Cancer-Associated Thrombosis: A New Light on an Old Story
Abstract
:1. Introduction
2. Mechanisms of CAT
2.1. Coagulation Factors
2.2. Tissue Factor
2.3. Microvesicles
2.4. Cancer Procoagulant
2.5. Neutrophil Extracellular Traps
3. Risk Factors
3.1. Patient Characteristics
3.2. Tumour-Related Factors
3.3. Cancer Treatment
3.4. Hormonal and Molecular Risk Factors
3.5. Biochemical Markers
4. Primary Prophylaxis of CAT
4.1. Scoring Systems
4.2. Low-Molecular-Weight Heparin
4.3. Direct Oral Anticoagulants
4.4. Thromboprophylaxis in Surgical Patients
5. Current Management of CAT
6. Comparison of Current Clinical Guidelines
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Varki, A. Trousseau’s syndrome: Multiple definitions and multiple mechanisms. Blood 2007, 110, 1723–1729. [Google Scholar] [CrossRef] [PubMed]
- Mukai, M.; Oka, T. Mechanism and management of cancer-associated thrombosis. J. Cardiol. 2018, 72, 89–93. [Google Scholar] [CrossRef] [Green Version]
- Hamza, M.S.; Mousa, S.A. Cancer-Associated Thrombosis: Risk Factors, Molecular Mechanisms, Future Management. Clin. Appl. Thromb. Hemost. 2020, 26, 1076029620954282. [Google Scholar] [CrossRef] [PubMed]
- Abdol Razak, N.B.; Jones, G.; Bhandari, M.; Berndt, M.C.; Metharom, P. Cancer-Associated Thrombosis: An Overview of Mechanisms, Risk Factors, and Treatment. Cancers 2018, 10, 380. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, A.Y. Management of thrombosis in cancer: Primary prevention and secondary prophylaxis. Br. J. Haematol. 2005, 128, 291–302. [Google Scholar] [CrossRef]
- Fernandes, C.J.; Morinaga, L.T.K.; Alves, J.L., Jr.; Castro, M.A.; Calderaro, D.; Jardim, C.V.P.; Souza, R. Cancer-associated thrombosis: The when, how and why. Eur. Respir. Rev. 2019, 28, 180119. [Google Scholar] [CrossRef] [Green Version]
- Khorana, A.A. Cancer and thrombosis: Implications of published guidelines for clinical practice. Ann. Oncol. 2009, 20, 1619–1630. [Google Scholar] [CrossRef] [PubMed]
- Khorana, A.A.; Francis, C.W.; Culakova, E.; Kuderer, N.M.; Lyman, G.H. Thromboembolism is a leading cause of death in cancer patients receiving outpatient chemotherapy. J. Thromb. Haemost. 2007, 5, 632–634. [Google Scholar] [CrossRef]
- Donati, M.B. Cancer and thrombosis. Haemostasis 1994, 24, 128–131. [Google Scholar] [CrossRef]
- Wun, T.; White, R.H. Venous Thromboembolism (VTE) in Patients with Cancer: Epidemiology and Risk Factors. Cancer Investig. 2009, 27, 63–74. [Google Scholar] [CrossRef]
- Elyamany, G.; Alzahrani, A.M.; Bukhary, E. Cancer-Associated Thrombosis: An Overview. Clin. Med. Insights Oncol. 2014, 8, 129–137. [Google Scholar] [CrossRef] [Green Version]
- Prandoni, P.; Lensing, A.W.; Piccioli, A.; Bernardi, E.; Simioni, P.; Girolami, B.; Marchiori, A.; Sabbion, P.; Prins, M.H.; Noventa, F.; et al. Recurrent venous thromboembolism and bleeding complications during anticoagulant treatment in patients with cancer and venous thrombosis. Blood 2002, 100, 3484–3488. [Google Scholar] [CrossRef] [Green Version]
- Elting, L.S.; Escalante, C.P.; Cooksley, C.; Avritscher, E.B.; Kurtin, D.; Hamblin, L.; Khosla, S.G.; Rivera, E. Outcomes and cost of deep venous thrombosis among patients with cancer. Arch. Intern. Med. 2004, 164, 1653–1661. [Google Scholar] [CrossRef] [Green Version]
- Xu, X.R.; Zhang, D.; Oswald, B.E.; Carrim, N.; Wang, X.; Hou, Y.; Zhang, Q.; Lavalle, C.; McKeown, T.; Marshall, A.H.; et al. Platelets are versatile cells: New discoveries in hemostasis, thrombosis, immune responses, tumor metastasis and beyond. Crit. Rev. Clin. Lab. Sci. 2016, 53, 409–430. [Google Scholar] [CrossRef] [PubMed]
- De Candia, E. Mechanisms of platelet activation by thrombin: A short history. Thromb. Res. 2012, 129, 250–256. [Google Scholar] [CrossRef] [PubMed]
- Menter, D.G.; Tucker, S.C.; Kopetz, S.; Sood, A.K.; Crissman, J.D.; Honn, K.V. Platelets and cancer: A casual or causal relationship: Revisited. Cancer Metastasis Rev. 2014, 33, 231–269. [Google Scholar] [CrossRef] [Green Version]
- Mege, D.; Panicot–Dubois, L.; Dubois, C. Mechanisms of cancer-associated thrombosis. HemaSphere 2019, 3, 19–21. [Google Scholar] [CrossRef]
- Taubman, M.B. Tissue factor in cancer angiogenesis and coagulopathy. In Cancer-Associated Thrombosis: New Findings in Translational Science, Prevention, and Treatment; Khorana, A.A., Francis, C.W., Eds.; Informa Healthcare: New York, NY, USA, 2007; pp. 35–49. [Google Scholar]
- Peshkova, A.D.; Le Minh, G.; Tutwiler, V.; Andrianova, I.A.; Weisel, J.W.; Litvinov, R.I. Activated Monocytes Enhance Platelet-Driven Contraction of Blood Clots via Tissue Factor Expression. Sci. Rep. 2017, 7, 5149. [Google Scholar] [CrossRef] [Green Version]
