Tailored Therapeutic Strategies for Fetuses, Neonates, Pediatrics, Geriatrics, Athletes, and Critical Cases in the Era of Personalized Medicine
Abstract
1. Introduction
2. Methodology
3. Clinical Pharmacology, Pharmacokinetics, and the Role of Therapeutic Drug Monitoring in Personalized Medicine
3.1. Clinical Pharmacology and Therapeutic Drug Monitoring
3.2. Mid-Pregnancy Monitoring and Placental Biomarkers
3.3. Late Pregnancy and Fetal Biomarkers
Fetal-Specific Therapeutic Interventions
3.4. Personalized Interventions and Clinical Applications
4. Pediatric Precision Medicine
4.1. Pediatric Pharmacogenomics and Genome Sequencing
4.2. Pediatric Precision Medicine in Cancer
4.3. Pediatric Precision Medicine in Neurodegenerative Diseases
4.4. Pediatric Precision Medicine in Asthma
4.5. Pharmacogenomics in Pediatric Cardiovascular Therapy
4.6. Antiepileptic Drug (AED) Response
- (A)
- Phenytoin metabolism is significantly influenced by CYP2C9 and CYP2C19 variants, which alter serum levels and toxicity risk in children whose metabolic pathways are still developing [69].
- (B)
- Valproic acid hepatotoxicity has been associated with POLG mutations, making pre-treatment screening essential to avoid severe mitochondrial complications [70].
5. Personalized Medicine in Adults
5.1. Advances in Personalized Oncology
5.1.1. Radiotheranostics
5.1.2. Neoantigen-Based Therapies
5.1.3. Pharmacogenomics in AML
5.2. Metabolic Disease and Personalized Nutrition
5.3. Personalized Hemodynamic Management in Perioperative Care
5.4. Precision Approaches in Mental Health
5.5. Cross-Cutting Insights into Personalized Medicine
5.6. Digital Personalization in Musculoskeletal Care
5.7. Personalized Nutrition and Diabetes Management
5.8. Personalized Approaches in Neurology and Neurodegeneration
6. Personalized Medicine in Geriatric Patients (Older than 60 Years Old)
6.1. Anxiety Disorders
6.2. Depression
7. Pharmacoeconomic Perspectives on Drug Development and Rational Therapeutic Choices
8. Artificial Intelligence as the Backbone of Personalized Medicine
8.1. AI in Oncology: From Multi-Omics to Neoantigen Discovery
8.2. AI in Cardiovascular Medicine: Predictive Models for Risk and Therapy Optimization
8.3. AI in Pulmonology and Infectious Diseases: Phenotypes, Biomarkers, and Adaptive Therapies
8.4. AI in Neurology and Psychiatry: Cognitive Markers, Digital Tools, and Personalized Interventions
8.5. AI in Metabolism and Nutrition: Microbiome, Dietomics, and Digital Twins
8.6. AI in Reproductive and Immune Medicine: Precision Fertility, Immunotherapy, and Rare Diseases
8.7. Implementation Challenges: Data Integration, Bias, and Equity
8.8. Future Directions: Digital Twins, Adaptive Trials, and Global AI-Powered Personalization
9. Personalized Therapeutic Strategies for Athletes
9.1. Biological Foundations of Individualized Athletic Adaptation
9.2. Integrated Precision Interventions: From Phenotyping to Management
9.2.1. Mechanism-Informed Phenotyping
9.2.2. High-Fidelity Digital Monitoring and Biomarker Integration
9.2.3. Precision Nutrition and Metabolic Optimization
