The Impact of Bronchodilator Therapy on Systolic Heart Failure with Concomitant Mild to Moderate COPD
Abstract
:1. Introduction
2. Patients and Methods
2.1. Participants
2.2. Study Protocol
2.2.1. Pulmonary Function
2.2.2. Six-Minute Walk Distance
2.2.3. Echocardiography
2.2.4. Laboratory Measurements
2.2.5. Statistical Analysis
3. Results
3.1. Patients’ Characteristics
3.2. Clinical Effects of Tiotropium for Patients with HFrEF and COPD
3.2.1. Blood Pressure
3.2.2. Six-Minute Walk Distance
3.2.3. Pulmonary Function
3.2.4. Cardiac Function
3.2.5. Plasma BNP and NE Levels
3.2.6. Relation between Change in FEV and LVDd
3.2.7. Relationship between Change in FEV and BNP
3.3. Adverse Effects
4. Discussion
4.1. Possible Mechanisms by Which Anticholinergic Bronchodilator Improves HFrEF
4.2. Sustained Effects after Termination of Tiotropium
4.3. Safety of Tiotropium in Patients with HFrEF
4.4. Study Limitations
4.5. Clinical Implications
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Nohria, A.; Lewis, E.; Stevenson, L.W. Medical management of advanced heart failure. JAMA 2002, 287, 628–640. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, A. American College of Cardiology/American Heart Association Chronic Heart Failure Evaluation and Management guidelines: Relevance to the geriatric practice. J. Am. Geriatr. Soc. 2003, 51, 123–126. [Google Scholar] [CrossRef] [PubMed]
- Cheng, J.W.; Nayar, M. A review of heart failure management in the elderly population. Am. J Geriatr. Pharmacother. 2009, 7, 233–249. [Google Scholar] [CrossRef] [PubMed]
- Hawkins, N.M.; Petrie, M.C.; Jhund, P.S.; Chalmers, G.W.; Dunn, F.G.; McMurray, J.J. Heart failure and chronic obstructive pulmonary disease: diagnostic pitfalls and epidemiology. Eur. J. Heart Fail. 2009, 11, 130–139. [Google Scholar] [CrossRef] [PubMed]
- Hawkins, N.M.; Jhund, P.S.; Simpson, C.R.; Petrie, M.C.; Macdonald, M.R.; Dunn, F.G.; Macintyre, K.; McMurray, J.J. Primary care burden and treatment of patients with heart failure and chronic obstructive pulmonary disease in Scotland. Eur. J. Heart Fail. 2010, 12, 17–24. [Google Scholar] [CrossRef] [PubMed]
- O’Donnell, D.E.; Fluge, T.; Gerken, F.; Hamilton, A.; Webb, K.; Aguilaniu, B.; Make, B.; Magnussen, H. Effects of tiotropium on lung hyperinflation, dyspnoea and exercise tolerance in COPD. Eur. Respir. J. 2004, 23, 832–840. [Google Scholar] [CrossRef] [PubMed]
- Maltais, F.; Hamilton, A.; Marciniuk, D.; Hernandez, P.; Sciurba, F.C.; Richter, K.; Kesten, S.; O’Donnell, D. Improvements in symptom-limited exercise performance over 8 h with once-daily tiotropium in patients with COPD. Chest 2005, 128, 1168–1178. [Google Scholar] [CrossRef] [PubMed]
- Tashkin, D.; Celli, B.; Kesten, S.; Lystig, T.; Decramer, M. Effect of tiotropium in men and women with COPD: Results of the 4-year UPLIFT trial. Respir. Med. 2010, 104, 1495–1504. [Google Scholar] [CrossRef] [PubMed]
