Thai Fermented Foods as a Versatile Source of Bioactive Microorganisms—A Comprehensive Review
Abstract
1. Introduction
2. Bioactive Microbes from Thai Fermented Foods
2.1. Strains with Antimicrobial Properties
2.2. Lytic Activity
2.3. Probiotic Strains
2.4. Enzyme Production
2.5. Gamma-Aminobutyric Acid (GABA) Production
2.6. Exopolysaccharide (EPS) Production
3. Conclusions and Future Prospects
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Tamang, J.P. Himalayan Fermented Foods: Microbiology, Nutrition and Ethnic Values, 1st ed.; CRC Press: New Delhi, India, 2009; pp. 1–216. ISBN 9781420093247. [Google Scholar]
- Yan, P.M.; Xue, W.T.; Tan, S.S.; Zhang, H.; Chang, X.H. Effect of inoculating lactic acid bacteria starter cultures on the nitrite concentration of fermenting Chinese Paocai. Food Control 2008, 19, 50–55. [Google Scholar] [CrossRef]
- Puspito, H.; Fleet, G.H. Microbiology of sayur asin fermentation. Appl. Microbiol. Biotechnol. 1985, 22, 442–445. [Google Scholar] [CrossRef]
- Viander, B.; Maki, M.; Palva, A. Impact of low salt concentration, salt quality on natural large-scale sauerkraut fermentation. Food Microbiol. 2003, 20, 391–395. [Google Scholar] [CrossRef]
- Chen, Y.S.; Yanagida, F.; Hsu, J.S. Isolation and characterization of lactic acid bacteria from suan-tsai (fermented mustard), a traditional fermented food in Taiwan. J. Appl. Microbiol. 2006, 101, 125–130. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.S.; Wu, H.C.; Lo, H.Y.; Lin, W.C.; Hsu, W.H.; Lin, C.W.; Lin, P.Y.; Yanagida, F. Isolation and characterization of lactic acid bacteria from jiang-gua (fermented cucumbers), a traditional fermented food in Taiwan. J. Sci. Food Agric. 2012, 92, 2069–2075. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.S.; Wu, H.C.; Pan, S.F.; Lin, B.; Lin, Y.H.; Tung, W.C.; Li, Y.; Chiang, C.; Yanagida, F. Isolation and characterization of lactic acid bacteria from yan-taozih (pickled peaches) in Taiwan. Ann. Microbiol. 2013, 63, 607–614. [Google Scholar] [CrossRef]
- Chen, Y.S.; Wu, H.C.; Wang, C.M.; Lin, C.C.; Chen, Y.T.; Jhong, Y.J.; Yanagida, F. Isolation and characterization of lactic acid bacteria from pobuzihi (fermented cummingcordia), a traditional fermented food in Taiwan. Folia Microbiol. 2013, 58, 103–109. [Google Scholar] [CrossRef] [PubMed]
- Chang, C.H.; Chen, Y.S.; Yanagida, F. Isolation and characterization of lactic acid bacteria from yan-jiang (fermented ginger), a traditional fermented food in Taiwan. J. Sci. Food Agric. 2011, 91, 1746–1750. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, D.T.; van Hoorde, K.; Cnockaert, M.; de Brandt, E.; Aerts, M.; Binh Thanh, L.; Vandamme, P. A description of the lactic acid bacteria microbiota associated with the production of traditional fermented vegetables in Vietnam. Int. J. Food Microbiol. 2013, 163, 19–27. [Google Scholar] [CrossRef] [PubMed]
- Karovicova, J.; Kohajdova, Z.; Greif, G. The use of PCA, CA, FA for evaluation of vegetable juices processed by lactic acid fermentation. Czech J. Food Sci. 2002, 20, 135–143. [Google Scholar] [CrossRef]
- Tanasupawat, S.; Komagata, K. Lactic acid bacteria in fermented foods in Thailand. World J. Microbiol. Biotechnol. 1995, 11, 253–256. [Google Scholar] [CrossRef] [PubMed]
