The Effect of Velocity Loss on Strength Development and Related Training Efficiency: A Dose–Response Meta–Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Eligibility Criteria
2.2. Information Sources and Search Strategy
2.3. Study Selection
2.4. Data Collection Process and Data Items
2.5. Risk of Bias Assessment
2.6. Statistical Analysis
2.6.1. Variable Calculation
2.6.2. Dose–Response Meta–Analysis
3. Results
3.1. Study Selection
3.2. Study Characteristics
3.3. Risk of Bias
3.4. Dose–Response Meta–Analysis
3.4.1. Maximum Strength Gain
3.4.2. Maximum Strength Gain Per Repetition
3.5. Publication Bias Assessment
4. Discussion
4.1. The Relationship between Velocity Loss on Maximum Strength Development
4.2. The Relationship between Velocity Loss and the Efficiency of Maximum Strength Development
4.3. Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Suchomel, T.J.; Nimphius, S.; Stone, M.H. The importance of muscular strength in athletic performance. Sport. Med. 2016, 46, 1419–1449. [Google Scholar] [CrossRef] [PubMed]
- Kraska, J.M.; Ramsey, M.W.; Haff, G.G.; Fethke, N.; Sands, W.A.; Stone, M.E.; Stone, M.H. Relationship between strength characteristics and unweighted and weighted vertical jump height. Int. J. Sports Physiol. Perform. 2009, 4, 461–473. [Google Scholar] [CrossRef] [Green Version]
- Wisløff, U.; Castagna, C.; Helgerud, J.; Jones, R.; Hoff, J. Strong correlation of maximal squat strength with sprint performance and vertical jump height in elite soccer players. Br. J. Sport. Med. 2004, 38, 285–288. [Google Scholar] [CrossRef] [Green Version]
- Seitz, L.B.; Reyes, A.; Tran, T.T.; de Villarreal, E.S.; Haff, G.G. Increases in lower-body strength transfer positively to sprint performance: A systematic review with meta-analysis. Sport. Med. 2014, 44, 1693–1702. [Google Scholar] [CrossRef] [PubMed]
- Spiteri, T.; Newton, R.U.; Binetti, M.; Hart, N.H.; Sheppard, J.M.; Nimphius, S. Mechanical determinants of faster change of direction and agility performance in female basketball athletes. J. Strength Cond. Res. 2015, 29, 2205–2214. [Google Scholar] [CrossRef]
- Fleck, S.J.; Falkel, J.E. Value of resistance training for the reduction of sports injuries. Sport. Med. 1986, 3, 61–68. [Google Scholar] [CrossRef] [PubMed]
- Mann, J.B.; Ivey, P.A.; Sayers, S.P. Velocity-based training in football. Strength Cond. J. 2015, 37, 52–57. [Google Scholar] [CrossRef]
- Zhang, X.; Li, H.; Bi, S.; Luo, Y.; Cao, Y.; Zhang, G. Auto-Regulation Method vs. Fixed-Loading Method in Maximum Strength Training for Athletes: A Systematic Review and Meta-Analysis. Front. Physiol. 2021, 12, 651112. [Google Scholar] [CrossRef]
- Weakley, J.; Mann, B.; Banyard, H.; McLaren, S.; Scott, T.; Garcia-Ramos, A. Velocity-based training: From theory to application. Strength Cond. J. 2021, 43, 31–49. [Google Scholar] [CrossRef]
- Poliquin, C. Five steps to increasing the effectiveness of your strength training program. NSCA J. 1988, 10, 34–39. [Google Scholar] [CrossRef]
- Montalvo-Pérez, A.; Alejo, L.B.; Valenzuela, P.L.; Gil-Cabrera, J.; Talavera, E.; Lucia, A.; Barranco-Gil, D. Traditional Versus Velocity-Based Resistance Training in Competitive Female Cyclists: A Randomized Controlled Trial. Front. Physiol. 2021, 12, 52. [Google Scholar] [CrossRef]