- Celli, B.; Decramer, M.; Leimer, I.; Vogel, U.; Kesten, S.; Tashkin, D.P. Cardiovascular safety of tiotropium in patients with COPD. Chest 2010, 137, 20–30. [Google Scholar] [CrossRef] [PubMed]
- Kato, M.; Komamura, K.; Kitakaze, M. Tiotropium, a novel muscarinic M3 receptor antagonist, improved symptoms of chronic obstructive pulmonary disease complicated by chronic heart failure. Circ. J. 2006, 70, 1658–1660. [Google Scholar] [CrossRef] [PubMed]
- Vestbo, J.; Hurd, S.S.; Agusti, A.G.; Jones, P.W.; Vogelmeier, C.; Anzueto, A.; Barnes, P.J.; Fabbri, L.M.; Martinez, F.J.; Nishimura, M.; et al. Global strategy for the diagnosis, management, and prevention of chronic obstructive pulmonary disease: GOLD executive summary. Am. J. Respir. Crit. Care Med. 2013, 187, 347–365. [Google Scholar] [CrossRef] [PubMed]
- Hunt, S.A.; Abraham, W.T.; Chin, M.H.; Feldman, A.M.; Francis, G.S.; Ganiats, T.G.; Jessup, M.; Konstam, M.A.; Mancini, D.M.; Michl, K.; et al. ACC/AHA 2005 Guideline Update for the Diagnosis and Management of Chronic Heart Failure in the Adult: A report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (Writing Committee to Update the 2001 Guidelines for the Evaluation and Management of Heart Failure): Developed in collaboration with the American College of Chest Physicians and the International Society for Heart and Lung Transplantation: Endorsed by the Heart Rhythm Society. Circulation 2005, 112, e154–e235. [Google Scholar] [PubMed]
- Chodosh, S.; Flanders, J.S.; Kesten, S.; Serby, C.W.; Hochrainer, D.; Witek, T.J., Jr. Effective delivery of particles with the HandiHaler dry powder inhalation system over a range of chronic obstructive pulmonary disease severity. J. Aerosol. Med. 2001, 14, 309–315. [Google Scholar] [CrossRef] [PubMed]
- Morris, J.F.; Koski, A.; Temple, W.P.; Claremont, A.; Thomas, D.R. Fifteen-year interval spirometric evaluation of the Oregon predictive equations. Chest 1988, 93, 123–127. [Google Scholar] [CrossRef] [PubMed]
- Laboratories ATSCoPSfCPF. ATS statement: Guidelines for the six-minute walk test. Am. J. Respir. Crit. Care Med. 2002, 166, 111–117. [Google Scholar]
- Barr, R.G.; Bluemke, D.A.; Ahmed, F.S.; Carr, J.J.; Enright, P.L.; Hoffman, E.A.; Iang, R.; Kawut, S.M.; Kronmal, R.A.; Lima, J.A.; et al. Percent emphysema, airflow obstruction, and impaired left ventricular filling. N. Engl. J. Med. 2010, 362, 217–227. [Google Scholar] [CrossRef] [PubMed]
- Stark-Leyva, K.N.; Beck, K.C.; Johnson, B.D. Influence of expiratory loading and hyperinflation on cardiac output during exercise. J. Appl. Physiol. 2004, 96, 1920–1927. [Google Scholar] [CrossRef] [PubMed]
- Olson, T.P.; Beck, K.C.; Johnson, J.B.; Johnson, B.D. Competition for intrathoracic space reduces lung capacity in patients with chronic heart failure: A radiographic study. Chest 2006, 130, 164–171. [Google Scholar] [CrossRef] [PubMed]
- Gosker, H.R.; Wouters, E.F.; van der Vusse, G.J.; Schols, A.M. Skeletal muscle dysfunction in chronic obstructive pulmonary disease and chronic heart failure: Underlying mechanisms and therapy perspectives. Am. J. Clin. Nutr. 2000, 71, 1033–1047. [Google Scholar] [PubMed]
