You are currently viewing a new version of our website. To view the old version click .
Scientia Pharmaceutica
  • Scientia Pharmaceutica is published by MDPI from Volume 84 Issue 3 (2016). Previous articles were published by another publisher in Open Access under a CC-BY (or CC-BY-NC-ND) licence, and they are hosted by MDPI on mdpi.com as a courtesy and upon agreement with Austrian Pharmaceutical Society (Österreichische Pharmazeutische Gesellschaft, ÖPhG).
  • Article
  • Open Access

27 February 2014

Quality by Design-Based Development of a Stability-Indicating RP-HPLC Method for the Simultaneous Determination of Methylparaben, Propylparaben, Diethylamino Hydroxybenzoyl Hexyl Benzoate, and Octinoxate in Topical Pharmaceutical Formulation

and
1
Analytical Research and Development, Integrated Product Development, Dr. Reddy’s Laboratories Ltd., Bachupally, Hyderabad-500090, Andhra Pradesh, India
2
Department of Chemistry, National Institute of Technology, Durgapur-713209, West Bengal, India
*
Author to whom correspondence should be addressed.

Abstract

A stability-indicating RP-HPLC method has been developed and validated for the simultaneous determination of methylparaben (MP), propylparaben (PP), diethylamino hydroxybenzoyl hexyl benzoate (DAHHB), and octinoxate (OCT) in topical pharmaceutical formulation. The desired chromatographic separation was achieved on the KinetexTM C18 (250 × 4.6 mm, 5 μm) column using gradient elution at 257 nm detection wavelength. The optimized mobile phase consisted of a buffer : acetonitrile : tetrahydrofuran (60 : 30 : 10, v/v/v) as solvent A and acetonitrile : tetrahydrofuran (70 : 30, v/v) as solvent B. The method showed linearity over the range of 0.19–148.4 μg/mL, 0.23–15.3 μg/mL, 1.97–600.5 μg/mL, and 1.85–451.5 μg/mL for MP, PP, DAHHB, and OCT, respectively. Recovery for all the components was found to be in the range of 98–102%. The stability-indicating capability of the developed method was established by analysing the forced degradation samples in which the spectral purity of MP, PP, DAHHB, and OCT, along with the separation of the degradation products from the analyte peaks, was achieved. The proposed method was successfully applied for the quantitative determination of MP, PP, DAHHB, and OCT in the lotion sample. The design expert with ANOVA software with the linear model was applied and a 24 full factorial design was employed to estimate the model coefficients and also to check the robustness of the method. Results of the two-level full factorial design, 24 with 20 runs including four centrepoint analysis based on the variance analysis (ANOVA), demonstrated that all four factors, as well as the interactions of resolution between DAHHB and OCT are statistically significant.

Article Metrics

Citations

Article Access Statistics

Multiple requests from the same IP address are counted as one view.