You are currently viewing a new version of our website. To view the old version click .
Scientia Pharmaceutica
  • Scientia Pharmaceutica is published by MDPI from Volume 84 Issue 3 (2016). Previous articles were published by another publisher in Open Access under a CC-BY (or CC-BY-NC-ND) licence, and they are hosted by MDPI on mdpi.com as a courtesy and upon agreement with Austrian Pharmaceutical Society (Österreichische Pharmazeutische Gesellschaft, ÖPhG).
  • Article
  • Open Access

19 March 2010

Pharmacophore Elucidation and Molecular Docking Studies on 5-Phenyl- 1-(3-pyridyl)-1H-1,2,4-triazole-3-carboxylic Acid Derivatives as COX-2 Inhibitors

,
and
1
Department of Pharmaceutical Chemistry, Martin-Luther-Universität Halle-Wittenberg, 06120 Halle, Germany
2
Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Assiut University, Assiut-71527, Egypt
3
Pharmaceutical Technology and Manufacturing Center, College of Pharmacy, King Saud University Al Ryiadh, Kingdom of Saudi Arabia, P. O. Box 2457, Riyadh, 11451, Kingdom of Saudi Arabia
*
Author to whom correspondence should be addressed.

Abstract

A set of 5-phenyl-1-(3-pyridyl)-1H-1,2,4-triazole-3-carboxylic acid derivatives (16–32) showing anti-inflammatory activity was analyzed using a threedimensional qualitative structure-selectivity relationship (3D QSSR) method. The CatalystHipHop approach was used to generate a pharmacophore model for cyclooxygenase-2 (COX-2) inhibitors based on a training set of 15 active inhibitors (1–15). The degree of fitting of the test set compounds (16–32) to the generated hypothetical model revealed a qualitative measure of the more or less selective COX-2 inhibition of these compounds. The results indicate that most derivatives (16, 18, 20–25, and 30–32) are able to effectively satisfy the proposed pharmacophore geometry using energy accessible conformers (Econf < 20 kcal/mol). In addition, the triazole derivatives (16–32) were docked into COX-1 and COX-2 X-ray structures, using the program GOLD. Based on the docking results it is suggested that several of these novel triazole derivatives are active COX inhibitors with a significant preference for COX-2. In principle, this work presents an interesting, comprehensive approach to theoretically predict the mode of action of compounds that showed anti-inflammatory activity in an in vivo model.

Article Metrics

Citations

Article Access Statistics

Multiple requests from the same IP address are counted as one view.