Open Innovation Community for University–Industry Knowledge Transfer: A Colombian Case
Abstract
:1. Introduction
- Q1. What indicators could explain the proposed OIC model?
- Q2. Which variables act together in the OIC model, and which ones act independently?
- Q3. To what extent does the creation of OICs stimulate the academia–company relationship?
2. Literature Review
2.1. University–Enterprise Cooperation
2.2. The University–Enterprise Knowledge Transfer
2.3. Open Innovation Communities as a University–Enterprise Transfer Mechanism
2.4. Conceptual Model for OICs
- (i)
- Interaction between academia and industry that guarantees bidirectional knowledge flow and the generation of value for both entities [43].
- (ii)
- A shared domain based on an understanding of the business needs, a university–industry community, and a shared practice [63].
- (iii)
- Tangible results for both industry and universities [61].
- (iv)
- A perspective of action-participation research, developed by Kurt Lewin [64], given that it aims to transform action and allows students to be participants of change in companies, while acting as researchers within them, in a continuous cycle of dialogue and training and application within both the university and company.
- (v)
3. Research Methodology
3.1. Population and Sample
3.2. Analysis Method
4. Results
4.1. Sample Characteristics
4.2. Exploratory Factor Analysis
- Some items were perfectly correlated with others, and due to this redundancy, the matrix had zero non-positive eigenvalues. In this situation, the algorithm would crash.
- There were also many anti-correlated items that questioned the perceived relative relevance of certain aspects that could influence university–industry knowledge transfer. This anti-correlation could not be easily associated with any of the theoretically proposed factors as they were almost independent of any construct.
- Some questions showed little validity with respect to the construct with which they were supposed to be associated. A second conceptual assessment revealed that the way the question was phrased greatly reduced this validity.
4.3. Confirmatory Factor Analysis
4.4. Model Estimation and Adequacy
4.5. Latent Factor Correlation Analysis
5. Discussion
6. Conclusions
Implications and Limitations of the Research
Author Contributions
Funding
Conflicts of Interest
Abbreviations
OIC | open innovation community |
ICT | information and communication technology |
KM | knowledge management |
KT | knowledge transfer |
SME | small and medium-sized enterprise |
SEM | structural equation model |
References
- Brunner, J.J. La idea de universidad en tiempos de masificación. Revis. Iberoam. Educ. Super. 2012, 3, 130–143. [Google Scholar] [CrossRef]
- Gibbons, M. The New Production of Knowledge: The Dynamics of Science and Research in Contemporary Societies; SAGE Publications: London, UK; Thousand Oaks, CA, USA, 1994. [Google Scholar]
- Nam, G.; Kim, D.; Choi, S. How Resources of Universities influence Industry Cooperation. J. Open Innov. Technol. Market Complex. 2019, 5, 9. [Google Scholar] [CrossRef] [Green Version]
- De la Fe, T.G. El modelo de Triple Hélice de relaciones universidad, industria y gobierno: Un análisis crítico. Arbor 2009, CLXXXV, 739–755. [Google Scholar] [CrossRef]