9.2.4. Pharmacogenomics and Anti-Doping Integration
9.2.5. Individualized Injury Prevention and Rehabilitation
9.2.6. Psychological Health and Sleep as Adaptive Modifiers
9.3. Implementation, Governance, and Translational Roadmap
9.4. Sports Genotyping and DTC Testing
10. Challenges in Implementing Personalized Medicine
Health Economics and Cost-Effectiveness of Personalized Medicine
11. Limitations, Failures, and Translational Gaps in Personalized Medicine
12. Ethical, Legal, and Social Implications of Personalized Medicine
13. Conclusions and Policy Recommendations
Recommendations for Policy and Decision-Makers
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Dash, B.; Shireen, M.; Kumar, S.; Goel, A.; Semwal, P.; Rani, R. Comprehensive Review: Pharmacogenomics and Personalized Medicine Customizing Drug Therapy Based on Individual Genetics Profiles. Chin. J. Appl. Physiol. 2024, 40, e20240011. [Google Scholar] [CrossRef]
- Farrokhi, M.; Taheri, F.; Jafari Khouzani, P.; Rahmani, E.; Tavakoli, R.; Moghadam Fard, A.; Rajabloo, Y.; Sadeghniiat-Haghighi, A.; Shahbazi, K.; Aghabababak Semnani, M.; et al. Role of Precision Medicine and Personalized Medicine in the Treatment of Diseases. Kindle 2023, 3, 1–164. [Google Scholar] [CrossRef]
- Hivre, M.D.; Surkar, P.V.; Holkar, S.R. Role of metabolomics in advancing precision medicine and personalized nutrition: A systematic review of clinical applications and future prospects. Int. J. Recent Innov. Med. Clin. Res. 2024, 6, 70–75. [Google Scholar] [CrossRef]
- Lim, S.; Takele, W.W.; Vesco, K.K.; Redman, L.M.; Hannah, W.; Bonham, M.P.; Chen, M.; Chivers, S.C.; Fawcett, A.J.; Grieger, J.A.; et al. Participant characteristics in the prevention of gestational diabetes as evidence for precision medicine: A systematic review and meta-analysis. Commun. Med. 2023, 3, 137. [Google Scholar] [CrossRef]
- Rahman, M.; Schellhorn, H.E. Metabolomics of infectious diseases in the era of personalized medicine. Front. Mol. Biosci. 2023, 10, 1120376. [Google Scholar] [CrossRef] [PubMed]
- Bertozzi, S.; Corradetti, B.; Fruscalzo, A.; Londero, A.P. Editorial: Precision Medicine in Obstetrics: Pregnancy Complication. J. Pers. Med. 2023, 13, 305. [Google Scholar] [CrossRef]
- D’Alise, A.M.; Leoni, G.; Cotugno, G.; Siani, L.; Vitale, R.; Ruzza, V.; Garzia, I.; Antonucci, L.; Micarelli, E.; Venafra, V.; et al. Phase I Trial of Viral Vector-Based Personalized Vaccination Elicits Robust Neoantigen-Specific Antitumor T-Cell Responses. Clin. Cancer Res. 2024, 30, 2412–2423. [Google Scholar] [CrossRef] [PubMed]
- Ott, P.A.; Hu, Z.; Keskin, D.B.; Shukla, S.A.; Sun, J.; Bozym, D.J.; Zhang, W.; Luoma, A.; Giobbie-Hurder, A.; Peter, L.; et al. An immunogenic personal neoantigen vaccine for patients with melanoma. Nature 2017, 547, 217–221. [Google Scholar] [CrossRef] [PubMed]
- Bitoun, S.; Hässler, S.; Ternant, D.; Szely, N.; Gleizes, A.; Richez, C.; Soubrier, M.; Avouac, J.; Brocq, O.; Sellam, J.; et al. Response to Biologic Drugs in Patients with Rheumatoid Arthritis and Antidrug Antibodies. JAMA Netw. Open 2023, 6, e2323098. [Google Scholar] [CrossRef]
