Assessment of Growth Differentiation Factor 15 Levels on Coronary Flow in Patients with STEMI Undergoing Primary PCI
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Coronary Angiography and PCI Procedure
2.3. Laboratory Analysis and Echocardiography
2.4. Follow-Up and Major Adverse Cardiac Events
2.5. Statistical Analysis
3. Results
4. Discussion
5. Limitations
6. Conclusions
Funding
Conflicts of Interest
References
- Niccoli, G.; Lanza, G.A.; Spaziani, C.; Altamura, L.; Romagnoli, E.; Leone, A.M.; Fusco, B.; Trani, C.; Burzotta, F.; Mazzari, M.A.; et al. Baseline systemic inflammatory status and no-reflow phenomenon after percutaneous coronary angioplasty for acute myocardial infarction. Int. J. Cardiol. 2007, 117, 306–311. [Google Scholar] [CrossRef] [PubMed]
- GUSTO Angiographic Investigators. The effects of tissue plasminogen activator, streptokinase, or both on coronary-artery patency, ventricular function, and survival after acute myocardial infarction. NEjM 1993, 329, 1615–1622. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.-W.; Her, S.-H.; Park, M.-W.; Cho, J.S.; Kim, T.-S.; Kang, H.; Sim, D.S.; Hong, Y.J.; Kim, J.H.; Ahn, Y.; et al. Impact of Postprocedural TIMI Flow on Long-Term Clinical Outcomes in Patients with Acute Myocardial Infarction. Int. Heart J. 2017, 58, 674–685. [Google Scholar] [CrossRef] [PubMed]
- Ito, H.; Maruyama, A.; Iwakura, K.; Takiuchi, S.; Masuyama, T.; Hori, M.; Higashino, Y.; Fujii, K.; Minamino, T. Clinical implications of the ’no reflow’ phenomenon. A predictor of complications and left ventricular remodeling in reperfused anterior wall myocardial infarction. Circulation 1996, 93, 223–228. [Google Scholar] [CrossRef]
- Huczek, Z.; Kochman, J.; Filipiak, K.J.; Horszczaruk, G.J.; Grabowski, M.; Piatkowski, R.; Wilczynska, J.; Zielinski, A.; Meier, B.; Opolski, G. Mean platelet volume on admission predicts impaired reperfusion and long-term mortality in acute myocardial infarction treated with primary percutaneous coronary intervention. J. Am. Coll. Cardiol. 2005, 46, 284–290. [Google Scholar] [CrossRef]
- Pereg, D.; Berlin, T.; Mosseri, M. Mean platelet volume on admission correlates with impaired response to thrombolysis in patients with ST-elevation myocardial infarction. Platelets 2010, 21, 117–121. [Google Scholar] [CrossRef] [PubMed]
- Magadle, R.; Hertz, I.; Merlon, H.; Weiner, P.; Mohammedi, I.; Robert, D. The relation between preprocedural C-reactive protein levels and early and late complications in patients with acute myocardial infarction undergoing interventional coronary angioplasty. Clin. Cardiol. 2004, 27, 163–168. [Google Scholar] [CrossRef][Green Version]
- Tomoda, H.; Aoki, N. Prognostic value of C-reactive protein levels within six hours after the onset of acute myocardial infarction. Am. Heart J. 2000, 140, 324–328. [Google Scholar] [CrossRef]