- Pan, S.L.; Leidner, D.E. Bridging communities of practice with information technology in pursuit of global knowledge sharing. J. Strateg. Inf. Syst. 2003, 12, 71–88. [Google Scholar] [CrossRef]
- Gertner, D.; Roberts, J.; Charles, D. University-industry collaboration: A CoPs approach to KTPs. J. Knowl. Manag. 2011, 15, 625–647. [Google Scholar] [CrossRef] [Green Version]
- Ankrah, S.; AL-Tabbaa, O. Universities–industry collaboration: A systematic review. Scand. J. Manag. 2015, 31, 387–408. [Google Scholar] [CrossRef]
- De Wit-de Vries, E.; Dolfsma, W.A.; van der Windt, H.J.; Gerkema, M.P. Knowledge transfer in university–industry research partnerships: A review. J. Technol. Transf. 2018, 44, 1236–1255. [Google Scholar] [CrossRef] [Green Version]
- Rybnicek, R.; Königsgruber, R. What makes industry–university collaboration succeed? A systematic review of the literature. J. Bus. Econ. 2018, 89, 221–250. [Google Scholar] [CrossRef] [Green Version]
- Brennenraedts, R.; Bekkers, R.; Verspagen, B. The Different Channels of University-Industry Knowledge Transfer: Empirical Evidence From Biomedical Engineering; ECIS Working Paper Series; Technische Universiteit Eindhoven: Eindhoven, The Netherlands, 2006. [Google Scholar]
- Tichá, I.; Havlícek, J. Knowledge transfer: A case study approach. Appl. Stud. Agribus. Commer. 2008, 2, 15–19. [Google Scholar] [CrossRef]
- Fuentes, C.D.; Dutrénit, G. Best channels of academia–industry interaction for long-term benefit. Res. Policy 2012, 41, 1666–1682. [Google Scholar] [CrossRef] [Green Version]
- Iskanius, P.; Pohjola, I. Leveraging communities of practice in university-industry collaboration: A case study on Arctic research. Int. J. Bus. Innov. Res. 2016, 10, 283. [Google Scholar] [CrossRef]
- Lave, J. Situated Learning: Legitimate Peripheral Participation; Cambridge University Press: Cambridge, UK, 1991. [Google Scholar]
- Senge, P.; Kim, D.H. From Fragmentation to Integration: Building Learning Communities. Reflections 2013, 12, 1–3. [Google Scholar]
- Gessler, M.; Hinrichs, A.C. Key Predictors of Learning Transfer in Continuing Vocational Training. In Working and Learning in Times of Uncertainty; Sense Publishers: Rotterdam, The Netherlands, 2015; pp. 43–60. [Google Scholar] [CrossRef]
- Fernández-González, N. Repensar la educación. ¿Hacia un bien común mundial? J. Supranatl. Polic. Educ. 2015, 4, 207–209. [Google Scholar]
- International Labour Office. Global Employment Trends for Youth 2020: Technology and the Future of Jobs; Intl Labour Office: Geneva, Switzerland, 2020. [Google Scholar]
- Argote, L.; Ingram, P. Knowledge Transfer: A Basis for Competitive Advantage in Firms. Org. Behav. Hum. Decis. Process. 2000, 82, 150–169. [Google Scholar] [CrossRef] [Green Version]
- Cai, Y. Implementing the Triple Helix model in a non-Western context: An institutional logics perspective. Triple Helix 2014, 1, 1–20. [Google Scholar] [CrossRef] [Green Version]
- Cai, Y.; Etzkowitz, H. Theorizing the Triple Helix model: Past, present, and future. Triple Helix J. 2020, 1–38. [Google Scholar] [CrossRef]
- Fischer, B.B.; Schaeffer, P.R.; Vonortas, N.S. Evolution of university-industry collaboration in Brazil from a technology upgrading perspective. Technol. Forecast. Soc. Chang. 2019, 145, 330–340. [Google Scholar] [CrossRef]