- Lang, D.M.; Sheikh, J.; Joshi, S.; Bernstein, J.A. Endotypes, phenotypes, and biomarkers in chronic spontaneous urticaria. Ann. Allergy. Asthma. Immunol. 2025, 134, 408–417.e3. [Google Scholar] [CrossRef]
- Slim, M.A.; Van Mourik, N.; Bakkerus, L.; Fuller, K.; Acharya, L.; Giannidis, T.; Dionne, J.C.; Oczkowski, S.J.W.; Netea, M.G.; Pickkers, P.; et al. Towards personalized medicine: A scoping review of immunotherapy in sepsis. Crit. Care 2024, 28, 183. [Google Scholar] [CrossRef]
- Deisenhofer, I.; Albenque, J.-P.; Busch, S.; Gitenay, E.; Mountantonakis, S.E.; Roux, A.; Horvilleur, J.; Bakouboula, B.; Oza, S.; Abbey, S.; et al. Artificial intelligence for individualized treatment of persistent atrial fibrillation: A randomized controlled trial. Nat. Med. 2025, 31, 1286–1293. [Google Scholar] [CrossRef]
- Sundström, J.; Lind, L.; Nowrouzi, S.; Hagström, E.; Held, C.; Lytsy, P.; Neal, B.; Marttala, K.; Östlund, O. Heterogeneity in Blood Pressure Response to 4 Antihypertensive Drugs: A Randomized Clinical Trial. JAMA 2023, 329, 1160. [Google Scholar] [CrossRef]
- Yi, C.; Bian, D.; Wang, J.; Hu, S.; Sun, L.; Yan, Y.; Wang, S.; Shen, Z.; Yu, H.; Yang, Y.; et al. Anti-PD1 based precision induction therapy in unresectable stage III non-small cell lung cancer: A phase II umbrella clinical trial. Nat. Commun. 2025, 16, 1932. [Google Scholar] [CrossRef]
- Khan, H.; Singh, N.; Yovera Leyva, L.; Malawana, J.; Shah, N.M. Does Precision-Based Medicine Hold the Promise of a New Approach to Predicting and Treating Spontaneous Preterm Birth? Int. J. Transl. Med. 2024, 4, 15–52. [Google Scholar] [CrossRef]
- Bermingham, K.M.; Linenberg, I.; Polidori, L.; Asnicar, F.; Arrè, A.; Wolf, J.; Badri, F.; Bernard, H.; Capdevila, J.; Bulsiewicz, W.J.; et al. Effects of a personalized nutrition program on cardiometabolic health: A randomized controlled trial. Nat. Med. 2024, 30, 1888–1897. [Google Scholar] [CrossRef]
- Finkelstein, A.; Budd, M.A.; Gray, B.E.; Mirsky, J.; Tirosh, A.; Polak, R. Personalized Culinary Medicine: Qualitative Analyses of Perceptions from Participants in Action and Contemplation Stages of Change Through a One-Year Bi-Center Randomized Controlled Trial. Nutrients 2025, 17, 704. [Google Scholar] [CrossRef]
- Kallapura, G.; Prakash, A.S.; Sankaran, K.; Manjappa, P.; Chaudhary, P.; Ambhore, S.; Dhar, D. Microbiota based personalized nutrition improves hyperglycaemia and hypertension parameters and reduces inflammation: A prospective, open label, controlled, randomized, comparative, proof of concept study. PeerJ 2024, 12, e17583. [Google Scholar] [CrossRef] [PubMed]
- Katz, L.; Ben-Arush, M.; Blanche, E.; Meir, I.; Mordechai, O. The Clinical Utility of Next-Generation Sequencing in Childhood and Adolescent/Young Adult Solid Tumors: A Systematic Review and Meta-Analysis. Cancers 2025, 17, 1292. [Google Scholar] [CrossRef]
- Marchant, J.M.; Shteinberg, M.; Chang, A.B. Pediatric Bronchiectasis: Priorities, Precision Medicine, and Transition to Adult Care. Am. J. Respir. Crit. Care Med. 2024, 210, 4–5. [Google Scholar] [CrossRef] [PubMed]