- Held, S.; Hecksteden, A.; Meyer, T.; Donath, L. Improved Strength and Recovery after Velocity-Based Training: A Randomized Controlled Trial. Int. J. Sport. Physiol. Perform. 2021, 16, 1185–1193. [Google Scholar] [CrossRef] [PubMed]
- Dorrell, H.F.; Moore, J.M.; Gee, T.I. Comparison of individual and group-based load-velocity profiling as a means to dictate training load over a 6-week strength and power intervention. J. Sport. Sci. 2020, 38, 2013–2020. [Google Scholar] [CrossRef] [PubMed]
- Orange, S.T.; Hritz, A.; Pearson, L.; Jeffries, O.; Jones, T.W.; Steele, J. Comparison of the effects of velocity-based vs. traditional resistance training methods on adaptations in strength, power, and sprint speed: A systematic review, meta-analysis, and quality of evidence appraisal. J. Sport. Sci. 2022, 40, 1220–1234. [Google Scholar] [CrossRef]
- Hoffman, J.R.; Fry, A.C.; Howard, R.; Maresh, C.M.; Kraemer, W.J. Strength, Speed and Endurance Changes During the Course of a Division I Basketball Season. J. Strength Cond. Res. 1991, 5, 144–149. [Google Scholar]
- Argus, C.K.; Gill, N.D.; Keogh, J.W.L.; Hopkins, W.G.; Beaven, C.M. Changes in Strength, Power, and Steroid Hormones during a Professional Rugby Union Competition. J. Strength Cond. Res. 2009, 23, 1583–1592. [Google Scholar] [CrossRef]
- Pareja-Blanco, F.; Alcazar, J.; Cornejo-Daza, P.J.; Sánchez-Valdepeñas, J.; Rodriguez-Lopez, C.; Hidalgo-de Mora, J.; Sánchez-Moreno, M.; Bachero-Mena, B.; Alegre, L.M.; Ortega-Becerra, M. Effects of velocity loss in the bench press exercise on strength gains, neuromuscular adaptations, and muscle hypertrophy. Scand. J. Med. Sci. Sport. 2020, 30, 2154–2166. [Google Scholar] [CrossRef]
- Pareja-Blanco, F.; Alcazar, J.; Sánchez-Valdepeñas, J.; Cornejo-Daza, P.J.; Piqueras-Sanchiz, F.; Mora-Vela, R.; Sánchez-Moreno, M.; Bachero-Mena, B.; Ortega-Becerra, M.; Alegre, L.M. Velocity Loss as a Critical Variable Determining the Adaptations to Strength Training. Med. Sci. Sport. Exerc. 2020, 52, 1752–1762. [Google Scholar] [CrossRef]
- Latella, C.; Owen, P.J.; Davies, T.; Spathis, J.; Mallard, A.; Van Den Hoek, D. Long-Term Adaptations in the Squat, Bench Press, and Deadlift: Assessing Strength Gain in Powerlifting Athletes. Med. Sci. Sport. Exerc. 2022, 54, 841–850. [Google Scholar] [CrossRef]
- Moher, D.; Shamseer, L.; Clarke, M.; Ghersi, D.; Liberati, A.; Petticrew, M.; Shekelle, P.; Stewart, L.A. Preferred reporting items for systematic review and meta-analysis protocols (PRISMA-P) 2015 statement. Syst. Rev. 2015, 4, 1. [Google Scholar] [CrossRef] [Green Version]
- Rico-González, M.; Pino-Ortega, J.; Clemente, F.; Los Arcos, A. Guidelines for performing systematic reviews in sports science. Biol. Sport 2022, 39, 463–471. [Google Scholar] [CrossRef] [PubMed]
- Androulakis-Korakakis, P.; Fisher, J.P.; Steele, J. The minimum effective training dose required to increase 1RM strength in resistance-trained men: A systematic review and meta-analysis. Sport. Med. 2020, 50, 751–765. [Google Scholar] [CrossRef]
- Grgic, J.; Schoenfeld, B.J.; Davies, T.B.; Lazinica, B.; Krieger, J.W.; Pedisic, Z. Effect of resistance training frequency on gains in muscular strength: A systematic review and meta-analysis. Sport. Med. 2018, 48, 1207–1220. [Google Scholar] [CrossRef] [PubMed]
- Marshall, J.; Bishop, C.; Turner, A.; Haff, G.G. Optimal training sequences to develop lower body force, velocity, power, and jump height: A systematic review with meta-analysis. Sport. Med. 2021, 51, 1245–1271. [Google Scholar] [CrossRef] [PubMed]