- Vătămănescu, E.M.; Cegarra-Navarro, J.G.; Andrei, A.G.; Dincă, V.M.; Alexandru, V.A. SMEs strategic networks and innovative performance: A relational design and methodology for knowledge sharing. J. Knowl. Manag. 2020, 24, 1369–1392. [Google Scholar] [CrossRef]
- Güemes-Castorena, D.; Ponce-Jaramillo, I.E. University–Industry Linkage Framework to Identify Opportunity Areas. Rev. Policy Res. 2019, 36, 660–682. [Google Scholar] [CrossRef]
- Chesbrough, H.; Press, H.B.S. Open Innovation: The New Imperative for Creating and Profiting from Technology; Harvard Business School Press: Cambridge, MA, USA, 2003. [Google Scholar]
- Ranga, M.; Etzkowitz, H. Triple Helix Systems: An Analytical Framework for Innovation Policy and Practice in the Knowledge Society. Ind. High. Educ. 2013, 27, 237–262. [Google Scholar] [CrossRef] [Green Version]
- Wenger, E. Cultivating Communities of Practice: A Guide to Managing Knowledge; Harvard Business School Press: Boston, MA, USA, 2002. [Google Scholar]
- Mavri, A.; Ioannou, A.; Loizides, F. Design students meet industry players: Feedback and creativity in communities of practice. Think. Skills Creat. 2020, 37, 100684. [Google Scholar] [CrossRef]
- Alamantariotou, K.; Lazakidou, A.; Topalidou, A.; Kontosorou, G.; Tsouri, M.; Michel-Schuldt, M.; Samantzis, C. Collective Intelligence for Knowledge Building and Research in Communities of Practice and Virtual Learning Environments: A Project Experience; Preston: Lancashire, UK, 2014. [Google Scholar]
- Hussler, C.; Rondé, P. The impact of cognitive communities on the diffusion of academic knowledge: Evidence from the networks of inventors of a French university. Res. Policy 2007, 36, 288–302. [Google Scholar] [CrossRef]
- Xie, X.; Wang, H. How can open innovation ecosystem modes push product innovation forward? An fsQCA analysis. J. Bus. Res. 2020, 108, 29–41. [Google Scholar] [CrossRef]
- Liu, Q.; Du, Q.; Hong, Y.; Fan, W.; Wu, S. User idea implementation in open innovation communities: Evidence from a new product development crowdsourcing community. Inf. Syst. J. 2020, 30, 899–927. [Google Scholar] [CrossRef]
- Sam, C.; van der Sijde, P. Understanding the concept of the entrepreneurial university from the perspective of higher education models. High. Educ. 2014, 68, 891–908. [Google Scholar] [CrossRef]
- Etzkowitz, H.; Leydesdorff, L. The Triple Helix—University-Industry-Government Relations: A Laboratory for Knowledge Based Economic Development. EASST Rev. 1995, 14, 14–19. [Google Scholar]
- Skute, I.; Zalewska-Kurek, K.; Hatak, I.; de Weerd-Nederhof, P. Mapping the field: A bibliometric analysis of the literature on university–industry collaborations. J. Technol. Transf. 2017, 44, 916–947. [Google Scholar] [CrossRef] [Green Version]
- Azagra Caro, J.; Mas-Verdú, F.; Martínez-Gómez, V. Forget R&D—Pay My Coach: Young Innovative Companies and Their Relations with Universities; Springer: Boston, MA, USA, 2012. [Google Scholar]
- Sjöö, K.; Hellström, T. University–industry collaboration: A literature review and synthesis. Ind. High. Educ. 2019, 33, 275–285. [Google Scholar] [CrossRef]
- D’Este, P.; Perkmann, M. Why do academics engage with industry? The entrepreneurial university and individual motivations. J. Technol. Transf. 2010, 36, 316–339. [Google Scholar] [CrossRef]