- Suthapot, P.; Chiangjong, W.; Chaiyawat, P.; Choochuen, P.; Pruksakorn, D.; Sangkhathat, S.; Hongeng, S.; Anurathapan, U.; Chutipongtanate, S. Genomics-Driven Precision Medicine in Pediatric Solid Tumors. Cancers 2023, 15, 1418. [Google Scholar] [CrossRef]
- Myrzaliev, N.; Olzhaev, S.; Adzhibaev, B.; Abzhalelov, A.; Dzholdasov, S. Use of Comprehensive Geriatric Assessment in Oncology: A Literature Review. Oncol. Radiol. Kazakhstana 2025, 75, 131–138. [Google Scholar] [CrossRef]
- Roller-Wirnsberger, R.; Herzog, C.; Lindner-Rabl, S.; Schlögl, M.; Illario, M.; Polidori, M.C.; Singler, K. Teaching Comprehensive Geriatric Assessment (CGA) in medical education: A scoping review. Eur. Geriatr. Med. 2025, 16, 425–433. [Google Scholar] [CrossRef] [PubMed]
- Theodorakis, N.; Nikolaou, M.; Hitas, C.; Anagnostou, D.; Kreouzi, M.; Kalantzi, S.; Spyridaki, A.; Triantafylli, G.; Metheniti, P.; Papaconstantinou, I. Comprehensive Peri-Operative Risk Assessment and Management of Geriatric Patients. Diagnostics 2024, 14, 2153. [Google Scholar] [CrossRef]
- Chen, Y.; Wang, B.; Zhao, Y.; Shao, X.; Wang, M.; Ma, F.; Yang, L.; Nie, M.; Jin, P.; Yao, K.; et al. Metabolomic machine learning predictor for diagnosis and prognosis of gastric cancer. Nat. Commun. 2024, 15, 1657. [Google Scholar] [CrossRef] [PubMed]
- Sun, J.; Liu, Y.; Zhao, J.; Lu, B.; Zhou, S.; Lu, W.; Wei, J.; Hu, Y.; Kong, X.; Gao, J.; et al. Plasma proteomic and polygenic profiling improve risk stratification and personalized screening for colorectal cancer. Nat. Commun. 2024, 15, 8873. [Google Scholar] [CrossRef]
- Parvin, N.; Joo, S.W.; Jung, J.H.; Mandal, T.K. Multimodal AI in Biomedicine: Pioneering the Future of Biomaterials, Diagnostics, and Personalized Healthcare. Nanomaterials 2025, 15, 895. [Google Scholar] [CrossRef]
- Ramirez Zegarra, R.; Ghi, T. Use of artificial intelligence and deep learning in fetal ultrasound imaging. Ultrasound Obstet. Gynecol. 2023, 62, 185–194. [Google Scholar] [CrossRef]
- Serrano, D.R.; Luciano, F.C.; Anaya, B.J.; Ongoren, B.; Kara, A.; Molina, G.; Ramirez, B.I.; Sánchez-Guirales, S.A.; Simon, J.A.; Tomietto, G.; et al. Artificial Intelligence (AI) Applications in Drug Discovery and Drug Delivery: Revolutionizing Personalized Medicine. Pharmaceutics 2024, 16, 1328. [Google Scholar] [CrossRef]
- Tillman, E.M.; Mertami, S. Precision medicine to identify, prevent, and treat pediatric obesity. Pharmacother. J. Hum. Pharmacol. Drug Ther. 2024, 44, 939–947. [Google Scholar] [CrossRef]
- Tobias, D.K.; Merino, J.; Ahmad, A.; Aiken, C.; Benham, J.L.; Bodhini, D.; Clark, A.L.; Colclough, K.; Corcoy, R.; Cromer, S.J.; et al. Second international consensus report on gaps and opportunities for the clinical translation of precision diabetes medicine. Nat. Med. 2023, 29, 2438–2457. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Zhang, Y.; Zhu, H.; Jia, B.; Wang, J.; He, Y.; Zhang, H. Applications of artificial intelligence-powered prenatal diagnosis for congenital heart disease. Front. Cardiovasc. Med. 2024, 11, 1345761. [Google Scholar] [CrossRef]