- Swain, M.R.; Anandharaj, M.; Ray, R.C.; Rani, R.P. Fermented fruits and vegetables of Asia: A potential source of probiotics. Biotechnol. Res. Int. 2014, 2014, 19. [Google Scholar] [CrossRef] [PubMed]
- Demir, N.; Bahceci, K.S.; Acar, J. The effects of different initial Lactobacillus plantarum concentrations on some properties of fermented carrot juice. J. Food Process. Preserv. 2006, 30, 352–363. [Google Scholar] [CrossRef]
- Di Cagno, R.; Coda, R.; de Angelis, M.; Gobbetti, M. Exploitation of vegetables and fruits through lactic acid fermentation. Food Microbiol. 2013, 33, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Doron, S.I.; Hibberd, P.L.; Gorbach, S.L. Probiotics for prevention of antibiotic-associated diarrhea. J. Clin. Gastroenterol. 2008, 42, 58–63. [Google Scholar] [CrossRef] [PubMed]
- Grin, P.M.; Kowalewska, P.M.; Alhazzan, W.; Fox-Robichaud, A.E. Lactobacillus for preventing recurrent urinary tract infections in women: Meta-analysis. Can. J. Urol. 2013, 20, 6607–6614. [Google Scholar] [PubMed]
- Dylag, K.; Hubalewska-Mazgaj, M.; Surmiak, M.; Szmyd, J.; Brzozowski, T. Probiotics in the mechanism of protection against gut inflammation and therapy of gastrointestinal disorders. Curr. Pharm. Des. 2014, 20, 1149–1155. [Google Scholar] [CrossRef] [PubMed]
- Tomaro-Duchesneau, C.; Saha, S.; Malhotra, M.; Jones, M.L.; Labbe, A.; Rodes, L.; Kahouli, I.; Prakash, S. Effect of orally administered L. fermentum NCIMB 5221 on markers of metabolic syndrome: An in vivo analysis using ZDF rats. Appl. Microbiol. Biotechnol. 2014, 98, 115–126. [Google Scholar] [CrossRef] [PubMed]
- Sivamaruthi, B.S. A comprehensive review on clinical outcome of probiotic and synbiotic therapy for inflammatory bowel diseases. Asian Pac. J. Trop. Biomed. 2018, 8, 179–186. [Google Scholar] [CrossRef]
- Bansal, S.; Singh, A.; Mangal, M.; Sharma, S.K. Isolation and characterization of lactic acid bacteria from fermented Foods. Vegetos 2013, 26, 325–330. [Google Scholar] [CrossRef]
- Ho, J.C.K.; Sze, LY. Isolation, identification and characterization of enzyme-producing lactic acid bacteria from traditional fermented foods. Biosci. Horiz. 2018, 11, hzy004. [Google Scholar] [CrossRef]
- Linh, N.T.H.; Sakai, K.; Taoka, Y. Screening of lactic acid bacteria isolated from fermented food as potential probiotics for aquacultured carp and amberjack. Fish. Sci. 2018, 84, 101–111. [Google Scholar] [CrossRef]
- Ostergaard, A.; Embarek, P.K.B.; Wedell-Neergaard, C.; Huss, H.H.; Gram, L. Characterization of anti-listerial lactic acid bacteria isolated from Thai fermented fish products. Food Microbiol. 1998, 15, 223–233. [Google Scholar] [CrossRef]
- Rattanachaikunsopon, P.; Phumkhachorn, P. Isolation and preliminary characterization of a bacteriocin produced by Lactobacillus plantarum N014 isolated from Nham, a traditional Thai fermented pork. J. Food Prot. 2006, 69, 1937–1943. [Google Scholar] [CrossRef] [PubMed]
- Srionnual, S.; Yanagida, F.; Lin, L.; Hsiao, K.; Chen, Y. Weissellicin 110, a newly discovered bacteriocin from Weissella cibaria 110, isolated from Plaa-Som, a fermented fish product from Thailand. Appl. Environ. Microbiol. 2007, 73, 2247–2250. [Google Scholar] [CrossRef] [PubMed]
