Biomarkers and Imaging Findings of Anderson–Fabry Disease—What We Know Now
Abstract
:1. Introduction
2. Biomarkers and Imaging Findings
2.1. Biomarkers
2.1.1. Gb3 and LysoGB3
2.1.2. Biomarkers of Kidney Injury
Proteinuria
Urinary Podocytes
Cystatin-C
Tubular Proteins
Bikunin
2.1.3. Biomarkers of Cardiac Injury
N-Terminal Pro-Brain Natriuretic Peptide
Troponins
Pro-Inflammatory Cytokines
Biomarkers of the Extracellular Matrix Turnover
2.1.4. Biomarkers of the Cerebrovascular Injury
2.1.5. Metabolomics
2.1.6. Proteomics
2.2. Imaging Findings
2.2.1. Imaging Tools for the Assessment of Fabry’s Cardiomyopathy
Echocardiography
New Studies in Cardiac Magnetic Resonance
Positron Emission Tomography and Magnetic Resonance (PET/MR)
2.2.2. Imaging Tools for the Assessment of Fabry’s Central Nervous System Injury
Magnetic Resonance Imaging
Transcranial Doppler
Positron Emission Tomography and Magnetic Resonance (PET/MR)
3. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Germain, D.P. Fabry disease. Orphanet J. Rare Dis. 2010. [Google Scholar] [CrossRef] [PubMed]
- Gal, A.; Hughes, D.A.; Winchester, B. Toward a consensus in the laboratory diagnostics of Fabry disease—Recommendations of a European expert group. J. Inherit. Metab. Dis. 2011, 34, 509–514. [Google Scholar] [CrossRef] [PubMed]
- Linthorst, G.E.; Vedder, A.C.; Aerts, J.M.; Hollak, C.E. Screening for Fabry disease using whole blood spots fails to identify one-third of female carriers. Clin. Chim. Acta 2005, 353, 201–203. [Google Scholar] [CrossRef] [PubMed]
- Biomarkers Definitions Working Group. Biomarkers and surrogate endpoints: Preferred definitions and conceptual framework. Clin. Pharmacol. Ther. 2001, 69, 89–95. [Google Scholar]
- Cox, T.M. Biomarkers in lysosomal storage diseases. In Fabry Disease: Perspectives from 5 Years of FOS; Mehta, A., Beck, M., Sunder-Plassmann, G., Eds.; Oxford PharmaGenesis: Oxford, England, 2006. [Google Scholar]
- Sweeley, C.C.; Klionsky, B. Fabry’s Disease: Classification as a Sphingolipidosis and Partial Characterization of a Novel Glycolipid. J. Biol. Chem. 1963, 238, 3148–3150. [Google Scholar] [PubMed]
- Young, E.; Mills, K.; Morris, P.; Vellodi, A.; Lee, P.; Waldek, S.; Winchester, B. Is globotriaosylceramide a useful biomarker in Fabry disease? Acta Paediatr. Suppl. 2005, 94, 51–54, discussion 37–58. [Google Scholar] [CrossRef] [PubMed]
- Togawa, T.; Kodama, T.; Suzuki, T.; Sugawara, K.; Tsukimura, T.; Ohashi, T.; Ishige, N.; Suzuki, K.; Kitagawa, T.; Sakuraba, H. Plasma globotriaosylsphingosine as a biomarker of Fabry disease. Mol. Genet. Metab. 2010, 100, 257–261. [Google Scholar] [CrossRef] [PubMed]
- Rombach, S.M.; Dekker, N.; Bouwman, M.G.; Linthorst, G.E.; Zwinderman, A.H.; Wijburg, F.A.; Kuiper, S.; Vd Bergh Weerman, M.A.; Groener, J.E.; Poorthuis, B.J.; et al. Plasma globotriaosylsphingosine: Diagnostic value and relation to clinical manifestations of Fabry disease. Biochim. Biophys. Acta 2010, 1802, 741–748. [Google Scholar] [CrossRef] [PubMed]
- Schiffmann, R.; Waldek, S.; Benigni, A.; Auray-Blais, C. Biomarkers of Fabry disease nephropathy. Clin. J. Am. Soc. Nephrol. 2010, 5, 360–364. [Google Scholar] [CrossRef] [PubMed]
- Aerts, J.M.; Groener, J.E.; Kuiper, S.; Donker-Koopman, W.E.; Strijland, A.; Ottenhoff, R.; van Roomen, C.; Mirzaian, M.; Wijburg, F.A.; Linthorst, G.E.; et al. Elevated globotriaosylsphingosine is a hallmark of Fabry disease. Proc. Natl. Acad. Sci. USA 2008, 105, 2812–2817. [Google Scholar] [CrossRef] [PubMed]