- Thomas, G.M.; Panicot-Dubois, L.; Lacroix, R.; Dignat-George, F.; Lombardo, D.; Dubois, C. Cancer cell-derived microparticles bearing p-selectin glycoprotein ligand 1 accelerate thrombus formation in vivo. J. Exp. Med. 2009, 206, 1913–1927. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zwicker, J.I.; Liebman, H.A.; Neuberg, D.; Lacroix, R.; Bauer, K.A.; Furie, B.C.; Furie, B. Tumor-Derived Tissue Factor–Bearing Microparticles Are Associated With Venous Thromboembolic Events in Malignancy. Clin. Cancer Res. 2009, 15, 6830–6840. [Google Scholar] [CrossRef] [Green Version]
- Hillen, H.F. Thrombosis in cancer patients. Ann. Oncol. 2000, 11, 273–276. [Google Scholar] [CrossRef] [PubMed]
- Falanga, A.; Consonni, R.; Marchetti, M.; Locatelli, G.; Garattini, E.; Passerini, C.G.; Gordon, S.G.; Barbui, T. Cancer procoagulant and tissue factor are differently modulated by all-trans-retinoic acid in acute promyelocytic leukemia cells. Blood 1998, 92, 143–151. [Google Scholar] [CrossRef] [PubMed]
- Falanga, A.; Panova-Noeva, M.; Russo, L. Procoagulant mechanisms in tumour cells. Best Pract. Res. Clin. Haematol. 2009, 22, 49–60. [Google Scholar] [CrossRef]
- Dosquet, C.; Weill, D.; Wautier, J.L. Cytokines and thrombosis. J. Cardiovasc. Pharmacol. 1995, 25, S13–S19. [Google Scholar] [CrossRef] [PubMed]
- Puhlmann, M.; Weinreich, D.M.; Farma, J.M.; Carroll, N.M.; Turner, E.M.; Alexander, H.R., Jr. Interleukin-1beta induced vascular permeability is dependent on induction of endothelial tissue factor (TF) activity. J. Transl. Med. 2005, 3, 37. [Google Scholar] [CrossRef] [Green Version]
- Zucchella, M.; Pacchiarini, L.; Meloni, F.; Ballabio, P.; Saporiti, A.; Brocchieri, A.; Grignani, G. Effect of interferon alpha, interferon gamma and tumor necrosis factor on the procoagulant activity of human cancer cells. Haematologica 1993, 78, 282–286. [Google Scholar]
- Grignani, G.; Maiolo, A. Cytokines and hemostasis. Haematologica 2000, 85, 967–972. [Google Scholar]
- Esmon, C.T. The protein C pathway. Chest 2003, 124, 26S–32S. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Walker, F.J.; Fay, P.J. Regulation of blood coagulation by the protein C system. FASEB J. 1992, 6, 2561–2567. [Google Scholar] [CrossRef]
- Thålin, C.; Hisada, Y.; Lundström, S.; Mackman, N.; Wallén, H. Neutrophil Extracellular Traps. Arterioscler. Thromb. Vasc. Biol. 2019, 39, 1724–1738. [Google Scholar] [CrossRef]
- Von Brühl, M.L.; Stark, K.; Steinhart, A.; Chandraratne, S.; Konrad, I.; Lorenz, M.; Khandoga, A.; Tirniceriu, A.; Coletti, R.; Köllnberger, M.; et al. Monocytes, neutrophils, and platelets cooperate to initiate and propagate venous thrombosis in mice in vivo. J. Exp. Med. 2012, 209, 819–835. [Google Scholar] [CrossRef]
- Lam, F.W.; Cruz, M.A.; Parikh, K.; Rumbaut, R.E. Histones stimulate von Willebrand factor release in vitro and in vivo. Haematologica 2016, 101, e277–e279. [Google Scholar] [CrossRef] [Green Version]
- McDonald, B.; Davis, R.P.; Kim, S.J.; Tse, M.; Esmon, C.T.; Kolaczkowska, E.; Jenne, C.N. Platelets and neutrophil extracellular traps collaborate to promote intravascular coagulation during sepsis in mice. Blood 2017, 129, 1357–1367. [Google Scholar] [CrossRef] [Green Version]
- Demers, M.; Wagner, D.D. Neutrophil extracellular traps. Oncoimmunology 2013, 2, e22946. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mauracher, L.M.; Posch, F.; Martinod, K.; Grilz, E.; Däullary, T.; Hell, L.; Brostjan, C.; Zielinski, C.; Ay, C.; Wagner, D.D.; et al. Citrullinated histone H3, a biomarker of neutrophil extracellular trap formation, predicts the risk of venous thromboembolism in cancer patients. J. Thromb. Haemost. 2018, 16, 508–518. [Google Scholar] [CrossRef] [PubMed]
- Khorana, A.A.; Francis, C.W.; Culakova, E.; Fisher, R.I.; Kuderer, N.M.; Lyman, G.H. Thromboembolism in Hospitalized Neutropenic Cancer Patients. J. Clin. Oncol. 2006, 24, 484–490. [Google Scholar] [CrossRef] [PubMed]
- Khorana, A.A.; Francis, C.W.; Culakova, E.; Kuderer, N.M.; Lyman, G.H. Frequency, risk factors, and trends for venous thromboembolism among hospitalized cancer patients. Cancer 2007, 110, 2339–2346. [Google Scholar] [CrossRef]
- Addo-Tabiri, N.O.; Chudasama, R.; Vasudeva, R.; Leiva, O.; Garcia, B.; Ravid, J.D.; Bunze, T.; Rosen, L.; Belghasem, M.; Francis, J.; et al. Black Patients Experience Highest Rates of Cancer-associated Venous Thromboembolism. Am. J. Clin. Oncol. 2020, 43, 94–100. [Google Scholar] [CrossRef] [PubMed]
- Buckner, T.W.; Key, N.S. Venous thrombosis in blacks. Circulation 2012, 125, 837–839. [Google Scholar] [CrossRef] [Green Version]
- Connolly, G.C.; Francis, C.W. Cancer-associated thrombosis. Hematol. Am. Soc. Hematol. Educ. Program. 2013, 2013, 684–691. [Google Scholar] [CrossRef] [Green Version]