- Jaros, A.; Rybakowski, F.; Cielecka-Piontek, J.; Paczkowska-Walendowska, M.; Czerny, B.; Kamińki, A.; Wafaie Mahmoud Elsorady, R.; Bienert, A. Challenges and Opportunities in Managing Geriatric Depression: The Role of Personalized Medicine and Age-Appropriate Therapeutic Approaches. Pharmaceutics 2024, 16, 1397. [Google Scholar] [CrossRef]
- Zhan, X. (Ed.) Personalized Medicine-New Perspectives; IntechOpen: London, UK, 2024; ISBN 978-0-85466-539-6. [Google Scholar]
- Kruse, M.; Stankevičiūtė, S.; Perry, S. Clinical pharmacology—How it shapes the drug development journey. Eur. J. Clin. Pharmacol. 2025, 81, 597–604. [Google Scholar] [CrossRef] [PubMed]
- Ranjan, G.; Jamal, F.; Das, S.; Gupta, V. Therapeutic Drug Monitoring: A Review. J. Drug Deliv. Ther. 2023, 13, 134–136. [Google Scholar] [CrossRef]
- Gaspar, V.P.; Ibrahim, S.; Zahedi, R.P.; Borchers, C.H. Utility, promise, and limitations of liquid chromatography-mass spectrometry-based therapeutic drug monitoring in precision medicine. J. Mass Spectrom. 2021, 56, e4788. [Google Scholar] [CrossRef]
- Chang, C.-J.; Chen, C.-B.; Chung, W.-H.; Ji, C.; Chung, W.-H. Pharmacogenetic Testing for Prevention of Severe Cutaneous Adverse Drug Reactions. Front. Pharmacol. 2020, 11, 969. [Google Scholar] [CrossRef] [PubMed]
- Chenchula, S.; Atal, S.; Uppugunduri, C.R.S. A review of real-world evidence on preemptive pharmacogenomic testing for preventing adverse drug reactions: A reality for future health care. Pharmacogenomics J. 2024, 24, 9. [Google Scholar] [CrossRef]
- Valdez-Acosta, S.; Zubiaur, P.; Casado, M.; Novalbos, J.; Casajús, A.; Campodónico, D.; Oyagüez, I.; Abad-Santos, F. Preemptive TPMT Genotyping and Adherence to Genotype-Based Therapeutic Recommendations Reduces the Healthcare Cost in Patients Receiving Azathioprine or 6-Mercaptopurine for Autoimmune Diseases. J. Pers. Med. 2023, 13, 1208. [Google Scholar] [CrossRef]
- Innocenti, F.; Mills, S.; Sanoff, H.K.; Ciccolini, J.; Lenz, H.-J.; Milano, G. All You Need to Know About DPYD Genetic Testing for Patients Treated with Fluorouracil and Capecitabine: A Practitioner-Friendly Guide. JCO Oncol. Pract. 2020, 16, 793–798. [Google Scholar] [CrossRef]
- Varughese, L.A.; Bhupathiraju, M.; Hoffecker, G.; Terek, S.; Harr, M.; Hákonarson, H.; Cambareri, C.; Marini, J.P.; Landgraf, J.; Chen, J.; et al. Implementing Pharmacogenetic Testing in Gastrointestinal Cancers (IMPACT-GI): Study Protocol for a Pragmatic Implementation Trial for Establishing DPYD and UGT1A1 Screening to Guide Chemotherapy Dosing. Front. Oncol. 2022, 12, 859846. [Google Scholar] [CrossRef]
- Burwick, R.M.; Rodriguez, M.H. Angiogenic Biomarkers in Preeclampsia. Obstet. Gynecol. 2024, 143, 515–523. [Google Scholar] [CrossRef]
- Bertini, A.; Salas, R.; Chabert, S.; Sobrevia, L.; Pardo, F. Using Machine Learning to Predict Complications in Pregnancy: A Systematic Review. Front. Bioeng. Biotechnol. 2022, 9, 780389. [Google Scholar] [CrossRef] [PubMed]