- Sanchez-Nino, M.D.; Sanz, A.B.; Carrasco, S.; Saleem, M.A.; Mathieson, P.W.; Valdivielso, J.M.; Ruiz-Ortega, M.; Egido, J.; Ortiz, A. Globotriaosylsphingosine actions on human glomerular podocytes: Implications for Fabry nephropathy. Nephrol. Dial. Transplant. 2011, 26, 1797–1802. [Google Scholar] [CrossRef] [PubMed]
- Niemann, M.; Rolfs, A.; Stork, S.; Bijnens, B.; Breunig, F.; Beer, M.; Ertl, G.; Wanner, C.; Weidemann, F. Gene mutations versus clinically relevant phenotypes: Lyso-Gb3 defines Fabry disease. Circ. Cardiovasc. Genet. 2014, 7, 8–16. [Google Scholar] [CrossRef] [PubMed]
- Sueoka, H.; Ichihara, J.; Tsukimura, T.; Togawa, T.; Sakuraba, H. Nano-LC-MS/MS for Quantification of Lyso-Gb3 and Its Analogues Reveals a Useful Biomarker for Fabry Disease. PLoS ONE 2015, 10, e0127048. [Google Scholar] [CrossRef] [PubMed]
- Van Breemen, M.J.; Rombach, S.M.; Dekker, N.; Poorthuis, B.J.; Linthorst, G.E.; Zwinderman, A.H.; Breunig, F.; Wanner, C.; Aerts, JM.; Hollak, C. Reduction of elevated plasma globotriaosylsphingosine in patients with classic Fabry disease following enzyme replacement therapy. Biochim. Biophys. Acta 2011, 1812, 70–76. [Google Scholar] [CrossRef] [PubMed]
- Auray-Blais, C.; Ntwari, A.; Clarke, J.T.; Warnock, D.G.; Oliveira, J.P.; Young, S.P.; Millington, D.S.; Bichet, D.G.; Sirrs, S.; West, M.L.; et al. How well does urinary lyso-Gb3 function as a biomarker in Fabry disease? Clin. Chim. Acta 2010, 411, 1906–1914. [Google Scholar] [CrossRef] [PubMed]
- Germain, D.P.; Waldek, S.; Banikazemi, M.; Bushinsky, D.A.; Charrow, J.; Desnick, R.J.; Lee, P.; Loew, T.; Vedder, A.C.; Abichandani, R.; et al. Sustained, long-term renal stabilization after 54 months of agalsidase beta therapy in patients with Fabry disease. J. Am. Soc. Nephrol. 2007, 18, 1547–1557. [Google Scholar] [CrossRef] [PubMed]
- Breunig, F.; Weidemann, F.; Strotmann, J.; Knoll, A.; Wanner, C. Clinical benefit of enzyme replacement therapy in Fabry disease. Kidney Int. 2006, 69, 1216–1221. [Google Scholar] [CrossRef] [PubMed]
- West, M.; Nicholls, K.; Mehta, A.; Clarke, J.T.; Steiner, R.; Beck, M.; Barshop, B.A.; Rhead, W.; Mensah, R.; Ries, M.; et al. Agalsidase alfa and kidney dysfunction in Fabry disease. J. Am. Soc. Nephrol. 2009, 20, 1132–1139. [Google Scholar] [CrossRef] [PubMed]
- Warnock, D.G.; Daina, E.; Remuzzi, G.; West, M. Enzyme replacement therapy and Fabry nephropathy. Clin. J. Am. Soc. Nephrol. 2010, 5, 371–378. [Google Scholar] [CrossRef] [PubMed]
- Tondel, C.; Bostad, L.; Larsen, K.K.; Hirth, A.; Vikse, B.E.; Houge, G.; Svarstad, E. Agalsidase benefits renal histology in young patients with Fabry disease. J. Am. Soc. Nephrol. 2013, 24, 137–148. [Google Scholar] [CrossRef] [PubMed]
- Trimarchi, H.; Canzonieri, R.; Schiel, A.; Politei, J.; Stern, A.; Andrews, J.; Paulero, M.; Rengel, T.; Aráoz, A.; Forrester, M.; et al. Podocyturia is significantly elevated in untreated vs. treated Fabry adult patients. J. Nephrol. 2016, 29, 791–797. [Google Scholar] [CrossRef] [PubMed]
- Greka, A.; Mundel, P. Cell biology and pathology of podocytes. Annu. Rev. Physiol. 2012, 74, 299–323. [Google Scholar] [CrossRef] [PubMed]
- Faul, C.; Donnelly, M.; Merscher-Gomez, S.; Chang, Y.H.; Franz, S.; Delfgaauw, J.; Chang, J.M.; Choi, H.Y.; Campbell, K.N.; Kim, K.; et al. The actin cytoskeleton of kidney podocytes is a direct target of the antiproteinuric effect of cyclosporine A. Nat. Med. 2008, 14, 931–938. [Google Scholar] [CrossRef] [PubMed]
- Takahashi, N.; Yokoi, S.; Kasuno, K.; Kogami, A.; Tsukimura, T.; Togawa, T.; Saito, S.; Ohno, K.; Hara, M.; Kurosawa, H.; et al. A heterozygous female with Fabry disease due to a novel alpha-galactosidase A mutation exhibits a unique synaptopodin distribution in vacuolated podocytes. Clin. Nephrol. 2015, 83, 301–308. [Google Scholar] [CrossRef] [PubMed]