- Ottenheijm, C.A.; Jenniskens, G.J.; Geraedts, M.C.; Hafmans, T.; Heunks, L.M.; van Kuppevelt, T.H.; Dekhuijzen, P.N. Diaphragm dysfunction in chronic obstructive pulmonary disease: A role for heparan sulphate? Eur. Respir. J. 2007, 30, 80–89. [Google Scholar] [CrossRef] [PubMed]
- Jondeau, G.; Katz, S.D.; Zohman, L.; Goldberger, M.; McCarthy, M.; Bourdarias, J.P.; LeJemtel, T.H. Active skeletal muscle mass and cardiopulmonary reserve. Failure to attain peak aerobic capacity during maximal bicycle exercise in patients with severe congestive heart failure. Circulation 1992, 86, 1351–1356. [Google Scholar] [CrossRef] [PubMed]
- Kaye, D.M.; Lefkovits, J.; Jennings, G.L.; Bergin, P.; Broughton, A.; Esler, M.D. Adverse consequences of high sympathetic nervous activity in the failing human heart. J. Am. Coll. Cardiol. 1995, 26, 1257–1263. [Google Scholar] [CrossRef]
- Morganroth, J.; Golisch, W.; Kesten, S. Eletrocardiographic monitoring in COPD patients receiving tiotropium. COPD 2004, 1, 181–190. [Google Scholar] [CrossRef] [PubMed]
- Yoshimura, K.; Maekura, R.; Hiraga, T.; Kitada, S.; Miki, K.; Miki, M.; Tateishi, Y. Effects of tiotropium on sympathetic activation during exercise in stable chronic obstructive pulmonary disease patients. Int. J. Chronic Obstr. Pulm. Dis. 2012, 7, 109–117. [Google Scholar]
- Cleland, J.G.; Clark, A.L. Delivering the cumulative benefits of triple therapy to improve outcomes in heart failure: Too many cooks will spoil the broth. J. Am. Coll. Cardiol. 2003, 42, 1234–1237. [Google Scholar] [CrossRef]
All (n = 40) | Group A (Tiotropium + Observation; n = 20) | Group B (Observation + Tiotropium; n = 20) | |
---|---|---|---|
Age, years | 70 ± 8 | 70 ± 7 | 70 ± 9 |
Male, no. (%) | 23 (57.5) | 11 (55) | 12 (60) |
Etiology of heart failure, no. (%) | |||
Ischemic heart disease | 22 (55) | 12 (60) | 10 (50) |
Hypertensive heart disease | 13 (32.5) | 6 (30) | 7 (45) |
Others | 5 (12.5) | 2 (10) | 3 (15) |
NYHA class, no. (%) | |||
I | 13 (32.5) | 7 (35) | 6 (30) |
II | 27 (67.5) | 13 (65) | 14 (70) |
FEV1.0(%predict) | 77.9 ± 5.4 | 78.1 ± 5.7 | 77.7 ± 5.7 |
FEV1.0/FVC, % | 59.3 ± 5.0 | 59.3 ± 5.3 | 59.2 ± 5.0 |
Heart rate, beats/min | 74.5 ± 5 | 73 ± 6 | 76 ± 5 |
Systolic BP, mmHg | 120 ± 7 | 120 ± 6 | 119 ± 9 |
Diastolic BP, mmHg | 80 ± 8 | 79 ± 10 | 81 ± 7 |
LVEF, % | 36.5 ± 2.0 | 36.3 ± 2.4 | 36.6 ± 1.8 |
BNP, pg/mL | 372 ± 105 | 374 ± 94 | 369 ± 119 |
Medications, no. (%) | |||
Beta-blockers | 22 (55) | 11 (55) | 11 (55) |
ACE-I or ARB | 40 (100) | 20 (100) | 20 (100) |
CCB | 3 (7.5) | 1 (5) | 2 (10) |
Diuretics | 30 (75) | 16 (80) | 14 (70) |
Day 1 | Day 29 | Day 56 | ANOVA | |
---|---|---|---|---|
Systolic BP, mmHg | 120 ± 6 | 115 ± 5 § | 118 ± 4 ¶ | <0.01 |
Diastolic BP, mmHg | 79 ± 10 | 75 ± 9 ¶ | 74 ± 9 § | <0.01 |
Heart rate, bpm | 73 ± 6 | 66 ± 5 ¶ | 68 ± 4 ¶ | <0.05 |