- Khorana, A.A.; Connolly, G.C. Assessing Risk of Venous Thromboembolism in the Patient with Cancer. J. Clin. Oncol. 2009, 27, 4839–4847. [Google Scholar] [CrossRef]
- Chew, H.K.; Wun, T.; Harvey, D.; Zhou, H.; White, R.H. Incidence of Venous Thromboembolism and Its Effect on Survival Among Patients With Common Cancers. Arch. Intern. Med. 2006, 166, 458–464. [Google Scholar] [CrossRef] [PubMed]
- Noble, S. The challenges of managing cancer related venous thromboembolism in the palliative care setting. Postgrad. Med. J. 2007, 83, 671–674. [Google Scholar] [CrossRef] [PubMed]
- Blom, J.W.; Doggen, C.J.; Osanto, S.; Rosendaal, F.R. Malignancies, Prothrombotic Mutations, and the Risk of Venous Thrombosis. JAMA 2005, 293, 715–722. [Google Scholar] [CrossRef]
- Otani, K.; Ishihara, S.; Hata, K.; Murono, K.; Sasaki, K.; Yasuda, K.; Nishikawa, T.; Tanaka, T.; Kiyomatsu, T.; Kawai, K.; et al. Colorectal cancer with venous tumor thrombosis. Asian J. Surg. 2018, 41, 197–202. [Google Scholar] [CrossRef] [Green Version]
- Nakase, H.; Kawanami, C.; Itoh, T.; Okazaki, K.; Chiba, T.; Itani, T.; Mimura, J.; Kawasaki, T.; Komori, H. Diffuse colon cancer with tumor thrombus in the portal vein. Gastrointest. Endosc. 2002, 55, 239–240. [Google Scholar] [CrossRef] [PubMed]
- Chew, H.K.; Davies, A.M.; Wun, T.; Harvey, D.; Zhou, H.; White, R.H. The incidence of venous thromboembolism among patients with primary lung cancer. J. Thromb. Haemost. 2008, 6, 601–608. [Google Scholar] [CrossRef]
- Cohen, A.; Lim, C.S.; Davies, A.H. Venous Thromboembolism in Gynecological Malignancy. Int. J. Gynecol. Cancer 2017, 27, 1970–1978. [Google Scholar] [CrossRef]
- Ma, Z.; Zhang, T.; Wang, R.; Cheng, Z.; Xu, H.; Li, W.; Wang, Y.; Wang, X. Tissue factor-factor VIIa complex induces epithelial ovarian cancer cell invasion and metastasis through a monocytes-dependent mechanism. Int. J. Gynecol. Cancer 2011, 21, 616–624. [Google Scholar] [CrossRef]
- Al-Asadi, O.; Almusarhed, M.; Eldeeb, H. Predictive risk factors of venous thromboembolism (VTE) associated with peripherally inserted central catheters (PICC) in ambulant solid cancer patients: Retrospective single Centre cohort study. Thromb. J. 2019, 17, 2. [Google Scholar] [CrossRef] [Green Version]
- Agnelli, G.; Bolis, G.; Capussotti, L.; Scarpa, R.M.; Tonelli, F.; Bonizzoni, E.; Moia, M.; Parazzini, F.; Rossi, R.; Sonaglia, F.; et al. A clinical outcome-based prospective study on venous thromboembolism after cancer surgery: The @RISTOS project. Ann. Surg. 2006, 243, 89–95. [Google Scholar] [CrossRef]
- Blom, J.W.; Vanderschoot, J.P.; Oostindiër, M.J.; Osanto, S.; van der Meer, F.J.; Rosendaal, F.R. Incidence of venous thrombosis in a large cohort of 66 329 cancer patients: Results of a record linkage study. J. Thromb. Haemost. 2006, 4, 529–535. [Google Scholar] [CrossRef]
- Cohen, A.T.; Tapson, V.F.; Bergmann, J.F.; Goldhaber, S.Z.; Kakkar, A.K.; Deslandes, B.; Huang, W.; Zayaruzny, M.; Emery, L.; Anderson, F.A., Jr.; et al. Venous thromboembolism risk and prophylaxis in the acute hospital care setting (ENDORSE study): A multinational cross-sectional study. Lancet 2008, 371, 387–394. [Google Scholar] [CrossRef]
- Piovella, F.; Wang, C.J.; Lu, H.; Lee, K.; Lee, L.H.; Lee, W.C.; Turpie, A.G.; Gallus, A.S.; Planès, A.; Passera, R.; et al. Deep-vein thrombosis rates after major orthopedic surgery in Asia. An epidemiological study based on postoperative screening with centrally adjudicated bilateral venography. J. Thromb. Haemost. 2005, 3, 2664–2670. [Google Scholar] [CrossRef]
- Heit, J.A.; Silverstein, M.D.; Mohr, D.N.; Petterson, T.M.; O’Fallon, W.M.; Melton, L.J., 3rd. Risk Factors for Deep Vein Thrombosis and Pulmonary Embolism. Arch. Intern. Med. 2000, 160, 809–815. [Google Scholar] [CrossRef] [Green Version]
- Lyman, G.H.; Khorana, A.A.; Falanga, A.; Clarke-Pearson, D.; Flowers, C.; Jahanzeb, M.; Kakkar, A.; Kuderer, N.M.; Levine, M.N.; Liebman, H.; et al. American Society of Clinical Oncology Guideline: Recommendations for Venous Thromboembolism Prophylaxis and Treatment in Patients With Cancer. J. Clin. Oncol. 2007, 25, 5490–5505. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cool, R.M.; Herrington, J.D.; Wong, L. Recurrent Peripheral Arterial Thrombosis Induced by Cisplatin and Etoposide. Pharmacotherapy 2002, 22, 1200–1204. [Google Scholar] [CrossRef]
- Cunningham, D.; Starling, N.; Rao, S.; Iveson, T.; Nicolson, M.; Coxon, F.; Middleton, G.; Daniel, F.; Oates, J.; Norman, A.R.; et al. Capecitabine and Oxaliplatin for Advanced Esophagogastric Cancer. N. Engl. J. Med. 2008, 358, 36–46. [Google Scholar] [CrossRef] [Green Version]