- Szulanski, G. The Process of Knowledge Transfer: A Diachronic Analysis of Stickiness. Org. Behav. Hum. Decis. Process. 2000, 82, 9–27. [Google Scholar] [CrossRef] [Green Version]
- Kanama, D.; Nishikawa, K. What type of obstacles in innovation activities make firms access university knowledge? An empirical study of the use of university knowledge on innovation outcomes. J. Technol. Transf. 2015, 42, 141–157. [Google Scholar] [CrossRef]
- Lombardi, R. Knowledge transfer and organizational performance and business process: Past, present and future researches. Bus. Process Manag. J. 2019, 25, 2–9. [Google Scholar] [CrossRef] [Green Version]
- Wehn, U.; Montalvo, C. Knowledge transfer dynamics and innovation: Behaviour, interactions and aggregated outcomes. J. Clean. Prod. 2018, 171, S56–S68. [Google Scholar] [CrossRef] [Green Version]
- Von Krogh, G.; Nonaka, I.; Aben, M. Making the Most of Your Company’s Knowledge: A Strategic Framework. Long Range Plan. 2001, 34, 421–439. [Google Scholar] [CrossRef]
- Pant, A.; Shrestha, A.; Kong, E.; Ally, M. A Systematic Literature Mapping to Investigate the Role of IT in Knowledge Stock and Transfer. In Proceedings of the PACIS, Yokohama, Japan, 26 June 2018; p. 166. [Google Scholar]
- Thomas, A.; Paul, J. Knowledge transfer and innovation through university-industry partnership: An integrated theoretical view. Knowl. Manag. Res. Pract. 2019, 17, 436–448. [Google Scholar] [CrossRef]
- Gupta, A.K.; Govindarajan, V. Knowledge flows within multinational corporations. Strateg. Manag. J. 2000, 21, 473–496. [Google Scholar] [CrossRef]
- Nonaka, I. The Knowledge-Creating Company: How Japanese Companies Create the Dynamics of Innovation; Oxford University Press: New York, NY, USA, 1995. [Google Scholar]
- Sallán, J.G.; Gómez, D.R. El modelo Accelera de creación y gestión del conocimiento en el ámbito educativo. Revis. Educ. 2012, 357, 633–648. [Google Scholar]
- Firestone, J. Key Issues in the New Knowledge Management; KMCI Press Butterworth-Heinemann: Boston, MA, USA, 2003. [Google Scholar]
- Petrides, L.A.; Nodine, T.R. Knowledge Management in Education: Defining the Landscape; ERIC: Half Moon Bay, CA, USA, 2003.
- Bruneel, J.; D’Este, P.; Salter, A. Investigating the factors that diminish the barriers to university–industry collaboration. Res. Policy 2010, 39, 858–868. [Google Scholar] [CrossRef]
- Krishnaveni, R.; Sujatha, R. Communities of Practice: An Influencing Factor for Effective Knowledge Transfer in Organizations. IUP J. Knowl. Manag. 2012, 10, 26–40. [Google Scholar]
- Van Maanen, J.; Barley, S. Occupational Communities: Culture and Control in Organizations. Res. Org. Behav. 1984, 6, 287–365. [Google Scholar]
- Hord, S.M. Communities of Continuous Inquiry and Improvement; SEDL: Austin, TX, USA, 1997. [Google Scholar]
- Valls, R. Comunidades de Aprendizaje una Práctica Educativa de Aprendizaje Dialógico para la Sociedad de la Información.; Universitat de Barcelona: Barcelona, Spain, 2008. [Google Scholar]
- Brown, J.S.; Duguid, P. Organizational Learning and Communities-of-Practice: Toward a Unified View of Working, Learning, and Innovation. Org. Sci. 1991, 2, 40–57. [Google Scholar] [CrossRef]