- Woraprayote, W.; Pumpuang, L.; Tosukhowong, A.; Roytrakul, S.; Perez, R.H.; Zendo, T.; Sonomoto, K.; Benjakul, S.; Visessanguan, W. Two putatively novel bacteriocins active against Gram-negative food borne pathogens produced by Weissella hellenica BCC 7293. Food Control 2015, 55, 176–184. [Google Scholar] [CrossRef]
- Prachyakij, P.; Schnurer, J.; Charernjiratrakul, W.; Kantachote, D. Selection and identification of lactic acid bacteria that inhibit yeast contaminants isolated from fermented plant beverages. Songklanakarin J. Sci. Technol. 2007, 29, 211–218. [Google Scholar]
- Wilaipun, P.; Zendo, T.; Okuda, K.; Nakayama, J.; Sonomoto, K. Identification of the Nukacin KQU-131, a new type-A(II) lantibiotic produced by Staphylococcus hominis KQU-131 isolated from Thai fermented fish product (Pla-ra). Biosci. Biotechnol. Biochem. 2008, 72, 2232–2235. [Google Scholar] [CrossRef] [PubMed]
- Petchkongkaew, A.; Taillandier, P.; Gasaluck, P.; Lebrihi, A. Isolation of Bacillus spp. from Thai fermented soybean (Thua-nao): Screening for aflatoxin B1 and ochratoxin A detoxification. J. Appl. Microbiol. 2008, 104, 1495–1502. [Google Scholar] [CrossRef] [PubMed]
- Charernjiratragul, W.; Bhoopong, P.; Kantachote, D.; Jomduang, S.; Kong-Ngoen, R.; Nair, G.B.; Vuddhakul, V. Inhibitory activity of lactic acid bacteria isolated from Thai fermented food against pandemic strains of Vibrio parahaemolyticus. J. Food Saf. 2010, 30, 67–82. [Google Scholar] [CrossRef]
- Leelavatcharamas, V.; Arbsuwan, N.; Apiraksakorn, J.; Laopaiboon, P.; Kishida, M. Thermotolerant bacteriocin-producing lactic acid bacteria isolated from Thai local fermented foods and their bacteriocin productivity. Biocontrol Sci. 2011, 16, 33–40. [Google Scholar] [CrossRef] [PubMed]
- Saelao, S.; Maneerat, S.; Kaewsuwan, S.; Rabesona, H.; Choiset, Y.; Haertle, T.; Chobert, J.M. Inhibition of Staphylococcus aureus in vitro by bacteriocinogenic Lactococcus lactis KTH0-1S isolated from Thai fermented shrimp (Kung-som) and safety evaluation. Arch. Microbiol. 2017, 199, 551–562. [Google Scholar] [CrossRef] [PubMed]
- Noonpakdee, W.; Santivarangkna, C.; Jumriangrit, P.; Sonomoto, K.; Panyim, S. Isolation of nisin-producing Lactococcus lactis WNC 20 strain from nham, a traditional Thai fermented sausage. Int. J. Food Microbiol. 2003, 81, 137–145. [Google Scholar] [CrossRef]
- Tasaku, S.; Siripornadulsil, S.; Siripornadulsil, W. Inhibitory activity of food-originated Pediococcus pentosaceus NP6 against Salmonella enterica serovar Typhimurium in Nile Tilapia by-products. Chiang Mai J. Sci. 2017, 44, 383–393. [Google Scholar]
- Phromraksa, P.; Nagano, H.; Boonmars, T.; Kamboonruang, C. Identification of proteolytic bacteria from Thai traditional fermented foods and their allergenic reducing potentials. J. Food Sci. 2008, 73, M189–M195. [Google Scholar] [CrossRef] [PubMed]
- Phoottosavako, M.; Keeratipibul, S.; Techo, S.; Tanasupawat, S. Identification and characterization of lipolytic bacteria from Thai fermented foods. Malays. J. Microbiol. 2015, 11, 231–239. [Google Scholar] [CrossRef]
- Klayraung, S.; Viernstein, H.; Sirithunyalug, J.; Okonogi, S. Probiotic properties of Lactobacilli isolated from Thai traditional food. Sci. Pharm. 2008, 76, 485–503. [Google Scholar] [CrossRef]