- Abdel-Razeq, H.; Mansour, A.; Abdulelah, H.; Al-Shwayat, A.; Makoseh, M.; Ibrahim, M.; Abunasser, M.; Rimawi, D.; Al-Rabaiah, A.; Alfar, R.; et al. Thromboembolic events in cancer patients on active treatment with cisplatin-based chemotherapy: Another look! Thromb. J. 2018, 16, 2. [Google Scholar] [CrossRef] [PubMed]
- Palumbo, A.; Rajkumar, S.V.; Dimopoulos, M.A.; Richardson, P.G.; San Miguel, J.; Barlogie, B.; Harousseau, J.; Zonder, J.A.; Cavo, M.; Zangari, M.; et al. International Myeloma Working Group. Prevention of thalidomide- and lenalidomide-associated thrombosis in myeloma. Leukemia 2008, 22, 414–423. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guy, J.B.; Bertoletti, L.; Magné, N.; Rancoule, C.; Mahé, I.; Font, C.; Sanz, O.; Martín-Antorán, J.M.; Pace, F.; Vela, J.R.; et al. Venous thromboembolism in radiation therapy cancer patients: Findings from the RIETE registry. Crit. Rev. Oncol. Hematol. 2017, 113, 83–89. [Google Scholar] [CrossRef]
- Byrne, M.; Reynolds, J.V.; O’Donnell, J.S.; Keogan, M.; White, B.; Byrne, M.; Murphy, S.; Maher, S.G.; Pidgeon, G.P. Long-term activation of the pro-coagulant response after neoadjuvant chemoradiation and major cancer surgery. Br. J. Cancer 2010, 102, 73–79. [Google Scholar] [CrossRef]
- Boerma, M.; Kruse, J.J.; van Loenen, M.; Klein, H.R.; Bart, C.I.; Zurcher, C.; Wondergem, J. Increased Deposition of von Willebrand Factor in the Rat Heart after Local Ionizing Irradiation. Strahlenther. Onkol. 2004, 180, 109–116. [Google Scholar] [CrossRef] [PubMed]
- Davis, P.J.; Mousa, S.A.; Schechter, G.P.; Lin, H.Y. Platelet ATP, Thyroid Hormone Receptor on Integrin αvβ3 and Cancer Metastasis. Horm. Cancer 2020, 11, 13–16. [Google Scholar] [CrossRef] [PubMed]
- Canonico, M.; Plu-Bureau, G.; Lowe, G.D.; Scarabin, P.Y. Hormone replacement therapy and risk of venous thromboembolism in postmenopausal women: Systematic review and meta-analysis. BMJ 2008, 336, 1227–1231. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Caine, Y.G.; Bauer, K.A.; Barzegar, S.; ten Cate, H.; Sacks, F.M.; Walsh, B.W.; Schiff, I.; Rosenberg, R.D. Coagulation Activation Following Estrogen Administration to Postmenopausal Women. Thromb. Haemost. 1992, 68, 392–395. [Google Scholar] [CrossRef] [PubMed]
- Rott, H. Contraception, venous thrombosis and biological plausability. Minerva Med. 2013, 104, 161–167. [Google Scholar]
- Nealen, M.L.; Vijayan, K.V.; Bolton, E.; Bray, P.F. Human Platelets Contain a Glycosylated Estrogen Receptor. Circ. Res. 2001, 88, 438–442. [Google Scholar] [CrossRef] [Green Version]
- Dupuis, M.; Severin, S.; Noirrit-Esclassan, E.; Arnal, J.F.; Payrastre, B.; Valéra, M.C. Effects of Estrogens on Platelets and Megakaryocytes. Int. J. Mol. Sci. 2019, 20, 3111. [Google Scholar] [CrossRef] [Green Version]
- Levi, M.; Middeldorp, S.; Büller, H.R. Oral contraceptives and hormonal replacement therapy cause an imbalance in coagulation and fibrinolysis which may explain the increased risk of venous thromboembolism. Cardiovasc. Res. 1999, 41, 21–24. [Google Scholar]
- Rak, J.; Yu, J.L.; Luyendyk, J.; Mackman, N. Oncogenes, Trousseau Syndrome, and Cancer-Related Changes in the Coagulome of Mice and Humans. Cancer Res. 2006, 66, 10643–10646. [Google Scholar] [CrossRef] [Green Version]
- Ades, S.; Kumar, S.; Alam, M.; Goodwin, A.; Weckstein, D.; Dugan, M.; Ashikaga, T.; Evans, M.; Verschraegen, C.; Holmes, C.E. Tumor oncogene (KRAS) status and risk of venous thrombosis in patients with metastatic colorectal cancer. J. Thromb. Haemost. 2015, 13, 998–1003. [Google Scholar] [CrossRef]
- Rak, J.; Klement, G. Impact of Oncogenes and Tumour Suppressor Genes on Deregulation of Haemostasis and Angiogenesis in Cancer. Cancer Metastasis Rev. 2000, 19, 93–96. [Google Scholar] [CrossRef]
- López-Ocejo, O.; Viloria-Petit, A.; Bequet-Romero, M.; Mukhopadhyay, D.; Rak, J.; Kerbel, R.S. Oncogenes and tumor angiogenesis: The HPV-16 E6 oncoprotein activates the vascular endothelial growth factor (VEGF) gene promoter in a p53 independent manner. Oncogene 2000, 19, 4611–4620. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khorana, A.A.; Kuderer, N.M.; Culakova, E.; Lyman, G.H.; Francis, C.W. Development and validation of a predictive model for chemotherapy-associated thrombosis. Blood 2008, 111, 4902–4907. [Google Scholar] [CrossRef] [Green Version]
- Warny, M.; Helby, J.; Birgens, H.S.; Bojesen, S.E.; Nordestgaard, B.G. Arterial and venous thrombosis by high platelet count and high hematocrit: 108 521 individuals from the Copenhagen General Population Study. J. Thromb. Haemost. 2019, 17, 1898–1911. [Google Scholar] [CrossRef] [PubMed]