- Yung, N.K.; Maassel, N.L.; Ullrich, S.J.; Ricciardi, A.S.; Stitelman, D.H. A narrative review of in utero gene therapy: Advances, challenges, and future considerations. Transl. Pediatr. 2021, 10, 1486–1496. [Google Scholar] [CrossRef] [PubMed]
- O’Connell, A.E.; Guseh, S.; Lapteva, L.; Cummings, C.L.; Wilkins-Haug, L.; Chan, J.; Peranteau, W.H.; Almeida-Porada, G.; Kourembanas, S. Gene and Stem Cell Therapies for Fetal Care: A Review. JAMA Pediatr. 2020, 174, 985. [Google Scholar] [CrossRef]
- Sagar, R.; David, A.L. Fetal therapies—(Stem cell transplantation; enzyme replacement therapy; in utero genetic therapies). Best Pract. Res. Clin. Obstet. Gynaecol. 2024, 97, 102542. [Google Scholar] [CrossRef]
- Rolnik, D.L.; Syngelaki, A.; O’Gorman, N.; Wright, D.; Nicolaides, K.H.; Poon, L.C. Aspirin for evidence-based preeclampsia prevention trial: Effects of aspirin on maternal serum pregnancy-associated plasma protein A and placental growth factor trajectories in pregnancy. Am. J. Obstet. Gynecol. 2024, 231, e1–e342.e9. [Google Scholar] [CrossRef]
- Nguyen-Hoang, L.; Dinh, L.T.; Tai, A.S.T.; Nguyen, D.-A.; Pooh, R.K.; Shiozaki, A.; Zheng, M.; Hu, Y.; Li, B.; Kusuma, A.; et al. Implementation of First-Trimester Screening and Prevention of Preeclampsia: A Stepped Wedge Cluster-Randomized Trial in Asia. Circulation 2024, 150, 1223–1235. [Google Scholar] [CrossRef] [PubMed]
- Dickerson, A.G.; Joseph, C.A.; Kashfi, K. Current Approaches and Innovations in Managing Preeclampsia: Highlighting Maternal Health Disparities. J. Clin. Med. 2025, 14, 1190. [Google Scholar] [CrossRef] [PubMed]
- Elzagallaai, A.; Barker, C.; Lewis, T.; Cohn, R.; Rieder, M. Advancing Precision Medicine in Paediatrics: Past, present and future. Camb. Prisms Precis. Med. 2023, 1, e11. [Google Scholar] [CrossRef]
- Mani, S.; Lalani, S.R.; Pammi, M. Genomics and multiomics in the age of precision medicine. Pediatr. Res. 2025, 97, 1399–1410. [Google Scholar] [CrossRef]
- Srivastav, A.K.; Mishra, M.K.; Lillard, J.W.; Singh, R. Transforming Pharmacogenomics and CRISPR Gene Editing with the Power of Artificial Intelligence for Precision Medicine. Pharmaceutics 2025, 17, 555. [Google Scholar] [CrossRef]
- Cipri, S.; Abenavoli, L.; Boccuto, L.; Del Baldo, G.; Mastronuzzi, A. How Genetics and Genomics Advances Are Rewriting Pediatric Cancer Research and Clinical Care. Medicina 2022, 58, 1386. [Google Scholar] [CrossRef]
- Takahashi, H.; Strittmatter, S.M. The role of endolysosomal progranulin and TMEM106B in neurodegenerative diseases. Mol. Neurodegener. 2025, 20, 86. [Google Scholar] [CrossRef]
- Woolfenden, S.; Farrar, M.A.; Eapen, V.; Masi, A.; Wakefield, C.E.; Badawi, N.; Novak, I.; Nassar, N.; Lingam, R.; Dale, R.C. Delivering paediatric precision medicine: Genomic and environmental considerations along the causal pathway of childhood neurodevelopmental disorders. Dev. Med. Child Neurol. 2022, 64, 1077–1084. [Google Scholar] [CrossRef]
- Ferrante, G.; Fasola, S.; Malizia, V.; Licari, A.; Cilluffo, G.; Piacentini, G.; La Grutta, S. Pharmacogenomics: A Step forward Precision Medicine in Childhood Asthma. Genes 2022, 13, 599. [Google Scholar] [CrossRef]
