

16 | 0.578 | 0.474 | 3.000 | 5.236 | 5.772 | 3748.470 | 669.020 | 0.980 | 0.993 |

17 | 0.549 | 0.468 | 3.000 | 5.194 | 5.888 | 3705.619 | 669.495 | 0.980 | 0.994 |

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Nurman, S.; Yulia, R.; Irmayanti; Noor, E.; Candra Sunarti, T.
The Optimization of Gel Preparations Using the Active Compounds of Arabica Coffee Ground Nanoparticles. *Sci. Pharm.* **2019**, *87*, 32.
https://doi.org/10.3390/scipharm87040032

**AMA Style**

Nurman S, Yulia R, Irmayanti, Noor E, Candra Sunarti T.
The Optimization of Gel Preparations Using the Active Compounds of Arabica Coffee Ground Nanoparticles. *Scientia Pharmaceutica*. 2019; 87(4):32.
https://doi.org/10.3390/scipharm87040032

**Chicago/Turabian Style**

Nurman, Salfauqi, Ruka Yulia, Irmayanti, Erliza Noor, and Titi Candra Sunarti.
2019. "The Optimization of Gel Preparations Using the Active Compounds of Arabica Coffee Ground Nanoparticles" *Scientia Pharmaceutica* 87, no. 4: 32.
https://doi.org/10.3390/scipharm87040032