- Trimarchi, H. Podocyturia: What is in a name? J. Transl. Int. Med. 2015, 3, 51–56. [Google Scholar] [CrossRef] [PubMed]
- Pereira, E.M.; Silva, A.S.; Labilloy, A.; Monte Neto, J.T.; Monte, S.J. Podocyturia in Fabry disease. J. Bras. Nefrol. 2016, 38, 49–53. [Google Scholar] [CrossRef] [PubMed]
- Torralba-Cabeza, M.A.; Olivera, S.; Hughes, D.A.; Pastores, G.M.; Mateo, R.N.; Perez-Calvo, J.I. Cystatin C and NT-proBNP as prognostic biomarkers in Fabry disease. Mol. Genet. Metab. 2011, 104, 301–307. [Google Scholar] [CrossRef] [PubMed]
- Feriozzi, S.; Germain, D.P.; Di Vito, R.; Legrand, A.; Ricci, R.; Barbey, F. Cystatin C as a marker of early changes of renal function in Fabry nephropathy. J. Nephrol. 2007, 20, 437–443. [Google Scholar] [PubMed]
- Vylet’al, P.; Hulkova, H.; Zivna, M.; Berna, L.; Novak, P.; Elleder, M.; Kmoch, S. Abnormal expression and processing of uromodulin in Fabry disease reflects tubular cell storage alteration and is reversible by enzyme replacement therapy. J. Inherit. Metab. Dis. 2008, 31, 508–517. [Google Scholar] [CrossRef] [PubMed]
- Prabakaran, T.; Birn, H.; Bibby, B.M.; Regeniter, A.; Sorensen, S.S.; Feldt-Rasmussen, U.; Nielsen, R.; Christensen, E.I. Long-term enzyme replacement therapy is associated with reduced proteinuria and preserved proximal tubular function in women with Fabry disease. Nephrol. Dial. Transplant. 2014, 29, 619–625. [Google Scholar] [CrossRef] [PubMed]
- Lepedda, A.J.; Fancellu, L.; Zinellu, E.; De Muro, P.; Nieddu, G.; Deiana, G.A.; Canu, P.; Concolino, D.; Sestito, S.; Formato, M.; et al. Urine bikunin as a marker of renal impairment in Fabry’s disease. Biomed. Res. Int. 2013, 2013, 205948. [Google Scholar] [CrossRef] [PubMed]
- Coats, C.J.; Parisi, V.; Ramos, M.; Janagarajan, K.; O’Mahony, C.; Dawnay, A.; Lachmann, R.H.; Murphy, E.; Mehta, A.; Hughes, D.; et al. Role of serum N-terminal pro-brain natriuretic peptide measurement in diagnosis of cardiac involvement in patients with anderson-fabry disease. Am. J. Cardiol. 2013, 111, 111–117. [Google Scholar] [CrossRef] [PubMed]
- Kramer, J.; Bijnens, B.; Stork, S.; Ritter, C.O.; Liu, D.; Ertl, G.; Wanner, C.; Weidemann, F. Left Ventricular Geometry and Blood Pressure as Predictors of Adverse Progression of Fabry Cardiomyopathy. PLoS ONE 2015, 10, e0140627. [Google Scholar] [CrossRef] [PubMed]
- Feustel, A.; Hahn, A.; Schneider, C.; Sieweke, N.; Franzen, W.; Gunduz, D.; Rolfs, A.; Tanislav, C. Continuous cardiac troponin I release in Fabry disease. PLoS ONE 2014, 9, e91757. [Google Scholar] [CrossRef] [PubMed]
- Sato, Y.; Fujiwara, H.; Takatsu, Y. Cardiac troponin and heart failure in the era of high-sensitivity assays. J. Cardiol. 2012, 60, 160–167. [Google Scholar] [CrossRef] [PubMed]
- Jenab, Y.; Pourjafari, M.; Darabi, F.; Boroumand, M.A.; Zoroufian, A.; Jalali, A. Prevalence and determinants of elevated high-sensitivity cardiac troponin T in hypertrophic cardiomyopathy. J. Cardiol. 2014, 63, 140–144. [Google Scholar] [CrossRef] [PubMed]
- Kubo, T.; Baba, Y.; Hirota, T.; Tanioka, K.; Yamasaki, N.; Yamanaka, S.; Liyama, T.; Kumagai, N.; Furuno, T.; Sugiura, T.; et al. Differentiation of infiltrative cardiomyopathy from hypertrophic cardiomyopathy using high-sensitivity cardiac troponin T: A case-control study. BMC Cardiovasc. Disord. 2015. [Google Scholar] [CrossRef] [PubMed]
- Seydelmann, N.; Liu, D.; Kramer, J.; Drechsler, C.; Hu, K.; Nordbeck, P.; Schneider, A.; Störk, S.; Bijnens, B.; Ertl, G.; et al. High-Sensitivity Troponin: A Clinical Blood Biomarker for Staging Cardiomyopathy in Fabry Disease. J. Am. Heart Assoc. 2016, 5. [Google Scholar] [CrossRef] [PubMed]