- Orr, J. Talking about Machines: An Ethnography of a Modern Job; Cornell University Press: Ithaca, NY, USA, 2016. [Google Scholar]
- Oppenheimer, A. Crear o Morir!: La Esperanza de Latinoamérica y las Cinco Claves de la Innovación; Debolsillo Penguin Random House Grupo Editorial: Miami, FL, USA, 2019. [Google Scholar]
- Wenger, E. Communities of practice: Learning as a social system. Syst. Think. 1998, 9, 2–3. [Google Scholar] [CrossRef]
- Barrera-Corominas, A.; Fernández-de Álava, M.; Rodríguez-Gómez, D.; Sallán, J. Guía de Autoevaluación de las comunidades de práctica profesional. In Las Comunidades de Praáctica Profesional: Creación, Desarrollo y Evaluación; Sallán, J., Ed.; Wolters Kluwer: Las Rozas, MD, USA, 2015; pp. 75–108. [Google Scholar]
- Scarso, E.; Bolisani, E.; Salvador, L. A systematic framework for analysing the critical success factors of communities of practice. J. Knowl. Manag. 2009, 13, 431–447. [Google Scholar] [CrossRef] [Green Version]
- Vélez-Rolón, A.M. La gestión y Transferencia de Conocimiento en la Formación dual en Colombia: Los Semilleros de Investigación como Instrumento de Mejora. Ph.D. Thesis, Servei de Publicacions de la Universitat Autonoma de Barcelona, Barcelona, Spain, 2019. [Google Scholar]
- Wenger, E. Comunidades de Práctica: Aprendizaje, Significado e Identidad; Paidós: Barcelona, Spain, 2001. [Google Scholar]
- Lewin, K. Action Research and Minority Problems. J. Soc. Issues 1946, 2, 34–46. [Google Scholar] [CrossRef]
- Lesser, E.L.; Storck, J. Communities of practice and organizational performance. IBM Syst. J. 2001, 40, 831–841. [Google Scholar] [CrossRef] [Green Version]
- Chiu, C.M.; Hsu, M.H.; Wang, E.T. Understanding knowledge sharing in virtual communities: An integration of social capital and social cognitive theories. Decis. Support Syst. 2006, 42, 1872–1888. [Google Scholar] [CrossRef]
- Rodríguez, D.; Gairín, J.; Barrera, A.; Fernández, M. El desarrollo de comunidades de práctica profesional: Algunas notas desde la experiencia. In Las Comunidades de Práctica Profesional: Creación, Desarrollo y Evaluación; Sallán, J., Ed.; Wolters Kluwer: Las Rozas, MD, USA, 2015; pp. 51–73. [Google Scholar]
- Kline, R. Principles and Practice of Structural Equation Modeling; Guilford Press: New York, NY, USA, 2016. [Google Scholar]
- Freiberg-Hoffmann, A.; Stover, J.; de la Iglesia, G.; Liporace, M. Polychoric and tetrachoric correlations in exploratory and confirmatory factorial. Cienc. Psicol. 2013, 7, 151–164. [Google Scholar]
- Na-Nan, K.; Kanthong, S.; Joungtrakul, J.; Smith, I.D. Mediating Effects of Job Satisfaction and Organizational Commitment between Problems with Performance Appraisal and Organizational Citizenship Behavior. J. Open Innov. Technol. Market Complex. 2020, 6, 64. [Google Scholar] [CrossRef]
- Lee, R.; Park, J.G.; Park, S.H. Effects of System Management on Value Creation and Global Growth in Born Startups: Focusing on Born Startups in Korea. J. Open Innov. Technol. Market Complex. 2020, 6, 19. [Google Scholar] [CrossRef] [Green Version]
- Prudon, P. Confirmatory Factor Analysis as a Tool in Research Using Questionnaires: A Critique. Compr. Psychol. 2015, 4, 10. [Google Scholar] [CrossRef] [Green Version]