BW, kg | 59.5 ± 13.7 | 59.0 ± 13.6 | 59.3 ± 13.5 | NS |
SpO2, % | 96.2 ± 1.7 | 97.0 ± 1.3 ¶ | 96.3 ± 1.8 | <0.01 |
Respiratory function | ||||
FEV1.0, L | 1.56 ± 0.11 | 1.74 ± 0.16 § | 1.51 ± 0.15 | <0.001 |
FEV1.0(%predict), % | 78.1 ± 5.7 | 87.2 ± 7.9 § | 75.7 ± 7.4 | <0.001 |
FVC, L | 2.64 ± 0.14 | 2.75 ± 0.13 § | 2.55 ± 0.13 | <0.001 |
FEV/FVC, % | 59.3 ± 5.3 | 63.6 ± 6.4 § | 59.5 ± 6.0 | <0.001 |
Echocardiography | ||||
LVDd, mm | 57.3 ± 3.7 | 59.3 ± 3.6 ¶ | 56.2 ± 3.2 | <0.05 |
LVDs, mm | 49.5 ± 66.9 | 48.3 ± 4.2 | 48.0 ± 3.6 | NS |
LVEF, % | 36.3 ± 2.4 | 41.8 ± 5.9 § | 37.8 ± 7.8 | <0.01 |
PG(RA-RV), mmHg | 18.9 ± 4.8 | 16.7 ± 4.3 § | 16.5 ± 5.1 § | <0.05 |
IVC, mm | 9.7 ± 1.8 | 9.6 ± 1.7 | 9.5 ± 1.6 | NS |
Laboratory testing | ||||
BNP, pg/mL | 374 ± 94 | 263 ± 92 § | 293 ± 78 | <0.001 |
Norepinephrine, pg/mL | 821 ± 251 | 468 ± 203 § | 501 ± 191 ¶ | <0.001 |
Day 1 | Day 29 | Day 56 | ANOVA | |
---|---|---|---|---|
Systolic BP, mmHg | 119 ± 9 | 118 ± 8 | 113 ± 7 § | <0.01 |
Diastolic BP, mmHg | 81 ± 7 | 80 ± 7 | 75 ± 7 ¶ | <0.05 |
Heart rate, bpm | 76 ± 5 | 73 ± 4 | 68 ± 4 ¶ | <0.01 |
BW, kg | 62.1 ± 13.4 | 61.9 ± 13.5 | 61.9 ± 13.6 | NS |
SpO2, % | 95.6 ± 1.1 | 96.6 ± 1.1 | 97.8 ± 0.8 | <0.01 |
Respiratory function | ||||
FEV1.0, L | 1.55 ± 0.11 | 1.60 ± 0.12 | 1.75 ± 0.18 § | <0.001 |
FEV1.0(%predict), % | 77.7 ± 5.7 | 80.0 ± 6.0 | 87.4 ± 8.9 § | <0.001 |
FVC, L | 2.63 ± 0.12 | 2.64 ± 0.13 | 2.75 ± 0.11 § | <0.001 |
FEV/FVC, % | 59.2 ± 5.0 | 60.6 ± 5.0 | 63.6 ± 5.7 § | <0.001 |
Echocardiography | ||||
LVDd, mm | 57.4 ± 3.1 | 57.1 ± 3.1 | 59.0 ± 3.1 ¶ | <0.05 |
LVDs, mm | 49.1 ± 6.2 | 49.5 ± 4.2 | 48.7 ± 3.8 | NS |
LVEF, % | 36.6 ± 1.8 | 35.7 ± 3.8 | 41.6 ± 3.8 § | <0.01 |
PG(RA-RV), mmHg | 19.6 ± 5.1 | 18.7 ± 5.2 | 16.5 ± 4.3 ¶ | <0.05 |
IVC, mm | 9.5 ± 1.4 | 9.7 ± 1.6 | 9.5 ± 2.2 | NS |
Laboratory testing | ||||
BNP, pg/mL | 369 ± 119 | 358 ± 110 | 246 ± 101 § | <0.001 |
Norepinephrine, pg/mL | 826 ± 248 | 747 ± 241 | 446 ± 107 ¶ | <0.001 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kato, M.; Komamura, K.; Kitakaze, M.; Hirayama, A. The Impact of Bronchodilator Therapy on Systolic Heart Failure with Concomitant Mild to Moderate COPD. Diseases 2018, 6, 4. https://doi.org/10.3390/diseases6010004
Kato M, Komamura K, Kitakaze M, Hirayama A. The Impact of Bronchodilator Therapy on Systolic Heart Failure with Concomitant Mild to Moderate COPD. Diseases. 2018; 6(1):4. https://doi.org/10.3390/diseases6010004
Chicago/Turabian StyleKato, Mahoto, Kazuo Komamura, Masafumi Kitakaze, and Atsushi Hirayama. 2018. "The Impact of Bronchodilator Therapy on Systolic Heart Failure with Concomitant Mild to Moderate COPD" Diseases 6, no. 1: 4. https://doi.org/10.3390/diseases6010004
APA StyleKato, M., Komamura, K., Kitakaze, M., & Hirayama, A. (2018). The Impact of Bronchodilator Therapy on Systolic Heart Failure with Concomitant Mild to Moderate COPD. Diseases, 6(1), 4. https://doi.org/10.3390/diseases6010004