- DeGraba, T.; Azhar, S.; Dignat-George, F.; Brown, E.; Boutiere, B.; Altarescu, G.; Richard McCarron, R.; Schiffmann, R. Profile of endothelial and leukocyte activation in Fabry patients. Ann. Neurol. 2000, 47, 229–233. [Google Scholar] [CrossRef]
- Chen, K.H.; Chien, Y.; Wang, K.L.; Leu, H.B.; Hsiao, C.Y.; Lai, Y.H.; Wang, C.Y.; Chang, Y.L.; Lin, S.J.; Niu, D.M.; et al. Evaluation of Proinflammatory Prognostic Biomarkers for Fabry Cardiomyopathy with Enzyme Replacement Therapy. Can. J. Cardiol. 2016, 32, 1221–1229. [Google Scholar] [CrossRef] [PubMed]
- Kaneski, C.R.; Moore, D.F.; Ries, M.; Zirzow, G.C.; Schiffmann, R. Myeloperoxidase predicts risk of vasculopathic events in hemizgygous males with Fabry disease. Neurology 2006, 67, 2045–2047. [Google Scholar] [CrossRef] [PubMed]
- Shah, J.S.; Hughes, D.A.; Tayebjee, M.H.; MacFadyen, R.J.; Mehta, A.B.; Elliott, P.M. Extracellular matrix turnover and disease severity in Anderson-Fabry disease. J. Inherit. Metab. Dis. 2007, 30, 88–95. [Google Scholar] [CrossRef] [PubMed]
- Kramer, J.; Niemann, M.; Stork, S.; Frantz, S.; Beer, M.; Ertl, G.; Wanner, C.; Weidemann, F. Relation of burden of myocardial fibrosis to malignant ventricular arrhythmias and outcomes in Fabry disease. Am. J. Cardiol. 2014, 114, 895–900. [Google Scholar] [CrossRef] [PubMed]
- Azevedo, E.; Mendes, A.; Seixas, D.; Santos, R.; Castro, P.; Ayres-Basto, M.; Rosengarten, B.; Oliveira, J.P. Functional transcranial Doppler: Presymptomatic changes in Fabry disease. Eur. Neurol. 2012, 67, 331–337. [Google Scholar] [CrossRef] [PubMed]
- Segura, T.; Ayo-Martin, O.; Gomez-Fernandez, I.; Andres, C.; Barba, M.A.; Vivancos, J. Cerebral hemodynamics and endothelial function in patients with Fabry disease. BMC Neurol. 2013, 13, 170. [Google Scholar] [CrossRef] [PubMed]
- Tahir, H.; Jackson, L.L.; Warnock, D.G. Antiproteinuric therapy and fabry nephropathy: Sustained reduction of proteinuria in patients receiving enzyme replacement therapy with agalsidase-beta. J. Am. Soc. Nephrol. 2007, 18, 2609–2617. [Google Scholar] [CrossRef] [PubMed]
- Germain, D.P.; Charrow, J.; Desnick, R.J.; Guffon, N.; Kempf, J.; Lachmann, R.H.; Lemay, R.; Linthorst, G.E.; Packman, S.; Scott, C.R.; et al. Ten-year outcome of enzyme replacement therapy with agalsidase beta in patients with Fabry disease. J. Med. Genet. 2015, 52, 353–358. [Google Scholar] [CrossRef] [PubMed]
- Auray-Blais, C.; Boutin, M.; Gagnon, R.; Dupont, F.O.; Lavoie, P.; Clarke, J.T. Urinary globotriaosylsphingosine-related biomarkers for Fabry disease targeted by metabolomics. Anal. Chem. 2012, 84, 2745–2753. [Google Scholar] [CrossRef] [PubMed]
- Dupont, F.O.; Gagnon, R.; Boutin, M.; Auray-Blais, C. A metabolomic study reveals novel plasma lyso-Gb3 analogs as Fabry disease biomarkers. Curr. Med. Chem. 2013, 20, 280–288. [Google Scholar] [CrossRef] [PubMed]
- Manwaring, V.; Boutin, M.; Auray-Blais, C. A metabolomic study to identify new globotriaosylceramide-related biomarkers in the plasma of Fabry disease patients. Anal. Chem. 2013, 85, 9039–9048. [Google Scholar] [CrossRef] [PubMed]
- Boutin, M.; Auray-Blais, C. Metabolomic discovery of novel urinary galabiosylceramide analogs as Fabry disease biomarkers. J. Am. Soc. Mass Spectrom. 2015, 26, 499–510. [Google Scholar] [CrossRef] [PubMed]
- Cigna, D.; D’Anna, C.; Zizzo, C.; Francofonte, D.; Sorrentino, I.; Colomba, P.; Albeggiani, G.; Armini, A.; Bianchi, L.; Bini, L.; et al. Alteration of proteomic profiles in PBMC isolated from patients with Fabry disease: Preliminary findings. Mol. Biosyst. 2013, 9, 1162–1168. [Google Scholar] [CrossRef] [PubMed]