- Amir-Behghadami, M.; Janati, A. Population, Intervention, Comparison, Outcomes and Study (PICOS) design as a framework to formulate eligibility criteria in systematic reviews. Emerg. Med. J. 2020, 37, 387. [Google Scholar] [CrossRef] [PubMed]
- Rahmati, M.; Gondin, J.; Malakoutinia, F. Effects of Neuromuscular Electrical Stimulation on Quadriceps Muscle Strength and Mass in Healthy Young and Older Adults: A Scoping Review. Phys. Ther. 2021, 101, pzab144. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Feng, S.; Peng, R.; Li, H. The Role of Velocity-Based Training (VBT) in Enhancing Athletic Performance in Trained Individuals: A Meta-Analysis of Controlled Trials. Int. J. Environ. Res. Public Health 2022, 19, 9252. [Google Scholar] [CrossRef]
- Maher, C.G.; Sherrington, C.; Herbert, R.D.; Moseley, A.M.; Elkins, M. Reliability of the PEDro scale for rating quality of randomized controlled trials. Phys. Ther. 2003, 83, 713–721. [Google Scholar] [CrossRef] [Green Version]
- de Morton, N.A. The PEDro scale is a valid measure of the methodological quality of clinical trials: A demographic study. Aust. J. Physiother. 2009, 55, 129–133. [Google Scholar] [CrossRef] [Green Version]
- Higgins, J.P.; Thomas, J.; Chandler, J.; Cumpston, M.; Li, T.; Page, M.J.; Welch, V.A. Cochrane Handbook for Systematic Reviews of Interventions; John Wiley & Sons: Hoboken, NJ, USA, 2019. [Google Scholar]
- Chiu, S.; Sievenpiper, J.; De Souza, R.; Cozma, A.; Mirrahimi, A.; Carleton, A.; Ha, V.; Di Buono, M.; Jenkins, A.; Leiter, L. Effect of fructose on markers of non-alcoholic fatty liver disease (NAFLD): A systematic review and meta-analysis of controlled feeding trials. Eur. J. Clin. Nutr. 2014, 68, 416–423. [Google Scholar] [CrossRef]
- Xu, C.; Doi, S.A. The robust error meta-regression method for dose–response meta-analysis. JBI Evid. Implement. 2018, 16, 138–144. [Google Scholar] [CrossRef]
- Durrleman, S.; Simon, R. Flexible regression models with cubic splines. Stat. Med. 1989, 8, 551–561. [Google Scholar] [CrossRef]
- Xu, C.; Liu, Y.; Jia, P.-L.; Li, L.; Liu, T.-Z.; Cheng, L.-L.; Deng, K.; Borhan, A.; Thabane, L.; Sun, X. The methodological quality of dose-response meta-analyses needed substantial improvement: A cross-sectional survey and proposed recommendations. J. Clin. Epidemiol. 2019, 107, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Begg, C.B.; Mazumdar, M. Operating characteristics of a rank correlation test for publication bias. Biometrics 1994, 50, 1088–1101. [Google Scholar] [CrossRef]
- Zhao, Y.; Hu, F.; Feng, Y.; Yang, X.; Li, Y.; Guo, C.; Li, Q.; Tian, G.; Qie, R.; Han, M. Association of Cycling with Risk of All-Cause and Cardiovascular Disease Mortality: A Systematic Review and Dose–Response Meta-analysis of Prospective Cohort Studies. Sport. Med. 2021, 51, 1439–1448. [Google Scholar] [CrossRef]
- Jayedi, A.; Gohari, A.; Shab-Bidar, S. Daily Step Count and All-Cause Mortality: A Dose–Response Meta-analysis of Prospective Cohort Studies. Sport. Med. 2022, 52, 89–99. [Google Scholar] [CrossRef]
- Galiano, C.; Pareja-Blanco, F.; Hidalgo de Mora, J.; Sáez de Villarreal, E. Low-velocity loss induces similar strength gains to moderate-velocity loss during resistance training. J. Strength Cond. Res. 2022, 36, 340–345. [Google Scholar] [CrossRef]