- Wahrenbrock, M.; Borsig, L.; Le, D.; Varki, N.; Varki, A. Selectin-mucin interactions as a probable molecular explanation for the association of Trousseau syndrome with mucinous adenocarcinomas. J. Clin. Investig. 2003, 112, 853–862. [Google Scholar] [CrossRef]
- Lee, E.C.; Cameron, S.J. Cancer and Thrombotic Risk: The Platelet Paradigm. Front. Cardiovasc. Med. 2017, 4, 67. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stender, M.T.; Frøkjaer, J.B.; Larsen, T.B.; Lundbye-Christensen, S.; Thorlacius-Ussing, O. Preoperative Plasma D-Dimer Is a Predictor of Postoperative Deep Venous Thrombosis in Colorectal Cancer Patients. Dis. Colon. Rectum. 2009, 52, 446–451. [Google Scholar] [CrossRef]
- Ay, C.; Vormittag, R.; Dunkler, D.; Simanek, R.; Chiriac, A.L.; Drach, J.; Quehenberger, P.; Wagner, O.; Zielinski, C.; Pabinger, I. D-Dimer and Prothrombin Fragment 1 + 2 Predict Venous Thromboembolism in Patients With Cancer: Results From the Vienna Cancer and Thrombosis Study. J. Clin. Oncol. 2009, 27, 4124–4129. [Google Scholar] [CrossRef]
- Mackman, N. Role of Tissue Factor in Hemostasis, Thrombosis, and Vascular Development. Arterioscler. Thromb. Vasc. Biol. 2004, 24, 1015–1022. [Google Scholar] [CrossRef] [PubMed]
- Meikle, C.K.; Kelly, C.A.; Garg, P.; Wuescher, L.M.; Ali, R.A.; Worth, R.G. Cancer and Thrombosis: The Platelet Perspective. Front. Cell. Dev. Biol. 2017, 4, 147. [Google Scholar] [CrossRef] [Green Version]
- Khorana, A.A.; Ahrendt, S.A.; Ryan, C.K.; Francis, C.W.; Hruban, R.H.; Hu, Y.C.; Hostetter, G.; Harvey, J.; Taubman, M.B. Tissue Factor Expression, Angiogenesis, and Thrombosis in Pancreatic Cancer. Clin. Cancer Res. 2007, 13, 2870–2875. [Google Scholar] [CrossRef] [Green Version]
- Van Es, N.; Di Nisio, M.; Cesarman, G.; Kleinjan, A.; Otten, H.M.; Mahé, I.; Wilts, I.T.; Twint, D.C.; Porreca, E.; Arrieta, O.; et al. Comparison of risk prediction scores for venous thromboembolism in cancer patients: A prospective cohort study. Haematologica 2017, 102, 1494–1501. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Verso, M.; Agnelli, G.; Barni, S.; Gasparini, G.; LaBianca, R. A modified Khorana risk assessment score for venous thromboembolism in cancer patients receiving chemotherapy: The Protecht score. Intern. Emerg. Med. 2012, 7, 291–292. [Google Scholar] [CrossRef]
- Alexander, M.; Burbury, K. A systematic review of biomarkers for the prediction of thromboembolism in lung cancer — Results, practical issues and proposed strategies for future risk prediction models. Thromb. Res. 2016, 148, 63–69. [Google Scholar] [CrossRef]
- Van Es, N.; Franke, V.F.; Middeldorp, S.; Wilmink, J.W.; Büller, H.R. The Khorana score for the prediction of venous thromboembolism in patients with pancreatic cancer. Thromb. Res. 2017, 150, 30–32. [Google Scholar] [CrossRef] [PubMed]
- Riondino, S.; Ferroni, P.; Zanzotto, F.M.; Roselli, M.; Guadagni, F. Predicting VTE in Cancer Patients: Candidate Biomarkers and Risk Assessment Models. Cancers 2019, 11, 95. [Google Scholar] [CrossRef] [Green Version]
- Ay, C.; Dunkler, D.; Marosi, C.; Chiriac, A.L.; Vormittag, R.; Simanek, R.; Quehenberger, P.; Zielinski, C.; Pabinger, I. Prediction of venous thromboembolism in cancer patients. Blood 2010, 116, 5377–5382. [Google Scholar] [CrossRef]
- Agnelli, G.; Gussoni, G.; Bianchini, C.; Verso, M.; Mandalà, M.; Cavanna, L.; Barni, S.; Labianca, R.; Buzzi, F.; Scambia, G.; et al. Nadroparin for the prevention of thromboembolic events in ambulatory patients with metastatic or locally advanced solid cancer receiving chemotherapy: A randomised, placebo-controlled, double-blind study. Lancet Oncol. 2009, 10, 943–949. [Google Scholar] [CrossRef]
- Papakotoulas, P.; Tsoukalas, N.; Christopoulou, A.; Ardavanis, A.; Koumakis, G.; Papandreou, C.; Papatsimpas, G.; Papakostas, P.; Samelis, G.; Andreadis, C.; et al. Management of Cancer-associated Thrombosis (CAT): Symptomatic or Incidental. Anticancer Res. 2020, 40, 305–313. [Google Scholar] [CrossRef] [PubMed]
- Agnelli, G.; George, D.J.; Kakkar, A.K.; Fisher, W.; Lassen, M.R.; Mismetti, P.; Mouret, P.; Chaudhari, U.; Lawson, F.; Turpie, A.G.; et al. Semuloparin for Thromboprophylaxis in Patients Receiving Chemotherapy for Cancer. N. Engl. J. Med. 2012, 366, 601–609. [Google Scholar] [CrossRef] [Green Version]
- Di Nisio, M.; Porreca, E.; Ferrante, N.; Otten, H.M.; Cuccurullo, F.; Rutjes, A.W. Primary prophylaxis for venous thromboembolism in ambulatory cancer patients receiving chemotherapy. Cochrane Database Syst. Rev. 2012, 2, CD008500. [Google Scholar]
- Levine, M.N.; Gu, C.; Liebman, H.A.; Escalante, C.P.; Solymoss, S.; Deitchman, D.; Ramirez, L.; Julian, J. A randomised phase II trial of apixaban for the prevention of thromboembolism in patients with metastatic cancer. J. Thromb. Haemost. 2012, 10, 807–814. [Google Scholar] [CrossRef] [PubMed]