- Matafora, V.; Cuccurullo, M.; Beneduci, A.; Petrazzuolo, O.; Simeone, A.; Anastasio, P.; Mignani, R.; Feriozzi, S.; Pisani, A.; Comotti, C.; et al. Early markers of Fabry disease revealed by proteomics. Mol. Biosyst. 2015, 11, 1543–1551. [Google Scholar] [CrossRef] [PubMed]
- Vojtova, L.; Zima, T.; Tesar, V.; Michalova, J.; Prikryl, P.; Dostalova, G.; Linhart, A. Study of urinary proteomes in Anderson-Fabry disease. Ren. Fail. 2010, 32, 1202–1209. [Google Scholar] [CrossRef] [PubMed]
- Manwaring, V.; Heywood, W.E.; Clayton, R.; Lachmann, R.H.; Keutzer, J.; Hindmarsh, P.; Winchester, B.; Heales, S.; Mills, K. The identification of new biomarkers for identifying and monitoring kidney disease and their translation into a rapid mass spectrometry-based test: Evidence of presymptomatic kidney disease in pediatric Fabry and type-I diabetic patients. J. Proteome Res. 2013, 12, 2013–2021. [Google Scholar] [CrossRef] [PubMed]
- Hollander, Z.; Dai, D.L.; Putko, B.N.; Yogasundaram, H.; Wilson-McManus, J.E.; Thompson, R.B.; Khan, A.; West, M.L.; McManus, B.M.; Oudit, G.Y. Gender-specific plasma proteomic biomarkers in patients with Anderson-Fabry disease. Eur. J. Heart Fail. 2015, 17, 291–300. [Google Scholar] [CrossRef] [PubMed]
- Weidemann, F.; Breunig, F.; Beer, M.; Sandstede, J.; Stork, S.; Voelker, W.; Ertl, G.; Knoll, A.; Wanner, C.; Strotmann, J.M. The variation of morphological and functional cardiac manifestation in Fabry disease: Potential implications for the time course of the disease. Eur. Heart J. 2005, 26, 1221–1227. [Google Scholar] [CrossRef] [PubMed]
- Niemann, M.; Herrmann, S.; Hu, K.; Breunig, F.; Strotmann, J.; Beer, M.; Machann, W.; Voelker, W.; Ertl, G. Differences in Fabry cardiomyopathy between female and male patients: Consequences for diagnostic assessment. JACC Cardiovasc. Imaging 2011, 4, 592–601. [Google Scholar] [CrossRef] [PubMed]
- MacDermot, K.D.; Holmes, A.; Miners, A.H. Anderson-Fabry disease: Clinical manifestations and impact of disease in a cohort of 60 obligate carrier females. J. Med. Genet. 2001, 38, 769–775. [Google Scholar] [CrossRef] [PubMed]
- Feldt-Rasmussen, U.; Dobrovolny, R.; Nazarenko, I.; Ballegaard, M.; Hasholt, L.; Rasmussen, A.K.; Christensen, E.I.; Sorensen, S.S.; Wibrand, F. Diagnostic dilemma: A young woman with Fabry disease symptoms, no family history, and a “sequencing cryptic” alpha-galactosidase a large deletion. Mol. Genet. Metab. 2011, 104, 314–318. [Google Scholar] [CrossRef] [PubMed]
- Nagueh, S.F.; Bachinski, L.L.; Meyer, D.; Hill, R.; Zoghbi, W.A.; Tam, J.W.; Quinones, M.A.; Roberts, R.; Marian, A.J. Tissue Doppler imaging consistently detects myocardial abnormalities in patients with hypertrophic cardiomyopathy and provides a novel means for an early diagnosis before and independently of hypertrophy. Circulation 2001, 104, 128–130. [Google Scholar] [CrossRef] [PubMed]
- Zamorano, J.; Serra, V.; Perez de Isla, L.; Feltes, G.; Calli, A.; Barbado, F.J.; Torras, J.; Hernandez, S.; Herrera, J.; Herrero, J.A.; et al. Usefulness of tissue Doppler on early detection of cardiac disease in Fabry patients and potential role of enzyme replacement therapy (ERT) for avoiding progression of disease. Eur. J. Echocardiogr. 2011, 12, 671–677. [Google Scholar] [CrossRef] [PubMed]
- Pieroni, M.; Chimenti, C.; Ricci, R.; Sale, P.; Russo, M.A.; Frustaci, A. Early detection of Fabry cardiomyopathy by tissue Doppler imaging. Circulation 2003, 107, 1978–1984. [Google Scholar] [CrossRef] [PubMed]
- De Backer, J.; Matthys, D.; Gillebert, T.C.; De Paepe, A.; De Sutter, J. The use of Tissue Doppler Imaging for the assessment of changes in myocardial structure and function in inherited cardiomyopathies. Eur. J. Echocardiogr. 2005, 6, 243–250. [Google Scholar] [CrossRef] [PubMed]