- Rodríguez-Rosell, D.; Yáñez-García, J.M.; Mora-Custodio, R.; Sánchez-Medina, L.; Ribas-Serna, J.; González-Badillo, J.J. Effect of velocity loss during squat training on neuromuscular performance. Scand. J. Med. Sci. Sport. 2021, 31, 1621–1635. [Google Scholar] [CrossRef]
- Rodríguez-Rosell, D.; Yáñez-García, J.M.; Mora-Custodio, R.; Pareja-Blanco, F.; Ravelo-García, A.G.; Ribas-Serna, J.; González-Badillo, J.J. Velocity-based resistance training: Impact of velocity loss in the set on neuromuscular performance and hormonal response. Appl. Physiol. Nutr. Metab. 2020, 45, 817–828. [Google Scholar] [CrossRef]
- Rodiles-Guerrero, L.; Pareja-Blanco, F.; León-Prados, J.A. Effect of velocity loss on strength performance in bench press using a weight stack machine. Int. J. Sport. Med. 2020, 41, 921–928. [Google Scholar] [CrossRef]
- Rodiles-Guerrero, L.; Cornejo-Daza, P.J.; Sánchez-Valdepeñas, J.; Alcazar, J.; Rodriguez-López, C.; Sánchez-Moreno, M.; Alegre, L.M.; León-Prados, J.A.; Pareja-Blanco, F. Specific Adaptations to 0%, 15%, 25%, and 50% Velocity-Loss Thresholds during Bench Press Training. Int. J. Sport. Physiol. Perform. 2022, 17, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Pareja-Blanco, F.; Sánchez-Medina, L.; Suárez-Arrones, L.; González-Badillo, J.J. Effects of velocity loss during resistance training on performance in professional soccer players. Int. J. Sport. Physiol. Perform. 2017, 12, 512–519. [Google Scholar] [CrossRef] [PubMed]
- Pareja-Blanco, F.; Rodríguez-Rosell, D.; Sánchez-Medina, L.; Sanchis-Moysi, J.; Dorado, C.; Mora-Custodio, R.; Yáñez-García, J.M.; Morales-Alamo, D.; Pérez-Suárez, I.; Calbet, J. Effects of velocity loss during resistance training on athletic performance, strength gains and muscle adaptations. Scand. J. Med. Sci. Sport. 2017, 27, 724–735. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Włodarczyk, M.; Adamus, P.; Zieliński, J.; Kantanista, A. Effects of Velocity-Based Training on Strength and Power in Elite Athletes—A Systematic Review. Int. J. Environ. Res. Public Health 2021, 18, 5257. [Google Scholar] [CrossRef] [PubMed]
- Hernández-Belmonte, A.; Pallarés, J.G. Effects of Velocity Loss Threshold during Resistance Training on Strength and Athletic Adaptations: A Systematic Review with Meta-Analysis. Appl. Sci. 2022, 12, 4425. [Google Scholar] [CrossRef]
- Fry, A.C. The role of resistance exercise intensity on muscle fibre adaptations. Sport. Med. 2004, 34, 663–679. [Google Scholar] [CrossRef]
- Rahmati, M.; McCarthy, J.J.; Malakoutinia, F. Myonuclear permanence in skeletal muscle memory: A systematic review and meta-analysis of human and animal studies. J. Cachexia Sarcopenia Muscle 2022, 13, 2276–2297. [Google Scholar] [CrossRef] [PubMed]
- Schoenfeld, B.J.; Ogborn, D.; Krieger, J.W. Dose-response relationship between weekly resistance training volume and increases in muscle mass: A systematic review and meta-analysis. J. Sport. Sci. 2017, 35, 1073–1082. [Google Scholar] [CrossRef]
- Hrysomallis, C.; Buttifant, D. Influence of training years on upper-body strength and power changes during the competitive season for professional Australian rules football players. J. Sci. Med. Sport 2012, 15, 374–378. [Google Scholar] [CrossRef]