- Carrier, M.; Abou-Nassar, K.; Mallick, R.; Tagalakis, V.; Shivakumar, S.; Schattner, A.; Kuruvilla, P.; Hill, D.; Spadafora, S.; Marquis, K.; et al. Apixaban to Prevent Venous Thromboembolism in Patients with Cancer. N. Engl. J. Med. 2019, 380, 711–719. [Google Scholar] [CrossRef]
- ENOXACAN Study Group. Efficacy and safety of enoxaparin versus unfractionated heparin for prevention of deep vein thrombosis in elective cancer surgery: A double-blind randomized multicentre trial with venographic assessment. ENOXACAN Study Group. Br. J. Surg. 1997, 84, 1099–1103. [Google Scholar]
- Bergqvist, D.; Agnelli, G.; Cohen, A.T.; Eldor, A.; Nilsson, P.E.; Le Moigne-Amrani, A.; Dietrich-Neto, F.; ENOXACAN II Investigators. Duration of Prophylaxis against Venous Thromboembolism with Enoxaparin after Surgery for Cancer. N. Engl. J. Med. 2002, 346, 975–980. [Google Scholar] [CrossRef] [PubMed]
- Mulloy, B.; Hogwood, J.; Gray, E.; Lever, R.; Page, C.P. Pharmacology of Heparin and Related Drugs. Pharmacol. Rev. 2016, 68, 76–141. [Google Scholar] [CrossRef]
- Meyer, G.; Marjanovic, Z.; Valcke, J.; Lorcerie, B.; Gruel, Y.; Solal-Celigny, P.; Le Maignan, C.; Extra, J.M.; Cottu, P.; Farge, D. Comparison of Low-Molecular-Weight Heparin and Warfarin for the Secondary Prevention of Venous Thromboembolism in Patients With Cancer. Arch. Intern. Med. 2002, 162, 1729–1735. [Google Scholar] [CrossRef] [Green Version]
- Lee, A.Y.; Levine, M.N.; Baker, R.I.; Bowden, C.; Kakkar, A.K.; Prins, M.; Rickles, F.R.; Julian, J.A.; Haley, S.; Kovacs, M.J.; et al. Low-Molecular-Weight Heparin versus a Coumarin for the Prevention of Recurrent Venous Thromboembolism in Patients with Cancer. N. Engl. J. Med. 2003, 349, 146–153. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Piatek, C.; O’Connell, C.L.; Liebman, H.A. Treating venous thromboembolism in patients with cancer. Expert Rev. Hematol. 2012, 5, 201–209. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, A.Y.Y.; Kamphuisen, P.W.; Meyer, G.; Bauersachs, R.; Janas, M.S.; Jarner, M.F.; Khorana, A.A.; CATCH Investigators. Tinzaparin vs. Warfarin for Treatment of Acute Venous Thromboembolism in Patients with Active Cancer. JAMA 2015, 314, 677–686. [Google Scholar] [CrossRef]
- Francis, C.W.; Kessler, C.M.; Goldhaber, S.Z.; Kovacs, M.J.; Monreal, M.; Huisman, M.V.; Bergqvist, D.; Turpie, A.G.; Ortel, T.L.; Spyropoulos, A.C.; et al. Treatment of venous thromboembolism in cancer patients with dalteparin for up to 12 months: The DALTECAN Study. J. Thromb. Haemost. 2015, 13, 1028–1035. [Google Scholar] [CrossRef]
- Raskob, G.E.; van Es, N.; Verhamme, P.; Carrier, M.; Di Nisio, M.; Garcia, D.; Grosso, M.A.; Kakkar, A.K.; Kovacs, M.J.; Mercuri, M.F.; et al. Edoxaban for the Treatment of Cancer-Associated Venous Thromboembolism. N. Engl. J. Med. 2018, 378, 615–624. [Google Scholar] [CrossRef] [PubMed]
- Marshall, A.; Levine, M.; Hill, C.; Hale, D.; Thirlwall, J.; Wilkie, V.; French, K.; Kakkar, A.; Lokare, A.; Maraveyas, A.; et al. Treatment of cancer-associated venous thromboembolism: 12-month outcomes of the placebo versus rivaroxaban randomization of the SELECT-D Trial (SELECT-D: 12m). J. Thromb. Haemost. 2020, 18, 905–915. [Google Scholar] [CrossRef]
- Young, A.M.; Marshall, A.; Thirlwall, J.; Chapman, O.; Lokare, A.; Hill, C.; Hale, D.; Dunn, J.A.; Lyman, G.H.; Hutchinson, C.; et al. Comparison of an Oral Factor Xa Inhibitor with Low Molecular Weight Heparin in Patients With Cancer With Venous Thromboembolism: Results of a Randomized Trial (SELECT-D). J. Clin. Oncol. 2018, 36, 2017–2023. [Google Scholar] [CrossRef] [PubMed]
- Agnelli, G.; Becattini, C.; Meyer, G.; Muñoz, A.; Huisman, M.V.; Connors, J.M.; Cohen, A.; Bauersachs, R.; Brenner, B.; Torbicki, A.; et al. Apixaban for the Treatment of Venous Thromboembolism Associated with Cancer. N. Engl. J. Med. 2020, 382, 1599–1607. [Google Scholar] [CrossRef] [PubMed]
- Lee, A.Y.; Peterson, E.A. Treatment of cancer-associated thrombosis. Blood 2013, 122, 2310–2317. [Google Scholar] [CrossRef]
- Key, N.S.; Khorana, A.A.; Kuderer, N.M.; Bohlke, K.; Lee, A.Y.Y.; Arcelus, J.I.; Wong, S.L.; Balaban, E.P.; Flowers, C.R.; Francis, C.W.; et al. Venous Thromboembolism Prophylaxis and Treatment in Patients With Cancer: ASCO Clinical Practice Guideline Update. J. Clin. Oncol. 2020, 38, 496–520. [Google Scholar] [CrossRef] [PubMed]
- National Comprehensive Cancer Network, 2020. NCCN Guidelines on Cancer-Associated Venous Thromboembolic Disease. Version 1.2020. Available online: https://www.nccn.org/professionals/physician_gls/pdf/vte.pdf (accessed on 9 March 2021).