- Hong, Y.J.; Jeong, J.-O.; Choi, Y.H.; Ko, J.S.; Lee, M.-G.; Kang, W.Y.; Lee, S.E.; Kim, S.H.; Park, K.H.; Sim, D.S.; et al. Predictors of no-reflow after percutaneous coronary intervention for culprit lesion with plaque rupture in infarct-related artery in patients with acute myocardial infarction. J. Cardiol. 2009, 54, 36–44. [Google Scholar] [CrossRef][Green Version]
- Bootcov, M.R.; Bauskin, A.R.; Valenzuela, S.M.; Moore, A.G.; Bansal, M.; He, X.Y.; Zhang, H.P.; Donnellan, M.; Mahler, S.; Pryor, K.; et al. MIC-1, a novel macrophage inhibitory cytokine, is a divergent member of the TGF-β superfamily. Proc. Natl. Acad. Sci. USA 1997, 94, 11514–11519. [Google Scholar] [CrossRef]
- Corre, J.; Hébraud, B.; Bourin, P. Concise Review: Growth Differentiation Factor 15 in Pathology: A Clinical Role? STEM CELLS Transl. Med. 2013, 2, 946–952. [Google Scholar] [CrossRef] [PubMed]
- Ikeda, Y.; Kumagai, H.; Motozawa, Y.; Suzuki, J.-I. Growth Differentiation Factor 15 (GDF15) as a Reliable Biomarker for Cardiovascular Risk Assessment. Int. Heart J. 2016, 57, 1–2. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Wollert, K.C.; Kempf, T.; Lagerqvist, B.; Lindahl, B.; Olofsson, S.; Allhoff, T.; Peter, T.; Siegbahn, A.; Venge, P.; Drexler, H.; et al. Growth Differentiation Factor 15 for Risk Stratification and Selection of an Invasive Treatment Strategy in Non–ST-Elevation Acute Coronary Syndrome. Circulation 2007, 116, 1540–1548. [Google Scholar] [CrossRef]
- Eggers, K.M.; Kempf, T.; Lagerqvist, B.; Lindahl, B.; Olofsson, S.; Jantzen, F.; Peter, T.; Allhoff, T.; Siegbahn, A.; Venge, P.; et al. Growth-Differentiation Factor-15 for Long-Term Risk Prediction in Patients Stabilized After an Episode of Non–ST-Segment–Elevation Acute Coronary Syndrome. Circ. Cardiovasc. Genet. 2010, 3, 88–96. [Google Scholar] [CrossRef]
- Eitel, I.; Blase, P.; Adams, V.; Hildebrand, L.; Desch, S.; Schuler, G.; Thiele, H. Growth-differentiation factor 15 as predictor of mortality in acute reperfused ST-elevation myocardial infarction: Insights from cardiovascular magnetic resonance. Heart 2011, 97, 632–640. [Google Scholar] [CrossRef]
- The TIMI Study Group* The Thrombolysis in Myocardial Infarction (TIMI) Trial. N. Engl. J. Med. 1985, 312, 932–936. [CrossRef] [PubMed]
- Niccoli, G.; Marino, M.; Spaziani, C.; Crea, F. Prevention and treatment of no-reflow. Acute Card. Care 2010, 12, 81–91. [Google Scholar] [CrossRef]
- Rezkalla, S.H.; Kloner, R.A. No-reflow phenomenon. Circulation 2002, 105, 656–662. [Google Scholar] [CrossRef] [PubMed]
- A Brown, D.; Breit, S.N.; Buring, J.; Fairlie, W.; Bauskin, A.R.; Liu, T.; Ridker, P.M. Concentration in plasma of macrophage inhibitory cytokine-1 and risk of cardiovascular events in women: A nested case-control study. Lancet 2002, 359, 2159–2163. [Google Scholar] [CrossRef]
- Lind, L.; Wallentin, L.; Kempf, T.; Tapken, H.; Quint, A.; Lindahl, B.; Olofsson, S.; Venge, P.; Larsson, A.; Hulthe, J.; et al. Growth-differentiation factor-15 is an independent marker of cardiovascular dysfunction and disease in the elderly: Results from the Prospective Investigation of the Vasculature in Uppsala Seniors (PIVUS) Study. Eur. Heart J. 2009, 30, 2346–2353. [Google Scholar] [CrossRef]