- Toby, B.; Glidewell, E.; Morris, B.; Key, V.H.; Nelson, J.D.; Schroeppel, J.P.; Mar, D.; Melugin, H.; Bradshaw, S.; McIff, T. Strength of dynamic stabilizers of the elbow in professional baseball pitchers decreases during baseball season. Orthop. J. Sport. Med. 2015, 3, 2325967115S2325900163. [Google Scholar] [CrossRef] [Green Version]
- Rønnestad, B.R.; Nymark, B.S.; Raastad, T. Effects of in-season strength maintenance training frequency in professional soccer players. J. Strength Cond. Res. 2011, 25, 2653–2660. [Google Scholar] [CrossRef]
- Gorostiaga, E.M.; Granados, C.; Ibañez, J.; Gonzalez-Badillo, J.J.; Izquierdo, M. Effects of an entire season on physical fitness changes in elite male handball players. Med. Sci. Sport. Exerc. 2006, 38, 357. [Google Scholar] [CrossRef] [Green Version]
- Lesinski, M.; Prieske, O.; Granacher, U. Effects and dose–response relationships of resistance training on physical performance in youth athletes: A systematic review and meta-analysis. Br. J. Sport. Med. 2016, 50, 781–795. [Google Scholar] [CrossRef] [Green Version]
- Hickmott, L.M.; Chilibeck, P.D.; Shaw, K.A.; Butcher, S.J. The effect of load and volume autoregulation on muscular strength and hypertrophy: A systematic review and meta-analysis. Sport. Med. Open 2022, 8, 9. [Google Scholar] [CrossRef]
Steps | Searching Command | Field |
---|---|---|
#1 | Velocity–based training OR VBT OR velocity–based resistance training OR VBRT OR velocity loss OR VL | Title or abstract |
#2 | Maximum strength OR one–repetition maximum OR 1RM OR strength performance | Title or abstract |
#3 | #1 AND #2 |
Authors | Velocity Loss (Sample) | Gender | Age (Years) | Experience (Years) | Intervention (Weeks) | Training Design | Total (Repetitions) | Outcome |
---|---|---|---|---|---|---|---|---|
Galiano, et al. [38] | VL5 (n = 15) VL20 (n = 13) | Male | 23.0 ± 3.2 | At least 1.5 years | 7 weeks | Event: squats Intensity: 50% 1RM Set: 3 sets Recover time: 3 min Frequency: twice a week | VL5 (156.9) VL20 (480.5) | 1RM |
Rodríguez-Rosell, et al. [39] | VL10 (n = 11) VL30 (n = 11) VL45 (n = 11) | Male | 22.8 ± 3.9 | At least 1 year | 8 weeks | Event: squats Intensity: 55–70% 1RM Set: 3 sets Recover time: 4 min Frequency: twice a week | VL10 (180.8) VL30 (347.9) VL45 (501.1) | 1RM |
Rodríguez-Rosell, et al. [40] | VL10 (n = 12) VL30 (n = 13) | Male | ≈22.49 | At least 1 year | 8 weeks | Event: squats Intensity: 70–85% 1RM Set: 3 sets Recover time: 4 min Frequency: twice a week | VL10 (109.6) VL30 (228.0) | 1RM |
Rodiles-Guerrero, et al. [41] | VL10 (n = 15) VL30 (n = 15) VL50 (n = 15) | Male | 23.0 ± 2.0 | At least 1 year | 5 weeks | Event: bench presses Intensity: 65–85% 1RM Set: 4 sets Recover time: 3 min Frequency: three times a week | VL10 (211.1) VL30 (398.1) VL50 (444.4) | 1RM |
Rodiles-Guerrero, et al. [42] | VL0 (n = 12) VL15 (n = 13) VL25 (n = 13) VL50 (n = 12) | Male | 23.3 ± 3.3 | At least 1.5 years | 8 weeks | Event: bench presses Intensity: 55–70% 1RM Set: 3 sets Recover time: 4 min Frequency: twice a week | VL0 (48) VL15 (189.4) VL25 (310.2) VL50 (490.9) | 1RM |
Pareja-Blanco, et al. [43] | VL15 (n = 8) VL30 (n = 8) | Male | 23.8 ± 3.4 | Professional soccer club | 6 weeks | Event: squats Intensity: 50–70% 1RM Set: 2–3 sets Recover time: 4 min Frequency: three times a week | VL15 (251.2) VL30 (414.6) | 1RM |