- Meidong, R.; Doolgindachbaporn, S.; Jamjan, W.; Sakai, K.; Tashiro, Y.; Okugawa, Y.; Tongpim, S. A novel probiotic Bacillus siamensis B44v isolated from Thai pickled vegetables (Phak-dong) for potential use as a feed supplement in aquaculture. J. Gen. Appl. Microbiol. 2017, 63, 246–253. [Google Scholar] [CrossRef] [PubMed]
- Meidong, R.; Doolgindachbaporn, S.; Sakai, K.; Tongpim, S. Isolation and selection of lactic acid bacteria from Thai indigenous fermented foods for use as probiotics in tilapia fish Oreochromis niloticus. AACL Bioflux 2017, 10, 455–463. [Google Scholar]
- Chunhachart, O.; Itoh, T.; Sukchotiratana, M.; Tanimoto, H.; Tahara, Y. Characterization of γ-glutamyl hydrolase produced by Bacillus sp. isolated from Thai thua-nao. Biosci. Biotechnol. Biochem. 2006, 70, 2779–2782. [Google Scholar] [CrossRef] [PubMed]
- Nanasombat, S.; Treebavonkusol, P.; Kittisrisopit, S.; Jaichalad, T.; Phunpruch, S.; Kootmas, A.; Nualsri, I. Lactic acid bacteria isolated from raw and fermented pork products: Identification and characterization of catalase producing Pediococcus pentosaceus. Food Sci. Biotechnol. 2017, 26, 173–179. [Google Scholar] [CrossRef]
- Sirilun, S.; Chaiyasut, C.; Kantachote, D.; Luxananil, P. Functional properties of β-glucosidase-producing Lactobacillus plantarum SC 359 isolated from Thai fermented soybean food. Acta Aliment. 2012, 41, 451–464. [Google Scholar] [CrossRef]
- Woraharn, S.; Lailerd, N.; Sivamaruthi, B.S.; Wangcharoen, W.; Sirisattha, S.; Chaiyasut, C. Screening and kinetics of glutaminase and glutamate decarboxylase producing lactic acid bacteria from fermented Thai foods. Food Sci. Technol. 2014, 34, 793–799. [Google Scholar] [CrossRef]
- Toyokawa, Y.; Takahara, H.; Reungsang, A.; Fukuta, M.; Hachimine, Y.; Tachibana, S.; Yasuda, M. Purification and characterization of a halotolerant serine proteinase from thermotolerant Bacillus licheniformis RKK-04 isolated from Thai fish sauce. Appl. Microbiol. Biotechnol. 2010, 86, 1867–1875. [Google Scholar] [CrossRef] [PubMed]
- Ratanaburee, A.; Kantachote, D.; Charernjiratrakul, W.; Sukhoom, A. Selection of c-aminobutyric acid-producing lactic acid bacteria and their potential as probiotics for use as starter cultures in Thai fermented sausages (Nham). Int. J. Food Sci. Technol. 2013, 48, 1371–1382. [Google Scholar] [CrossRef]
- Sanchart, C.; Rattanaporn, O.; Haltrich, D.; Phukpattaranont, P.; Maneerat, S. Lactobacillus futsaii CS3, a new GABA-producing strain isolated from Thai fermented shrimp (Kung-Som). Indian J. Microbiol. 2017, 57, 211–217. [Google Scholar] [CrossRef] [PubMed]
- Smitinont, T.; Tansakul, C.; Tanasupawat, S.; Keeratipibul, S.; Navarini, L.; Bosco, M.; Cescutti, P. Exopolysaccharide-producing lactic acid bacteria strains from traditional Thai fermented foods: Isolation, identification and exopolysaccharide characterization. Int. J. Food Microbiol. 1999, 51, 105–111. [Google Scholar] [CrossRef]
- Woraharn, S.; Lailerd, N.; Sivamaruthi, B.S.; Wangcharoen, W.; Peerajan, S.; Sirisattha, S.; Chaiyasut, C. Development of fermented Hericium erinaceus juice with high content of l-glutamine and l-glutamic acid. Int. J. Food Sci. Technol. 2015, 50, 2104–2112. [Google Scholar] [CrossRef]
- Chaiyasut, C.; Woraharn, S.; Sivamaruthi, B.S.; Kesika, P.; Lailerd, N.; Peerajan, S. Lactobacillus fermentum HP3 mediated fermented Hericium erinaceus juice as a health promoting food supplement to manage diabetes mellitus. J. Evid. Based Integr. Med. 2018, 23, 1–9. [Google Scholar] [CrossRef] [PubMed]