- Chan, M.M.; Santhanakrishnan, R.; Chong, J.P.; Chen, Z.; Tai, B.C.; Liew, O.W.; Ng, T.P.; Ling, L.H.; Sim, D.; Leong, K.T.G.; et al. Growth differentiation factor 15 in heart failure with preserved vs. reduced ejection fraction. Eur. J. Heart Fail. 2015, 18, 81–88. [Google Scholar] [CrossRef]
- Kempf, T.; Björklund, E.; Olofsson, S.; Lindahl, B.; Allhoff, T.; Peter, T.; Tongers, J.; Wollert, K.C.; Wallentin, L. Growth-differentiation factor-15 improves risk stratification in ST-segment elevation myocardial infarction. Eur. Heart J. 2007, 28, 2858–2865. [Google Scholar] [CrossRef] [PubMed]
- Velders, M.A.; Wallentin, L.; Becker, R.C.; Van Boven, A.J.; Himmelmann, A.; Husted, S.; Katus, H.A.; Lindholm, D.; Morais, J.; Siegbahn, A.; et al. Biomarkers for risk stratification of patients with ST-elevation myocardial infarction treated with primary percutaneous coronary intervention: Insights from the Platelet Inhibition and Patient Outcomes trial. Am. Heart J. 2015, 169, 879–889.e7. [Google Scholar] [CrossRef] [PubMed]
- Schlittenhardt, D.; Schober, A.; Strelau, J.; Bonaterra, G.A.; Schmiedt, W.; Unsicker, K.; Metz, J.; Kinscherf, R. Involvement of growth differentiation factor-15/macrophage inhibitory cytokine-1 (GDF-15/MIC-1) in oxLDL-induced apoptosis of human macrophages in vitro and in arteriosclerotic lesions. Cell Tissue Res. 2004, 318, 325–333. [Google Scholar] [CrossRef] [PubMed]
- Lin, J.-F.; Wu, S.; Hsu, S.-Y.; Yeh, K.-H.; Chou, H.-H.; Cheng, S.-T.; Wu, T.-Y.; Hsu, W.-T.; Yang, C.-C.; Ko, Y.-L. Growth-Differentiation Factor-15 and Major Cardiac Events. Am. J. Med. Sci. 2014, 347, 305–311. [Google Scholar] [CrossRef]
- Ago, T.; Sadoshima, J. GDF15, a cardioprotective TGF-beta superfamily protein. Circ. Res. 2006, 98, 294–297. [Google Scholar] [CrossRef]
- Widera, C.; Pencina, M.J.; Meisner, A.; Kempf, T.; Bethmann, K.; Marquardt, I.; Katus, H.A.; Giannitsis, E.; Wollert, K.C. Adjustment of the GRACE score by growth differentiation factor 15 enables a more accurate appreciation of risk in non-ST-elevation acute coronary syndrome. Eur. Heart J. 2011, 33, 1095–1104. [Google Scholar] [CrossRef]
- Kempf, T.; Eden, M.; Strelau, J.; Naguib, M.; Willenbockel, C.; Tongers, J.; Heineke, J.; Kotlarz, D.; Xu, J.; Molkentin, J.D.; et al. The Transforming Growth Factor-β Superfamily Member Growth-Differentiation Factor-15 Protects the Heart From Ischemia/Reperfusion Injury. Circ. Res. 2006, 98, 351–360. [Google Scholar] [CrossRef]
- Kempf, T.; Zarbock, A.; Widera, C.; Butz, S.; Stadtmann, A.; Rossaint, J.; Bolomini-Vittori, M.; Korf-Klingebiel, M.; Napp, L.C.; Hansen, B.; et al. GDF-15 is an inhibitor of leukocyte integrin activation required for survival after myocardial infarction in mice. Nat. Med. 2011, 17, 581–588. [Google Scholar] [CrossRef]
- Taddei, S.; Virdis, A. Growth differentiation factor-15 and cardiovascular dysfunction and disease: Malefactor or innocent bystander? Eur. Heart J. 2010, 31, 1168–1171. [Google Scholar] [CrossRef]