- Streiff, M.B.; Abutalib, S.A.; Farge, D.; Murphy, M.; Connors, J.M.; Piazza, G. Update on Guidelines for the Management of Cancer-Associated Thrombosis. Oncologist 2021, 26, e24–e40. [Google Scholar] [CrossRef]
- Mandalà, M.; Falanga, A.; Roila, F.; ESMO Guidelines Working Group. Management of venous thromboembolism (VTE) in cancer patients: ESMO Clinical Practice Guidelines. Ann. Oncol. 2011, 22, vi85–vi92. [Google Scholar] [CrossRef] [PubMed]
- Di Nisio, M.; Carrier, M.; Lyman, G.H.; Khorana, A.A.; Subcommittee on Haemostasis and Malignancy. Prevention of venous thromboembolism in hospitalized medical cancer patients: Guidance from the SSC of the ISTH. J. Thromb. Haemost. 2014, 12, 1746–1749. [Google Scholar] [CrossRef] [Green Version]
- Farge, D.; Frere, C.; Connors, J.M.; Ay, C.; Khorana, A.A.; Munoz, A.; Brenner, B.; Kakkar, A.; Rafii, H.; Solymoss, S.; et al. 2019 international clinical practice guidelines for the treatment and prophylaxis of venous thromboembolism in patients with cancer. Lancet Oncol. 2019, 20, e566–e581. [Google Scholar] [CrossRef] [Green Version]
- National Institute for Health and Care Excellence. Venous Thromboembolic Diseases: Diagnosis, Management and Thrombophillia Testing. NICE Guideline [NG158]. 2020. Available online: https://www.nice.org.uk/guidance/ng158/chapter/Recommendations (accessed on 10 March 2021).
- National Institute for Health and Care Excellence. Venous Thromboembolism in over 16s: Reducing the Risk of Hospital-acquired Deep Vein Thrombosis or Pulmonary Embolism. NICE Guideline [NG89]. 2018. Available online: https://www.nice.org.uk/guidance/ng89/chapter/Recommendations (accessed on 10 March 2021).
- Nelson, A.; Melloni, C. Management of Cancer-Associated Thrombosis. Curr. Treat. Options Cardiovasc. Med. 2020, 22, 1–13. [Google Scholar] [CrossRef]
- De Jong, L.A.; van der Velden, A.W.G.; Hulst, M.V.; Postma, M.J. Cost-effectiveness analysis and budget impact of rivaroxaban compared with dalteparin in patients with cancer at risk of recurrent venous thromboembolism. BMJ Open 2020, 10, e039057. [Google Scholar] [CrossRef] [PubMed]
- Li, A.; Carlson, J.J.; Kuderer, N.M.; Schaefer, J.K.; Li, S.; Garcia, D.A.; Khorana, A.A.; Carrier, M.; Lyman, G.H. Cost-effectiveness analysis of low-dose direct oral anticoagulant (DOAC) for the prevention of cancer-associated thrombosis in the United States. Cancer 2020, 126, 1736–1748. [Google Scholar] [CrossRef]
Patient Characteristics | Tumour-Related Factors | Treatment Factors | Hormonal and Molecular Factors | Biomarkers |
---|---|---|---|---|
Increasing age | Site of tumour | Surgery | Thyroid hormones | Platelet count ≥ 350 × 109/L |
Female sex | Tumour staging | Hospitalisation | Oestrogen | Leucocyte count ≥ 11 × 109/L |
Black ethnicity | Tumour histology | Chemotherapy | Oncogenes—K-RAS, p53 | Elevated D-dimer |
Comorbidities-heart failure, renal disease and infection | Radiotherapy | Oncoproteins—HPV E6 | High expression of TF from cancer cells | |
Immobility | Central venous catheters | Elevated CRP | ||
Previous VTE | Soluble p-selectin | |||
BMI ≥ 35 kg/m2 | Prothrombin fragment 1.2 |
Patient Characteristics | Khorana Score | Vienna CATS Score | PROTECHT Score |
---|---|---|---|
Very high-risk cancer (pancreas, stomach) | 2 | 2 | 2 |
High risk cancer (lung, gynaecological, lymphoma, bladder, testicular) | 1 | 1 | 1 |
Haemoglobin level < 10 g/dL or use of red cell growth factors | 1 | 1 | 1 |
Pre-chemotherapy platelet count ≥ 350 × 109/L | 1 | 1 | 1 |
Pre-chemotherapy leucocyte count ≥ 11 × 109/L | 1 | 1 | 1 |
BMI ≥ 35 kg/m2 | 1 | 1 | 1 |
D-dimer > 1.44 mg/L | - | 1 | - |
Soluble p-selectin > 53.1 ng/L | - | 1 | - |
Gemcitabine chemotherapy | - | - | 1 |
Platinum-based chemotherapy | - | - | 1 |
Trial | Year | Number of Patients | Intervention | VTE Rates | Major Bleeding Events |
---|---|---|---|---|---|
PROTECHT [91] | 2008 | 1150 | Nadroparin 3800 IU once daily versus placebo | Nadroparin: 2.1% Placebo: 3.9% (p = 0.02) | Nadroparin: 0.7% Placebo: 0% |
SAVE-ONCO [93] | 2012 | 3212 | Semuloparin 20 mg once daily versus placebo | Semuloparin: 1.2% Placebo: 3.4% (p < 0.001) | Semuloparin: 1.2% Placebo: 1.1% |
Levine et al. [95] | 2012 | 125 | Apixaban once daily * versus placebo | Apixaban: 0% Placebo: 10.3% | Apixaban: 2.2% Placebo: 3.4% |
AVERT [96] | 2019 | 563 | Apixaban 2.5 mg twice daily for 180 days versus placebo | Apixaban: 4.2% Placebo: 10.2% (p < 0.001) | Apixaban: 2.1% Placebo: 1.1% |
ENOXACAN II [98] | 2002 | 332 | Enoxaparin 40 mg daily for 31 days versus placebo (enoxaparin only for first 10 days) | Enoxaparin: 4.8% Placebo: 12.0% (p = 0.02) | Enoxaparin: 0.4% Placebo: 0% |
Guidelines/ Reference/Year | Recommendations | |||
---|---|---|---|---|
Prophylaxis for hospitalised cancer patients | Prophylaxis for surgical cancer patients | Prophylaxis for ambulatory patients receiving chemotherapy | Treatment of thrombosis in cancer patients | |
