Exposing Empirical Links between COVID-19 Situation Report and Available Data: The Case of Nigeria
Abstract
1. Introduction
2. Materials and Methods
2.1. Research Design
2.2. Study Context
2.3. Data Sources
2.4. Projected Population
2.5. Procedures for Data Analysis
3. Results and Discussions
3.1. Confirmed COVID-19 Cases per State Population
3.2. COVID-19 Tests per State Population
3.3. Correlation between Test Rate and Confirmed COVID-19 Cases Per State Population
3.4. Correlation between Environmental Conditions and Confirmed COVID-19 Cases per State Population
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Cucinotta, D.; Vanelli, M. WHO declares COVID-19 a pandemic. Acta Biomed. 2020, 91, 157–160. [Google Scholar] [PubMed]
- Africa CDC. Coronavirus Disease 2019 (COVID-19): Latest Updates on the COVID-19 Crisis from Africa CDC. 2020. Available online: https://africacdc.org/covid-19/ (accessed on 8 September 2020).
- Chukwuorji, J.C.; Iorfa, S.K. Commentary on the coronavirus pandemic: Nigeria. Psychol. Trauma Theory Res. Pract. Policy 2020, 12 (Suppl. 1), S188–S190. [Google Scholar] [CrossRef] [PubMed]
- Randolph, H.E.; LBarreiro, B. Herd Immunity: Understanding COVID-19. Immunity 2020, 52, 737–741. [Google Scholar] [CrossRef] [PubMed]
- Osseni, I.A. COVID-19 pandemic in sub-Saharan Africa: Preparedness, response, and hidden potentials. Trop. Med. Health 2020, 48, 48. [Google Scholar] [CrossRef] [PubMed]
- Afolabi, M.O.; Folayan, M.O.; Munung, N.S.; Yakubu, A.; Ndow, G.; Jegede, A.; Ambe, J.; Kombe, F. Lessons from the Ebola epidemics and their applications for COVID-19 pandemic response in sub-Saharan Africa. Dev. World Bioeth. 2020, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Anikwe, C.C.; Ogah, C.O.; Anikwe, I.H.; Okorochukwu, B.C.; Ikeoha, C.C. Coronavirus disease 2019: Knowledge, attitude, and practice of pregnant women in a tertiary hospital in Abakaliki, southeast Nigeria. Int. J. Gynaecol. Obstet. 2020. [Google Scholar] [CrossRef] [PubMed]
- David, K.B.; Adebisi, Y.A. Proposed model for hospital and community pharmacy services during COVID-19 pandemic in Nigeria. Int. J. Pharm. Pract. 2020. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Z.; Li, X.; Liu, F.; Zhu, G.; Ma, C.; Wang, L. Prediction of the COVID-19 spread in African countries and implications for prevention and control: A case study in South Africa, Egypt, Algeria, Nigeria, Senegal and Kenya. Sci. Total Environ. 2020, 729, 138959. [Google Scholar] [CrossRef] [PubMed]
- Okuonghae, D.; Omame, A. Analysis of a mathematical model for COVID-19 population dynamics in Lagos, Nigeria. Chaos Solitons Fractals 2020, 139. [Google Scholar] [CrossRef] [PubMed]
- NCDC. COVID-19 Situation Report: Sittuation Report 158; Nigeria Centre for Disease Control: Abuja, Nigeria, 2020.
- Bryman, A. Social Research Methods; Oxford University Press: Oxford, UK, 2016. [Google Scholar]
- Federal Republic of Nigeria. Nigeria at 50: A Compendium: The Official and Authoritative Book about Nigeria; Federal Republic of Nigeria: Abuja, Nigeria, 2010. [Google Scholar]
- National Bureau of Statistics. Population 2006–2016: National Population Estimates; National Bureau of Statistics: Abuja, Nigeria, 2017.
- NCDC. National Interim Guidelines for Clinical Management of COVID-19; Nigeria Centre for Disease Control: Abuja, Nigeria, 2020; pp. 1–60.