- Dominguez-Rodriguez, A.; Abreu-González, P.; Avanzas, P. Relation of Growth-Differentiation Factor 15 to Left Ventricular Remodeling in ST-Segment Elevation Myocardial Infarction. Am. J. Cardiol. 2011, 108, 955–958. [Google Scholar] [CrossRef] [PubMed]
- Khan, S.Q.; Ng, L.L.; Dhillon, O.; Kelly, D.; Quinn, P.; Squire, I.B.; Davies, J.E. Growth differentiation factor-15 as a prognostic marker in patients with acute myocardial infarction. Eur. Heart J. 2009, 30, 1057–1065. [Google Scholar] [CrossRef] [PubMed]
- Ridker, P.M.; MacFadyen, J.; Libby, P.; Glynn, R.J. Relation of Baseline High-Sensitivity C-Reactive Protein Level to Cardiovascular Outcomes With Rosuvastatin in the Justification for Use of Statins in Prevention: An Intervention Trial Evaluating Rosuvastatin (JUPITER). Am. J. Cardiol. 2010, 106, 204–209. [Google Scholar] [CrossRef] [PubMed]
Variable | Group 1 (TIMI 0-2) (n:35) | Group 2 (TIMI 3) (n:45) | p Value |
---|---|---|---|
Age, years | 64 ± 11.8 | 66.8 ± 11.5 | 0.29 |
Gender, Female/Male | 7/28 | 13/32 | 0.36 |
Body mass index, kg/m2 | 26.6 ± 2.5 | 25.6 ± 2.7 | 0.08 |
Previous CAD, n (%) | 10 (28.6) | 17 (37.8) | 0.39 |
Smoking, n (%) | 12 (34.3) | 15 (33.3) | 0.92 |
Hypertension, n (%) | 14 (40) | 16 (35.6) | 0.68 |
Hypercholesterolemia, n (%) | 8 (22.9) | 4 (8.9) | 0.08 |
Diabetes mellitus, n (%) | 17 (48.6) | 11 (24.4) | 0.02 |
Blood Pressure on admission (mmHg) | |||
Systolic | 126.5 ± 21.1 | 130.1 ± 21.5 | 0.46 |
Diastolic | 76.7 ± 16.6 | 79.6 ± 15.9 | 0.43 |
Heart rate, beats/min | 88.2 ± 17.8 | 85.9 ± 14.9 | 0.53 |
Biochemical parameters | |||
Total cholesterol, mg/dl | 174.6 ± 36.5 | 174.3 ± 32.6 | 0.97 |
HDL-cholesterol, mg/dl | 36.6 ± 6.5 | 39.5 ± 11.1 | 0.18 |
LDL-cholesterol, mg/dl | 109.1 ± 32.8 | 112.4 ± 31.4 | 0.67 |
Serum triglycerides, mg/dl | 147.3 ± 84.9 | 140.9 ± 76.5 | 0.79 |
Serum glucose, mg/dL | 163.8 ± 66.7 | 123.7 ± 45.4 | 0.008 |
Blood urea nitrogen, mg/dL | 44.5 ± 13.7 | 44.7 ± 23.9 | 0.95 |
Creatinine, mg/dL | 0.92 ± 0.22 | 0.86 ± 0.43 | 0.44 |
Hs-CRP(mg/L) | 19.8 ± 10.6 | 11.3 ± 4.9 | <0.001 |
LVEF on admission | 45.1 ± 7.5 | 47.7 ± 6.2 | 0.14 |
Hemoglobine (g/dl) | 14 ± 1.8 | 13.3 ± 3 | 0.20 |
White blood cell count, × 109/L | 10.7 ± 2.9 | 10.9 ± 3.9 | 0.82 |
Platelet count, × 109/L | 244 ± 84 | 232 ± 79 | 0.53 |
Previous medications, n (%) | |||
Aspirin | 10 (28.6) | 16 (35.6) | 0.51 |
Beta-blockers | 6 (17.1) | 14 (31.1) | 0.15 |
ACE-inhibitors/ARB | 8 (22.9) | 13 (28.9) | 0.54 |
Statins | 9 (25.7) | 11 (24.4) | 0.89 |
Ca-antagonists | 6 (17.1) | 4 (8.9) | 0.27 |
Diuretics | 4 (11.4) | 4 (8.9) | 0.70 |
Glycoprotein IIb/IIIa antagonist | 10 (28.6) | 5 (11.1) | 0.04 |
Pain to balloon time (h) | 4.2 ± 0.8 | 4.0 ± 1.0 | 0.36 |
Hospitalization (day) | 7.1 ± 1.3 | 6.1 ± 1.2 | 0.001 |
Infarct related artery, n (%) | |||
RCA | 21 (60) | 23 (51.1) | 0.43 |
LAD | 13 (37.1) | 9 (20.1) | 0.09 |
Cx | 22 (62.9) | 19 (42.2) | 0.07 |
Saphenous graft or LIMA | 3 (8.6) | 2 (4.4) | 0.45 |
Coronary artery involvement | |||
Single-vessel disease | 17 (48.6) | 37 (82.2) | 0.002 |