- Zhao, Y. The Performance of Model Fit Measures by Robust Weighted Least Squares Estimators in Confirmatory Factor Analysis. Ph.D. Thesis, Pennsylvania State University, State College, PA, USA, 2015. [Google Scholar]
- Xia, Y.; Yang, Y. RMSEA, CFI, and TLI in structural equation modeling with ordered categorical data: The story they tell depends on the estimation methods. Behav. Res. Methods 2018, 51, 409–428. [Google Scholar] [CrossRef] [PubMed]
- Coughlan, J.; Hooper, D.; Mullen, M. Structural Equation Modelling: Guidelines for Determining Model Fit. Electron. J. Bus. Res. Methods 2008, 6, 53–60. [Google Scholar] [CrossRef]
- Fornell, C.; Larcker, D.F. Evaluating Structural Equation Models with Unobservable Variables and Measurement Error. J. Mark. Res. 1981, 18, 39. [Google Scholar] [CrossRef]
- Bagozzi, R.P.; Yi, Y.; Phillips, L.W. Assessing Construct Validity in Organizational Research. Adm. Sci. Quart. 1991, 36, 421. [Google Scholar] [CrossRef]
- Ferraris, A.; Santoro, G.; Dezi, L. How MNC’s subsidiaries may improve their innovative performance? The role of external sources and knowledge management capabilities. J. Knowl. Manag. 2017, 21, 540–552. [Google Scholar] [CrossRef]
- Kaiser, U.; Kongsted, H.C.; Rønde, T. Does the mobility of R&D labor increase innovation? J. Econ. Behav. Org. 2015, 110, 91–105. [Google Scholar] [CrossRef] [Green Version]
- Hoof, B. Pyme de Avanzada: Motor del Desarrollo en América Latina; Ediciones Uniandes Comisión Económica para Ameérica Latina y el Caribe (CEPAL), Naciones Unidas: Bogota, Colombia; Santiago, Chile, 2015. [Google Scholar]
- Lederman, D.; Messina, J.; Pienknagura, S.; Rigolini, J. El Emprendimiento en América Latina: Muchas Empresas y Poca Innovación; The World Bank: Washington, DC, USA, 2014. [Google Scholar] [CrossRef]
- Nonaka, I.; Konno, N. The Concept of “Ba”: Building a Foundation for Knowledge Creation. Calif. Manag. Rev. 1998, 40, 40–54. [Google Scholar] [CrossRef]
- Gessler, M. Lerntransfer in der beruflichen Weiterbildung—Empirische Prüfung eines integrierten Rahmenmodells mittels Strukturgleichungsmodellierung. Z. Berufs-Wirtsch. 2012, 108, 362–393. [Google Scholar]
- Hinrichs, A.C. Predictors of Collateral Learning Transfer in Continuing Vocational Training. Int. J. Res. Vocat. Educ. Train. 2014, 1, 35–56. [Google Scholar] [CrossRef] [Green Version]
- Baldwin, T.T.; Ford, J.K. Transfer of training: A review and directions for future research. Pers. Psychol. 1988, 41, 63–105. [Google Scholar] [CrossRef]
- Pearson, M.; Brew, A. Research Training and Supervision Development. Stud. High. Educ. 2002, 27, 135–150. [Google Scholar] [CrossRef]
- Tomkin, J.H.; Beilstein, S.O.; Morphew, J.W.; Herman, G.L. Evidence that communities of practice are associated with active learning in large STEM lectures. Int. J. STEM Educ. 2019, 6. [Google Scholar] [CrossRef]
- Bandura, A. Self-Efficacy. In The Corsini Encyclopedia of Psychology; Wiley: Hoboken, NJ, USA, 2010; pp. 1–3. [Google Scholar] [CrossRef]
- Chiaburu, D.S.; Dam, K.V.; Hutchins, H.M. Social Support in the Workplace and Training Transfer: A longitudinal analysis. Int. J. Sel. Assess. 2010, 18, 187–200. [Google Scholar] [CrossRef]
- Kirkpatrick, D.L. Seven keys to unlock the four levels of evaluation. Perform. Improv. 2006, 45, 5–8. [Google Scholar] [CrossRef]