S. No. | Source | Name of the Isolate | Bioactivity | Other Observations | Ref. |
---|---|---|---|---|---|
1 | Fermented fish | Lactobacillus spp. | Anti-listerial activity | Displayed antimicrobial activity against Vibrio cholerae, V. parahaemolyticus, Aeromonas sp. | [24] |
2 | Fermented pork (Nham) | L. plantarum N014 | Anti-listerial activity, Bacteriocin production | Displayed antimicrobial activity against several Gram-positive and Gram-negative microbes. | [25] |
3 | Fermented fish (Plaa-Som) | Weissella cibaria 110 | Bacteriocin production | The bacteriocin, weissellicin 110, was active against some Gram-positive bacteria. Peptide mass was 3487.8 Da. | [26] |
4 | Fermented pork meat (Nham) | Weissella hellenica BCC 7293 | Bacteriocin production (7293A and 7293B) | Active against Gram-negative foodborne pathogens. | [27] |
5 | Fermented foods | L. plantarum | Anti-yeast activity | The isolated strains were tested against Rhodotorula spp., which were isolated from contaminated fermented plant beverages | [28] |
6 | Fermented fish (Pla-ra) | Staphylococcus hominis KQU-131 | Bacteriocin production | Nukacin-KQU-131, a new variant of nukacin ISK-1, was identified. | [29] |
7 | Fermented soybean (Thua-nao) | Bacillus spp. | Anti-Aspergillus activity | The isolate inhibited the growth of Aspergillus flavus and A. westerdijkiae, and detoxified aflatoxin B1 and ochratoxin A. | [30] |
8 | Fermented pork | L. plantarum (PSU-LAB71) | Inhibits V. parahaemolyticus, and V. cholerae | The isolate PSU-LAB71 was active against pandemic strains of Vibrio and found as a probiotic. | [31] |
9 | Fermented foods | Pediococcus acidilactici | Active against Gram-positive bacteria | P. acidilactici produced heat-tolerant bacteriocin. | [32] |
10 | Fermented shrimp(Kung-som) | Lactococcus lactis KTH0-1S | Anti-Staphylococcus aureus activity | Bacteriocin production (Nisin Z). The isolate KTH0-1S was safe and could be used to protect fermented seafood. | [33] |
11 | Fermented pork meat (Nham) | L. lactis WNC 20 | Active against foodborne pathogens | Heat-stable bacteriocin production (Nisin Z like). | [34] |
12 | Fermented fish (Nam-Pla) | P. pentosaceus NP6 | Anti-Salmonella enterica serovar Typhimurium activity | Active against both Gram-positive and Gram-negative pathogens. The isolate NP6 exhibited some probiotic properties. | [35] |
Source | Name of the Isolate | Bioactivity | Other Observations | Ref. |
---|---|---|---|---|
Lytic Activity | ||||
Fermented soybean (Thua Nao), fermented rice-noodle (Kha Nhom Jeen) | Bacillus subtilis, B. licheniformis | Proteolytic activity | The crude extract of culture supernatant showed in vitro anti-allergic activity. | [36] |
Fermented meat and seafood | Bacillus spp. Paenibacillus spp. | Lipolytic activity | [37] | |
Probiotic Strains | ||||
Fermented pork, and tea leaves, | Lactobacillus fermentum | Probiotic | Strains were sensitive to some antibiotics and active against Escherichia coli, Salmonella Typhi, and Staphylococcus aureus. | [38] |