- Toro, R.; Perez-Isla, L.; Doxastaquis, G.; Barba, M.A.; Gallego, A.R.; Pintos, G.; Barbados, F.J.; Mangas, A.; Zamorano, J.L. Clinical usefulness of tissue Doppler imaging in predicting preclinical Fabry cardiomyopathy. Int. J. Cardiol. 2009, 132, 38–44. [Google Scholar] [CrossRef] [PubMed]
- Shanks, M.; Thompson, R.B.; Paterson, I.D.; Putko, B.; Khan, A.; Chan, A.; Becher, H.; Oudit, G.Y. Systolic and diastolic function assessment in fabry disease patients using speckle-tracking imaging and comparison with conventional echocardiographic measurements. J. Am. Soc. Echocardiogr. 2013, 26, 1407–1414. [Google Scholar] [CrossRef] [PubMed]
- Perk, G.; Tunick, P.A.; Kronzon, I. Non-Doppler two-dimensional strain imaging by echocardiography—from technical considerations to clinical applications. J. Am. Soc. Echocardiogr. 2007, 20, 234–243. [Google Scholar] [CrossRef] [PubMed]
- Kramer, J.; Niemann, M.; Liu, D.; Hu, K.; Machann, W.; Beer, M.; Wanner, C.; Ertl, G.; Weidemann, F. Two-dimensional speckle tracking as a non-invasive tool for identification of myocardial fibrosis in Fabry disease. Eur. Heart J. 2013, 34, 1587–1596. [Google Scholar] [CrossRef] [PubMed]
- Germain, P.; El Ghannudi, S.; Jeung, M.Y.; Ohlmann, P.; Epailly, E.; Roy, C.; Gangi, A. Native T1 mapping of the heart—A pictorial review. Clin. Med. Insights Cardiol. 2014, 8 (Suppl. 4), 1–11. [Google Scholar] [CrossRef] [PubMed]
- Kellman, P.; Hansen, M.S. T1-mapping in the heart: Accuracy and precision. J. Cardiovasc. Magn. Reson. 2014, 16, 2. [Google Scholar] [CrossRef] [PubMed]
- Bulluck, H.; Maestrini, V.; Rosmini, S.; Abdel-Gadir, A.; Treibel, T.A.; Castelletti, S.; Bucciarelli-Ducci, C.; Manisty, C.; Moon, J.C. Myocardial T1 mapping. Circ. J. 2015, 79, 487–494. [Google Scholar] [CrossRef] [PubMed]
- Sado, D.M.; White, S.K.; Piechnik, S.K.; Banypersad, S.M.; Treibel, T.; Captur, G.; Fontana, M.; Maestrini, V.; Flett, A.S.; Robson, M.D.; et al. Identification and assessment of Anderson-Fabry disease by cardiovascular magnetic resonance noncontrast myocardial T1 mapping. Circ. Cardiovasc. Imaging 2013, 6, 392–398. [Google Scholar] [CrossRef] [PubMed]
- Pica, S.; Sado, D.M.; Maestrini, V.; Fontana, M.; White, S.K.; Treibel, T.; Captur, G.; Anderson, S.; Piechnik, S.K.; Robson, M.D.; et al. Reproducibility of native myocardial T1 mapping in the assessment of Fabry disease and its role in early detection of cardiac involvement by cardiovascular magnetic resonance. J. Cardiovasc. Magn. Reson. 2014, 16, 99. [Google Scholar] [CrossRef] [PubMed]
- Nappi, C.; Altiero, M.; Imbriaco, M.; Nicolai, E.; Giudice, C.A.; Aiello, M.; Diomiaiuti, C.T.; Pisani, A.; Spinelli, L.; Cuocolo, A. First experience of simultaneous PET/MRI for the early detection of cardiac involvement in patients with Anderson-Fabry disease. Eur. J. Nucl. Med. Mol. Imaging 2015, 42, 1025–1031. [Google Scholar] [CrossRef] [PubMed]
- Buechner, S.; Moretti, M.; Burlina, A.P.; Cei, G.; Manara, R.; Ricci, R.; Mignani, R.; Parini, R.; Di Vito, R.; Giordano, G.P.; et al. Central nervous system involvement in Anderson-Fabry disease: A clinical and MRI retrospective study. J. Neurol. Neurosurg. Psychiatry 2008, 79, 1249–1254. [Google Scholar] [CrossRef] [PubMed]
- Crutchfield, K.E.; Patronas, N.J.; Dambrosia, J.M.; Frei, K.P.; Banerjee, T.K.; Barton, N.W.; Schiffmann, R. Quantitative analysis of cerebral vasculopathy in patients with Fabry disease. Neurology 1998, 50, 1746–1749. [Google Scholar] [CrossRef] [PubMed]