Item | F1 | F2 | F3 | F4 | F5 | F6 | Item | F1 | F2 | F3 | F4 | F5 | F6 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Pa1 | 0.59 | EI1 | 0.77 | ||||||||||
Pa2 | 0.56 | EI2 | 0.83 | ||||||||||
Pa3 | 0.68 | EI3 | 0.76 | ||||||||||
Pa4 | 0.71 | EI4 | 0.75 | ||||||||||
Ed1 | 0.69 | OIC1 | 0.56 | ||||||||||
Ed2 | 0.95 | OIC2 | 0.34 | ||||||||||
Ed3 | 0.80 | OIC3 | 0.80 | ||||||||||
Ed4 | 0.94 | OIC4 | 0.36 | ||||||||||
Un1 | 0.52 | KT1 | 0.57 | ||||||||||
Un2 | 0.65 | KT2 | 0.68 | ||||||||||
Un3 | 0.92 | KT3 | 0.62 | ||||||||||
Un4 | 0.51 | KT4 | 0.74 | ||||||||||
Un5 | 0.48 | KM1 | 0.84 | ||||||||||
Un6 | 0.63 | KM2 | 0.73 | ||||||||||
Un7 | 0.47 | KM3 | 0.37 | ||||||||||
ES | 0.72 | KM4 | 0.78 | ||||||||||
ES | 0.53 | ||||||||||||
ES | 0.89 | ||||||||||||
Proportion of Var. | 0.19 | 0.17 | 0.13 | 0.11 | 0.10 | 0.08 |
Latent Factor | Standardized Loadings | df | SRMR | AVE | ||
---|---|---|---|---|---|---|
Pa | 0.846, 0.718, 0.854, 0.738 | 0.862 | 2 | 0.0279 | 0.868 | 0.627 |
Ed | 0.872, 0.969, 0.945, 0.973 | 0.234 | 2 | 0.0145 | 0.969 | 0.885 |
Un | 0.894, 0.826, 0.855, 0.892, 0.853, 0.876, 0.884 | 9.027 | 14 | 0.0539 | 0.956 | 0.755 |
ES | 0.687, 0.764, 0.985 | 0 | 0 | 0 | 0.849 | 0.675 |
EI | 0.918, 0.911, 0.926, 0.904 | 1.385 | 2 | 0.0353 | 0.953 | 0.837 |
OIC | 0.929, 0.745, 0.786, 0.755 | 0.421 | 2 | 0.0195 | 0.879 | 0.652 |
KT | 0.852, 0.822, 0.822, 0.908 | 1.744 | 2 | 0.0396 | 0.913 | 0.726 |
KM | 0.955, 0.838, 0.623, 0.817 | 1.405 | 2 | 0.0356 | 0.881 | 0.667 |
df | GFI | AGFI | RMSEA | SRMR | CFI | Scaled CFI | Scaled RMSEA | |
---|---|---|---|---|---|---|---|---|
193 | 499 | 0.987 | 0.982 | <0.001 | 0.081 | >0.999 | 0.930 | 0.068 |
ES | Pa | Ed | EI | Un | OIC | KM | KT | |
---|---|---|---|---|---|---|---|---|
ES | 0.0039 | 0.00031 | ||||||
Pa | 0.0162 | 0.101 * | 0.0015 | 0.0037 | 0.0250 | 0.0090 | 0.0110 | |
Ed | 0.0543 | 0.00103 | 0.0052 | 0.0048 | 0.0038 | |||
EI | 0.00055 | 0.270 * | 0.00296 | 0.00208 | 0.00667 | 0.0221 | ||
Un | 0.184 * | 0.0197 | 0.000296 | 0.000605 | 0.0146 | 0.00115 | ||
OIC | 0.00252 | 0.0138 | 0.0112 | 0.0069 | ||||
KM | 0.0235 | 0.00546 | 0.0019 | 0.143 * | ||||
KT | 0.00015 | 0.00017 | 0.00032 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vélez-Rolón, A.M.; Méndez-Pinzón, M.; Acevedo, O.L. Open Innovation Community for University–Industry Knowledge Transfer: A Colombian Case. J. Open Innov. Technol. Mark. Complex. 2020, 6, 181. https://doi.org/10.3390/joitmc6040181
Vélez-Rolón AM, Méndez-Pinzón M, Acevedo OL. Open Innovation Community for University–Industry Knowledge Transfer: A Colombian Case. Journal of Open Innovation: Technology, Market, and Complexity. 2020; 6(4):181. https://doi.org/10.3390/joitmc6040181
Chicago/Turabian StyleVélez-Rolón, Adela M., Manuel Méndez-Pinzón, and Oscar L. Acevedo. 2020. "Open Innovation Community for University–Industry Knowledge Transfer: A Colombian Case" Journal of Open Innovation: Technology, Market, and Complexity 6, no. 4: 181. https://doi.org/10.3390/joitmc6040181
APA StyleVélez-Rolón, A. M., Méndez-Pinzón, M., & Acevedo, O. L. (2020). Open Innovation Community for University–Industry Knowledge Transfer: A Colombian Case. Journal of Open Innovation: Technology, Market, and Complexity, 6(4), 181. https://doi.org/10.3390/joitmc6040181