Thai pickled vegetables (Phak-dong) | B. siamensis B44v | Probiotic in hybrid catfish culture | Bacteriocin production and activity against Gram-positive and Gram-negative pathogens. Sensitive to tested antibiotics. Protected the hybrid catfish from Aeromonas hydrophila FW52 infection. | [39] |
Thai indigenous fermented foods | L. plantarum CR1T5 | Probiotic in tilapia fish culture | Activity against fish pathogens (Aeromonas caviae, A. hydrophila, and Streptococcus agalactiae). The supplementation of CR1T5 enhanced the survivability of infected fish, and also enhanced the growth. | [40] |
Enzyme Production | ||||
Fermented soybean (Thua-nao) | Bacillus spp. | γ-Glutamyl hydrolase production | The enzyme was about 28 kDa. The enzyme acted on the γ-glutamyl linkage of γ-polyglutamic acid. | [41] |
Fermented pork | Pediococcus pentosaceus | Catalase production | Activity against S. Typhimurium. Hematin enhanced the catalase production, but was not necessary for production (i.e., heme-independent catalase). | [42] |
Fermented soybean | L. plantarum SC359 | β-glucosidase production | Activity against representative microbial pathogens. The strain competed for pathogenic adherence to Caco-2 cells. | [43] |
Many fermented foods | L. brevis, and L. fermentum | Glutaminase and glutamate decarboxylase production | The optimal conditions for the enzyme production were found at pH 6.5, temperature 40 °C, and 10 days of incubation time. | [44] |
Fish sauce | Bacillus licheniformis RKK-04 | Serine proteinase production | Thermotolerant subtilisin-like alkaline serine proteinase enzyme. pH 10.0 and 50 °C as optimal conditions for enzyme production. The enzyme from RKK-04 could be used in fish sauce fermentation. | [45] |
Gamma-Aminobutyric Acid Production | ||||
Many fermented foods | L. namurensis, P. pentosaceus | γ-Aminobutyric acid (GABA) production | Four isolates were isolated and found to produce GABA (7339–9060 mg/L) in the culture medium. Two isolates (HN8 and NH2) were recommended for use in fermented pork as a starter culture. | [46] |
Fermented shrimp (Kung-Som) | L. futsaii CS3 | GABA production | Reported primary GABA producer, and had the ability to convert 99% monosodium glutamate to GABA. | [47] |
Exopolysaccharide Production | ||||
Many fermented foods | P. pentosaceus (AP-1, and AP-3) | Exopolysaccharide Production | Dextran class of exopolysaccharide. | [48] |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sivamaruthi, B.S.; Kesika, P.; Chaiyasut, C. Thai Fermented Foods as a Versatile Source of Bioactive Microorganisms—A Comprehensive Review. Sci. Pharm. 2018, 86, 37. https://doi.org/10.3390/scipharm86030037
Sivamaruthi BS, Kesika P, Chaiyasut C. Thai Fermented Foods as a Versatile Source of Bioactive Microorganisms—A Comprehensive Review. Scientia Pharmaceutica. 2018; 86(3):37. https://doi.org/10.3390/scipharm86030037
Chicago/Turabian StyleSivamaruthi, Bhagavathi Sundaram, Periyanaina Kesika, and Chaiyavat Chaiyasut. 2018. "Thai Fermented Foods as a Versatile Source of Bioactive Microorganisms—A Comprehensive Review" Scientia Pharmaceutica 86, no. 3: 37. https://doi.org/10.3390/scipharm86030037
APA StyleSivamaruthi, B. S., Kesika, P., & Chaiyasut, C. (2018). Thai Fermented Foods as a Versatile Source of Bioactive Microorganisms—A Comprehensive Review. Scientia Pharmaceutica, 86(3), 37. https://doi.org/10.3390/scipharm86030037