- Fellgiebel, A.; Muller, M.J.; Mazanek, M.; Baron, K.; Beck, M.; Stoeter, P. White matter lesion severity in male and female patients with Fabry disease. Neurology 2005, 65, 600–602. [Google Scholar] [CrossRef] [PubMed]
- Steinicke, R.; Gaertner, B.; Grittner, U.; Schmidt, W.; Dichgans, M.; Heuschmann, P.U.; Tanislav, C.; Putaala, J.; Kaps, M.; Endres, M.; et al. Kidney function and white matter disease in young stroke patients: Analysis of the stroke in young fabry patients study population. Stroke 2012, 43, 2382–2388. [Google Scholar] [CrossRef] [PubMed]
- Fazekas, F.; Enzinger, C.; Schmidt, R.; Dichgans, M.; Gaertner, B.; Jungehulsing, G.J.; Hennerici, M.G.; Heuschmann, P.; Holzhausen, M.; Kaps, M.; et al. MRI in acute cerebral ischemia of the young: The Stroke in Young Fabry Patients (sifap1) Study. Neurology 2013, 81, 1914–1921. [Google Scholar] [CrossRef] [PubMed]
- Kolodny, E.; Fellgiebel, A.; Hilz, M.J.; Sims, K.; Caruso, P.; Phan, T.G.; Manra, R.; Burlina, A. Cerebrovascular involvement in Fabry disease: Current status of knowledge. Stroke 2015, 46, 302–313. [Google Scholar] [CrossRef] [PubMed]
- Underhill, H.R.; Golden-Grant, K.; Garrett, L.T.; Uhrich, S.; Zielinski, B.A.; Scott, C.R. Detecting the effects of Fabry disease in the adult human brain with diffusion tensor imaging and fast bound-pool fraction imaging. J. Magn. Reson. Imaging 2015, 42, 1611–1622. [Google Scholar] [CrossRef] [PubMed]
- Fellgiebel, A.; Keller, I.; Martus, P.; Ropele, S.; Yakushev, I.; Bottcher, T.; Fazekas, F.; Rolfs, A. Basilar artery diameter is a potential screening tool for Fabry disease in young stroke patients. Cerebrovasc. Dis. 2011, 31, 294–299. [Google Scholar] [CrossRef] [PubMed]
- Uceyler, N.; Homola, G.A.; Guerrero Gonzalez, H.; Kramer, D.; Wanner, C.; Weidemann, F.; Solymosi, L.; Sommer, C. Increased arterial diameters in the posterior cerebral circulation in men with Fabry disease. PLoS ONE 2014, 9, e87054. [Google Scholar] [CrossRef] [PubMed]
- Politei, J.; Schenone, A.B.; Burlina, A.; Blanco, M.; Lescano, S.; Szlago, M.; Cabrera, G. Vertebrobasilar dolichoectasia in Fabry Disease: The earliest marker of neurovascular involvement? J. Inborn Errors Metab. Screen. 2014, 2. [Google Scholar] [CrossRef]
- Takanashi, J.; Barkovich, A.J.; Dillon, W.P.; Sherr, E.H.; Hart, K.A.; Packman, S. T1 hyperintensity in the pulvinar: Key imaging feature for diagnosis of Fabry disease. AJNR Am. J. Neuroradiol. 2003, 24, 916–921. [Google Scholar] [PubMed]
- Burlina, A.P.; Manara, R.; Caillaud, C.; Laissy, J.P.; Severino, M.; Klein, I.; Burlina, A.; Lidove, O. The pulvinar sign: Frequency and clinical correlations in Fabry disease. J. Neurol. 2008, 255, 738–744. [Google Scholar] [CrossRef] [PubMed]
- Fellgiebel, A.; Wolf, D.O.; Kolodny, E.; Muller, M.J. Hippocampal atrophy as a surrogate of neuronal involvement in Fabry disease. J. Inherit. Metab. Dis. 2012, 35, 363–367. [Google Scholar] [CrossRef] [PubMed]
- Lelieveld, I.M.; Bottcher, A.; Hennermann, J.B.; Beck, M.; Fellgiebel, A. Eight-Year Follow-Up of Neuropsychiatric Symptoms and Brain Structural Changes in Fabry Disease. PLoS ONE 2015, 10, e0137603. [Google Scholar] [CrossRef] [PubMed]
- Korsholm, K.; Feldt-Rasmussen, U.; Granqvist, H.; Hojgaard, L.; Bollinger, B.; Rasmussen, A.K.; Kirsten Korsholm, K.; Law, I. Positron Emission Tomography and Magnetic Resonance Imaging of the Brain in Fabry Disease: A Nationwide, Long-Time, Prospective Follow-Up. PLoS ONE 2015, 10, e0143940. [Google Scholar] [CrossRef] [PubMed]
Organ Specificity | Biomarker | Plasma/Urine | Value | Availability | Response to ERT |
---|---|---|---|---|---|
Nonspecific | Gb3 [7,8,9,15] | Plasma/Urine | Diagnosis in classic male patients | Clinical work-up | Useless [7] |