Pareja-Blanco, et al. [44] | VL20 (n = 12) VL40 (n = 10) | Male | 22.7 ± 1.9 | At least 1.5 years | 8 weeks | Event: squats Intensity: 69–85% 1RM Set: 3 sets Recover time: 4 min Frequency: twice a week | VL20 (185.9) VL40 (310.5) | 1RM |
Pareja-Blanco, et al. [18] | VL0 (n = 14) VL10 (n = 14) VL20 (n = 13) VL40 (n = 14) | Male | 24.1 ± 4.3 | At least 1.5 years | 8 weeks | Event: squats Intensity: 70–85% 1RM Set: 3 sets Recover time: 4 min Frequency: twice a week | VL0 (48.0) VL10 (143.6) VL20 (168.5) VL40 (305.6) | 1RM |
Pareja-Blanco, et al. [17] | VL0 (n = 15) VL15 (n = 16) VL25 (n = 15) VL50 (n = 16) | Male | 24.1 ± 4.3 | At least 1.5 years | 8 weeks | Event: bench presses Intensity: 70–85% 1RM Set: 3 sets Recover time: 4 min Frequency: twice a week | VL0 (48.0) VL15 (136.6) VL25 (191.1) VL50 (316.4) | 1RM |
Studies | PEDro Item | Assessment | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | ||
Galiano, et al. [38] | Yes | 1 | – | 1 | – | – | – | 1 | 1 | 1 | 1 | good |
Rodríguez-Rosell, et al. [39] | Yes | 1 | – | 1 | – | – | – | 1 | 1 | 1 | 1 | good |
Rodríguez-Rosell, et al. [40] | Yes | 1 | – | 1 | – | – | – | 1 | 1 | 1 | 1 | good |
Rodiles-Guerrero, et al. [41] | Yes | 1 | – | – | – | – | 1 | 1 | 1 | 1 | fair | |
Rodiles-Guerrero, et al. [42] | Yes | 1 | – | 1 | – | – | – | 1 | 1 | 1 | 1 | good |
Pareja-Blanco, et al. [43] | Yes | 1 | – | 1 | – | – | – | 1 | 1 | 1 | fair | |
Pareja-Blanco, et al. [44] | Yes | 1 | – | 1 | – | – | – | 1 | 1 | 1 | 1 | good |
Pareja-Blanco, et al. [18] | Yes | 1 | – | 1 | – | – | – | 1 | 1 | 1 | 1 | good |
Pareja-Blanco, et al. [17] | Yes | 1 | – | 1 | – | – | – | 1 | 1 | 1 | 1 | good |
Velocity | ES | 95%CI |
---|---|---|
VL0 | 7.82 | 3.84 to 11.80 |
VL5 | 9.34 | 5.88 to 12.79 |
VL10 | 10.86 | 7.68 to 14.03 |
VL15 | 12.30 | 9.12 to 15.49 |
VL20 | 13.32 | 10.00 to 16.64 |
VL25 | 13.59 | 10.28 to 16.89 |
VL30 | 13.21 | 10.12 to 16.30 |
VL40 | 11.38 | 8.95 to 13.82 |
VL45 | 10.33 | 8.07 to 12.58 |
VL50 | 9.27 | 7.02 to 11.53 |
Wald test | ||
Dose–response relationship | p < 0.05 | |
Non–linear relationship | p < 0.01 |
Velocity | ES | 95%CI |
---|---|---|
VL0 | 0.11 | 0.05 to 0.18 |
VL5 | 0.10 | 0.05 to 0.14 |
VL10 | 0.08 | 0.04 to 0.11 |
VL15 | 0.06 | 0.03 to 0.09 |
VL20 | 0.05 | 0.02 to 0.07 |
VL25 | 0.04 | 0.01 to 0.06 |
VL30 | 0.03 | 0.01 to 0.05 |
VL40 | 0.03 | 0.01 to 0.04 |
VL45 | 0.02 | 0.02 to 0.03 |
VL50 | 0.02 | 0.01 to 0.03 |
Wald test | ||
Dose–response relationship | p < 0.05 | |
Non–linear relationship | p = 0.23 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, X.; Feng, S.; Li, H. The Effect of Velocity Loss on Strength Development and Related Training Efficiency: A Dose–Response Meta–Analysis. Healthcare 2023, 11, 337. https://doi.org/10.3390/healthcare11030337
Zhang X, Feng S, Li H. The Effect of Velocity Loss on Strength Development and Related Training Efficiency: A Dose–Response Meta–Analysis. Healthcare. 2023; 11(3):337. https://doi.org/10.3390/healthcare11030337
Chicago/Turabian StyleZhang, Xing, Siyuan Feng, and Hansen Li. 2023. "The Effect of Velocity Loss on Strength Development and Related Training Efficiency: A Dose–Response Meta–Analysis" Healthcare 11, no. 3: 337. https://doi.org/10.3390/healthcare11030337
APA StyleZhang, X., Feng, S., & Li, H. (2023). The Effect of Velocity Loss on Strength Development and Related Training Efficiency: A Dose–Response Meta–Analysis. Healthcare, 11(3), 337. https://doi.org/10.3390/healthcare11030337