Multivessel disease | 18 (51.4) | 8 (17.8) | 0.002 |
Primery PCI | |||
Stent implantation, n (%) | 34 (97.1) | 43 (95.6) | 0.71 |
BMS, n (%) | 8 (22.9) | 16 (38.1) | 0.15 |
DES, n (%) | 26 (74.3) | 28 (62.2) | 0.25 |
Stent lenght (mm) | 20.9 ± 7.4 | 19.8 ± 8.3 | 0.65 |
Stent diameter (mm) | 2.95 ± 0.5 | 2.91 ± 0.4 | 0.55 |
GDF-15, pg/mL | 1670 ± 831 | 733 ± 124 | <0.001 |
In-hospital MACE, n (%) | 10 (28.6) | 1 (2.2) | 0.001 |
In stent thrombosis | 5 (14.3) | 1 (2.2) | 0.04 |
Nonfatal MI | 6 (17.1) | 1 (2.2) | 0.02 |
In-hospital mortality | 4 (11.4) | 0 | 0.02 |
Variable | GDF-15 < 920 (n:44) | GDF-15 ≥ 920 (n:36) | p Value |
---|---|---|---|
Age, years | 67 ± 11.3 | 63.8 ± 11.9 | 0.22 |
Gender, Female/Male | 13/31 | 7/29 | 0.30 |
Coronary risk factors | |||
Previous CAD, n (%) | 16 (36.4) | 11 (30.6) | 0.58 |
Smoking, n (%) | 14 (31.8) | 13 (36.1) | 0.68 |
Hypertension, n (%) | 16 (36.4) | 14 (38.9) | 0.81 |
Hypercholesterolemia, n (%) | 3 (6.8) | 9 (25) | 0.024 |
Diabetes mellitus, n (%) | 11 (25) | 17 (47.2) | 0.039 |
Severity of CAD | |||
Single-vessel disease | 35 (79.5) | 19 (52.8) | 0.012 |
Multivessel disease | 9 (20.5) | 17 (47.2) | 0.012 |
No-reflow, n (%) | 0 | 6 (16.7) | 0.005 |
In-hospital MACE, n (%) | 0 | 11 (30.6) | <0.001 |
In stent thrombosis | 0 | 6 (16.7) | 0.005 |
Nonfatal MI | 0 | 7 (19.4) | 0.002 |
In-hospital mortality | 0 | 4 (11.1) | 0.024 |
Variables | Unadjusted OR | 95% CI | p Value | Adjusted OR * | 95% CI | p Value |
---|---|---|---|---|---|---|
Age | 0.979 | 0.942–1.018 | 0.292 | |||
Diabetes mellitus | 2.919 | 1.130–7.545 | 0.027 | 1.488 | 0.062–35.950 | 0.807 |
Heart Rate | 1.009 | 0.982–1.037 | 0.519 | |||
BMI | 1.165 | 0.975–1.391 | 0.093 | |||
Hemoglobine | 1.120 | 0.928–1.352 | 0.238 | |||
LAD lesion | 2.364 | 0.868–6.437 | 0.092 | |||
Hs-CRP | 1.148 | 1.067–1.236 | <0.001 | 1.309 | 0.896–1.913 | 0.164 |
Multivessel disease | 4.897 | 1.781–13.467 | 0.002 | 18.85 | 0.720–493.4 | 0.078 |
GDF-15 | 1.018 | 1.007–1.029 | 0.001 | 1.021 | 1.004–1.038 | 0.018 |
DES implantation | 1.754 | 0.666–4.619 | 0.255 | |||
Glycoprotein IIb/IIIa antagonist | 3.200 | 0.979–10.457 | 0.054 |
© 2020 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dogdu, O. Assessment of Growth Differentiation Factor 15 Levels on Coronary Flow in Patients with STEMI Undergoing Primary PCI. Diseases 2020, 8, 16. https://doi.org/10.3390/diseases8020016
Dogdu O. Assessment of Growth Differentiation Factor 15 Levels on Coronary Flow in Patients with STEMI Undergoing Primary PCI. Diseases. 2020; 8(2):16. https://doi.org/10.3390/diseases8020016
Chicago/Turabian StyleDogdu, Orhan. 2020. "Assessment of Growth Differentiation Factor 15 Levels on Coronary Flow in Patients with STEMI Undergoing Primary PCI" Diseases 8, no. 2: 16. https://doi.org/10.3390/diseases8020016
APA StyleDogdu, O. (2020). Assessment of Growth Differentiation Factor 15 Levels on Coronary Flow in Patients with STEMI Undergoing Primary PCI. Diseases, 8(2), 16. https://doi.org/10.3390/diseases8020016