Lyso-Gb3 [8,9,10,12,13,14] | Plasma | Increased in all male AFD patients and in most females. Confirmation in mutations of unknown significance | Clinical work-up | Decreased | |
Kidney | Proteinuria [1,17,18,19,20] | Urine | Glomerular damage | Clinical work-up | Decreased [47] |
Podocyturia [22,23,24,25,26,27] | Urine | Glomerular damage | Clinical work-up | Decreases | |
Creatinine [15] | Plasma | Change in GFR | Clinical work-up | Decreased [48] mean slop GFR | |
Cystatin C [9,28] | Plasma | Early change in GFR | Clinical work-up | Not studied | |
N-acetil-β-d-glucosaminidase [15] | Urine | Tubular damage | Experimental studies | Not studied | |
β2-microglobulin [15] | Urine | Tubular damage | Experimental studies | Decreases | |
Uromodulin [30] | Urine | Tubular damage | Experimental studies | Not studied | |
α1-microglobulin [31] | Urine | Tubular damage | Experimental studies | Decreases | |
Retinol-binding Protein [31] | Urine | Tubular damage | Experimental studies | Decreases | |
Bikunin [32] | Urine | Experimental | Not studied | ||
Heart | NT-proBNP [33,34] | Plasma | Elevated in subclinical disease. Correlates with cardiomyopathy severity | Clinical work-up | Not studied |
Troponin [35] | Plasma | Correlates with higher LV posterior wall diameter | Clinical work-up | Not studied | |
Hs-cTnT [38,39] | Plasma | Correlates with LVH and amount of left ventricular fibrosis | Clinical work-up | Not studied | |
IL 6 [41] | Plasma | Cardiac damage | Experimental studies | Decreases | |
MCP 1 [41] | Plasma | Cardiac damage | Experimental studies | Decreases | |
MMP-9 [43] | Plasma | Cardiac damage | Experimental studies | Not studied |
Imaging Exam | Characteristic Findings | Availability |
---|---|---|
Cardiac echocardiography [45,46,49,50,51,52,53,54] | Lower early diastolic tissue Doppler velocities Longer isovolumic relaxation time Shorter isovolumic contraction time Lower peak systolic wall motion velocity Lower global peak systolic strain Lower global deformation values | Clinical work-up |
Cardiac MR [55,56,57,58,59] | Low T1 LGE in the posterior and lateral walls | Clinical work-up |
Cerebral MR [63,64,65,66,67,68,69,70,71,72,73,74,75] | White matter lesions on T2-weighted MRI Basilar artery dolichoectasia Pulvinar sign on T1 Hippocampus atrophy | Clinical work-up |
Transcranial Doppler [61] | Small vessel disease and abnormal cerebral autoregulation; posterior cortical vascular dysfunction | Clinical work-up |
PET/MR [60,84] | Cardiac: distinguish scar from fibrosis associated with active inflammation. Cerebral: No additional information to MR isolated | Experimental studies |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Beirão, I.; Cabrita, A.; Torres, M.; Silva, F.; Aguiar, P.; Laranjeira, F.; Gomes, A.M. Biomarkers and Imaging Findings of Anderson–Fabry Disease—What We Know Now. Diseases 2017, 5, 15. https://doi.org/10.3390/diseases5020015
Beirão I, Cabrita A, Torres M, Silva F, Aguiar P, Laranjeira F, Gomes AM. Biomarkers and Imaging Findings of Anderson–Fabry Disease—What We Know Now. Diseases. 2017; 5(2):15. https://doi.org/10.3390/diseases5020015
Chicago/Turabian StyleBeirão, Idalina, Ana Cabrita, Márcia Torres, Fernando Silva, Patrício Aguiar, Francisco Laranjeira, and Ana Marta Gomes. 2017. "Biomarkers and Imaging Findings of Anderson–Fabry Disease—What We Know Now" Diseases 5, no. 2: 15. https://doi.org/10.3390/diseases5020015
APA StyleBeirão, I., Cabrita, A., Torres, M., Silva, F., Aguiar, P., Laranjeira, F., & Gomes, A. M. (2017). Biomarkers and Imaging Findings of Anderson–Fabry Disease—What We Know Now. Diseases, 5(2), 15. https://doi.org/10.3390/diseases5020015