- Godlee, F. Covid-19: Testing testing. Br. Med. J. 2020, 369, m1879. [Google Scholar] [CrossRef]
- Tosepu, R.; Gunawan, J.; Effendy, D.S.; Ahmad, L.A.I.; Lestari, H.; Bahar, H.; Asfian, P. Correlation between weather and Covid-19 pandemic in Jakarta, Indonesia. Sci. Total Environ. 2020, 725. [Google Scholar] [CrossRef] [PubMed]
- Gupta, S.; Raghuwanshi, G.S.; Chanda, A. Effect of weather on COVID-19 spread in the US: A prediction model for India in 2020. Sci. Total Environ. 2020, 728. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.J.; Sung, H.; Ki, C.-S.; Hur, M. COVID-19 testing in South Korea: Current status and the need for faster diagnostics. Ann. Lab. Med. 2020, 40, 349–350. [Google Scholar] [CrossRef] [PubMed]
- Salathe, M.; Althaus, C.L.; Neher, R.; Stringhini, S.; Hodcroft, E.; Fellay, J.; Zwahlen, M.; Senti, G.; Battegay, M.; Wilder-Smith, A.; et al. COVID-19 epidemic in Switzerland: On the importance of testing, contact tracing and isolation. Swiss Med. Wkly. 2020, 150, w20225. [Google Scholar] [CrossRef] [PubMed]
- Souch, J.M.; Cossman, J.S. A commentary on rural-urban disparities in COVID-19 testing rates per 100,000 and risk factors. J. Rural Health 2020. [Google Scholar] [CrossRef] [PubMed]
State | Population (2006) | Annual Growth Rate | Projected Population (2020) |
---|---|---|---|
Abia | 2,845,380 | 0.027 | 4,152,442 |
Adamawa | 3,178,950 | 0.029 | 4,770,976 |
Akwa Ibom | 3,902,051 | 0.034 | 6,280,831 |
Anambra | 4,177,828 | 0.028 | 6,182,925 |
Bauchi | 4,653,066 | 0.034 | 7,489,682 |
Bayelsa | 1,704,515 | 0.029 | 2,558,140 |
Benue | 4,253,641 | 0.03 | 6,473,878 |
Borno | 4,171,104 | 0.034 | 6,713,905 |
Cross River | 2,892,988 | 0.029 | 4,341,804 |
Delta | 4,112,445 | 0.032 | 6,436,711 |
Ebonyi | 2,176,947 | 0.028 | 3,221,746 |
Edo | 3,233,366 | 0.027 | 4,718,655 |
Ekiti | 2,398,957 | 0.031 | 3,702,595 |
Enugu | 3,267,837 | 0.03 | 4,973,522 |
Gombe | 2,365,040 | 0.032 | 3,701,710 |
Imo | 3,927,563 | 0.032 | 6,147,338 |
Jigawa | 4,361,002 | 0.029 | 6,545,003 |
Kaduna | 6,113,503 | 0.03 | 9,304,517 |
Kano | 9,401,288 | 0.033 | 14,922,150 |
Katsina | 5,801,584 | 0.03 | 8,829,788 |
Kebbi | 3,256,541 | 0.031 | 5,026,207 |
Kogi | 3,314,043 | 0.03 | 5,043,846 |
Kwara | 2,365,353 | 0.03 | 3,599,976 |
Lagos | 9,113,605 | 0.032 | 14,264,420 |
Nasarawa | 1,869,377 | 0.03 | 2,845,120 |
Niger | 3,954,772 | 0.034 | 6,365,692 |
Ogun | 3,751,140 | 0.033 | 5,953,979 |
Ondo | 3,460,877 | 0.03 | 5,267,322 |
Osun | 3,416,959 | 0.032 | 5,348,151 |
Oyo | 5,580,894 | 0.034 | 8,983,135 |
Plateau | 3,206,531 | 0.027 | 4,679,493 |
Rivers | 5,198,716 | 0.034 | 8,367,973 |
Sokoto | 3,702,676 | 0.03 | 5,635,331 |
Taraba | 2,294,800 | 0.029 | 3,444,042 |
Yobe | 2,321,339 | 0.035 | 3,789,159 |
Zamfara | 3,278,873 | 0.032 | 5,132,022 |
FCT | 1,406,239 | 0.093 | 5,170,238 |
Nigeria | 140,431,790 | 0.032 | 220,384,426 |
Mean | Standard Deviation | Number of States Including the FCT | Pearson Correlation Coefficient | p-Value | |
---|---|---|---|---|---|
Infectious rates | 1.669 | 2.173 | 37 | 0.903 * | <0.001 |
Test rates | 11.407 | 14.139 | 37 |
Mean | Standard Deviation | Number of States Including the FCT | Pearson Correlation Coefficient | p-Value(One-Tail) | |
---|---|---|---|---|---|
Infectious rates | 1.669 | 2.173 | 37 | ||
Amount of rainfall (mm) | 1443.000 | 657.740 | 37 | 0.199 | 0.120 |
Temperature (°C) | 26.368 | 1.0047 | 37 | −0.104 | 0.271 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zakariya, Y.F. Exposing Empirical Links between COVID-19 Situation Report and Available Data: The Case of Nigeria. Diseases 2020, 8, 38. https://doi.org/10.3390/diseases8040038
Zakariya YF. Exposing Empirical Links between COVID-19 Situation Report and Available Data: The Case of Nigeria. Diseases. 2020; 8(4):38. https://doi.org/10.3390/diseases8040038
Chicago/Turabian StyleZakariya, Yusuf F. 2020. "Exposing Empirical Links between COVID-19 Situation Report and Available Data: The Case of Nigeria" Diseases 8, no. 4: 38. https://doi.org/10.3390/diseases8040038
APA StyleZakariya, Y. F. (2020). Exposing Empirical Links between COVID-19 Situation Report and Available Data: The Case of Nigeria. Diseases, 8(4), 38. https://doi.org/10.3390/diseases8040038