ASCO/ [110]/2020 | Pharmacological prophylaxis should be offered for patients with acute medical illness in the absence of contraindications and bleeding. Without additional risk factors, prophylaxis may be offered if no contraindications or bleeding. Should not be offered for minor procedures, chemotherapy infusions, patients having stem cell/bone marrow transplants. | All patients undergoing major surgery should be offered UFH or LMWH preoperatively if no contraindications or bleeding. Prophylaxis should be at least 7–10 days and up to 4 weeks if major abdominal or pelvic surgery in high risk patients. | Routine pharmacological prophylaxis should not be offered to all outpatients. High-risk outpatients with a Khorana score of ≥2 may be offered: apixaban, rivaroxaban or LMWH if no contraindications or bleeding. Patients receiving thalidomide or lenalidomide for multiple myeloma should be offered aspirin or LMWH if low-risk or LMWH for high-risk patients. | Initial treatment with UFH, LMWH, rivaroxaban or fondaparinux. LMWH preferred over UFH if CrCl ≥ 30 mL/min. Long-term anticoagulation with LMWH, edoxaban or rivaroxaban for at least 6 months. VKA may be used if above contraindicated. Treatment beyond 6 months for patients with metastatic cancer or receiving chemotherapy and should be assessed individually. DOACs should not be offered in GI or GU malignancy. |
NCCN/ [111,112]/2020 | Recommend LMWH, UFH or fondaparinux with or without PCD for all hospitalised patients if no contraindications or bleeding. If pharmacological prophylaxis contraindicated, use PCD. | Prophylaxis with LMWH, fondaparinux or UFH (category 1) is recommended. Consider preoperative UFH or LMWH for abdominal or pelvic surgery for up to 4 weeks | No routine prophylaxis if low risk. Consider apixaban or rivaroxaban for high-risk patients with a Khorana score ≥ 2 for up to 6 months. Myeloma patients receiving iMiDs should be offered aspirin if low risk (SAVED < 2 points) or LMWH or VKA for high risk (SAVED ≥ 2 points) | Apixaban, edoxaban with initial LMWH for 5 days, rivaroxaban if no GI malignancy. LMWH (dalteparin, enoxaparin) for GI malignancy or UFH if CrCl < 30 mL/min. Dabigatran with LMWH for initial 5 days if above contraindicated. Fondaparinux or VKA may also be used. Treatment for at least 3 months or as long as active cancer/cancer treatment |
ESMO/ [113]/2011 | Recommend UFH, LMWH or fondaparinux for patients with acute medical illness and confined to their bed. | Prophylaxis is recommended in major surgery with LMWH or UFH. LMWH should be given for one month after major abdominal or pelvic surgery. Mechanical prophylaxis may be added and should only be used as monotherapy if LMWH or UFH are contraindicated. | Routine prophylaxis for advanced cancer or patients receiving adjuvant chemotherapy is not recommended but may be considered in high-risk ambulatory patients. Consider LMWH, aspirin or warfarin (target INR 1.5) for patients receiving thalidomide with dexamethasone or chemotherapy for multiple myeloma. | Initial treatment LMWH 200 IU/kg once daily or UFH. If CrCl < 30 mL/min, then either UFH or LMWH with anti-Xa monitoring. Long term anticoagulation with LMWH for 6 months is considered safe and more effective than VKA. |
ISTH/ [114,115]/2019 | Recommend UFH, LMWH and fondaparinux for all patients with acute medical illness. LMWH is preferred over UFH due to lower major bleeding risk. Consider fondaparinux if previous history of HIT. DOACs are not recommended for prophylaxis. Prophylaxis should not be offered for minor procedures or chemotherapy infusions. | Recommend LMWH if CrCl ≥ 30 mL/min or UFH. Start 2–12 h preoperatively and continue for 7–10 days. Extend prophylaxis to 4 weeks if undergoing major laparotomy or laparoscopic surgery and there is high VTE risk with low risk of bleeding. | Suggest apixaban or rivaroxaban if Khorana score ≥ 2 and no bleeding risk e.g., GI cancer. Use for up to 6 months after beginning chemotherapy. If apixaban or rivaroxaban contraindicated or if high bleeding risk, suggest LMWH instead. | Initial treatment with LMWH if CrCl ≥ 30 mL/min, UFH or fondaparinux. Rivaroxaban or edoxaban (after 5 days of LMWH/UFH) is also recommended if CrCl ≥ 30 mL/min and no risk of GI or GU bleeding. Long-term anticoagulation with LMWH or DOAC for at least 6 months. DOACs should be cautioned in GI malignancies. |
NICE/ [116,117]/2018, 2020 | No specific guideline for cancer patients. General guidelines are written for all patients unless specified. Offer prophylaxis for a minimum of 7 days to acutely ill patients. Offer LMWH as first line and if contraindicated, use fondaparinux instead. | No specific guideline for cancer patients in particular. General guidelines are written for surgical patients. | Do not offer to ambulatory patients receiving chemotherapy unless increased VTE risk from a factor other than cancer. Consider LMWH as VTE prophylaxis in patients receiving chemotherapy for pancreatic cancer. Consider aspirin or LMWH for myeloma patients receiving thalidomide, lenalidomide or pomalidomide with steroids. | Consider a DOAC for confirmed VTE in active cancer. If DOAC unsuitable, consider LMWH or LMWH with VKA until INR is 2.0 on 2 consecutive readings, then VKA alone. Offer for 3–6 months and then review according to need if longer treatment needed. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shah, S.; Karathanasi, A.; Revythis, A.; Ioannidou, E.; Boussios, S. Cancer-Associated Thrombosis: A New Light on an Old Story. Diseases 2021, 9, 34. https://doi.org/10.3390/diseases9020034
Shah S, Karathanasi A, Revythis A, Ioannidou E, Boussios S. Cancer-Associated Thrombosis: A New Light on an Old Story. Diseases. 2021; 9(2):34. https://doi.org/10.3390/diseases9020034
Chicago/Turabian StyleShah, Sidrah, Afroditi Karathanasi, Antonios Revythis, Evangelia Ioannidou, and Stergios Boussios. 2021. "Cancer-Associated Thrombosis: A New Light on an Old Story" Diseases 9, no. 2: 34. https://doi.org/10.3390/diseases9020034
APA StyleShah, S., Karathanasi, A., Revythis, A., Ioannidou, E., & Boussios, S. (2021). Cancer-Associated Thrombosis: A New Light on an Old Story. Diseases, 9(2), 34. https://doi.org/10.3390/diseases9020034