- Eliasen, A.U.; Pedersen, C.E.T.; Rasmussen, M.A.; Wang, N.; Soverini, M.; Fritz, A.; Stokholm, J.; Chawes, B.L.; Morin, A.; Bork-Jensen, J.; et al. Genome-wide study of early and severe childhood asthma identifies interaction between CDHR3 and GSDMB. J. Allergy Clin. Immunol. 2022, 150, 622–630. [Google Scholar] [CrossRef] [PubMed]
- Hernandez-Pacheco, N.; Kere, M.; Melén, E. Gene-environment interactions in childhood asthma revisited; expanding the interaction concept. Pediatr. Allergy Immunol. 2022, 33, e13780. [Google Scholar] [CrossRef] [PubMed]
- Soni, P.; Edwin D’Souza, I. Epigenetic changes in childhood asthma: A path to precision medicine. Epigenetics Insights 2025, 18, e007. [Google Scholar] [CrossRef]
- Naderi, N.; Jolfayi, A.G.; Azimi, A.; Maleki, M.; Kalayinia, S. Pharmacogenomics in cardiac therapy: Personalizing treatment for heart health. Biomed. Pharmacother. 2025, 190, 118392. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; Meng, L.; Chen, Y.; Li, X.; Shi, L. CYP2C19 polymorphisms and lipoproteins associated with clopidogrel resistance in children with Kawasaki disease in China: A prospective study. Front. Cardiovasc. Med. 2022, 9, 925518. [Google Scholar] [CrossRef]
- Mauriello, A.; Ascrizzi, A.; Molinari, R.; Falco, L.; Caturano, A.; D’Andrea, A.; Russo, V. Pharmacogenomics of Cardiovascular Drugs for Atherothrombotic, Thromboembolic and Atherosclerotic Risk. Genes 2023, 14, 2057. [Google Scholar] [CrossRef]
- Lin, C.-H.; Ho, C.-J.; Chen, S.-Y.; Lu, Y.-T.; Tsai, M.-H. Review of pharmacogenetics of antiseizure medications: Focusing on genetic variants of mechanistic targets. Front. Pharmacol. 2024, 15, 1411487. [Google Scholar] [CrossRef]
- Biswas, M.; Ershadian, M.; Shobana, J.; Nguyen, A.; Sukasem, C. Associations of HLA genetic variants with carbamazepine-induced cutaneous adverse drug reactions: An updated meta-analysis. Clin. Transl. Sci. 2022, 15, 1887–1905. [Google Scholar] [CrossRef]
- Alvarado, A.T.; Muñoz, A.M.; Varela, N.; Sullón-Dextre, L.; Pineda, M.; Bolarte-Arteaga, M.; Bendezú, M.R.; García, J.A.; Chávez, H.; Surco-Laos, F.; et al. Pharmacogenetic variants of CYP2C9 and CYP2C19 associated with adverse reactions induced by antiepileptic drugs used in Peru. Pharmacia 2023, 70, 603–618. [Google Scholar] [CrossRef]
- Bassett, J.T.; Rodriguez, B.; Mulligan, L.; Fontana, R.J. Acute liver failure in a military recruit treated with valproic acid and harboring a previously unrecognized POLG-1 mutation. Epilepsy Behav. Rep. 2019, 12, 100342. [Google Scholar] [CrossRef]
- Khong, J.; Lee, M.; Warren, C.; Kim, U.B.; Duarte, S.; Andreoni, K.A.; Shrestha, S.; Johnson, M.W.; Battula, N.R.; McKimmy, D.M.; et al. Tacrolimus dosing in liver transplant recipients using phenotypic personalized medicine: A phase 2 randomized clinical trial. Nat. Commun. 2025, 16, 4558. [Google Scholar] [CrossRef] [PubMed]
- Ott, P.A.; Hu-Lieskovan, S.; Chmielowski, B.; Govindan, R.; Naing, A.; Bhardwaj, N.; Margolin, K.; Awad, M.M.; Hellmann, M.D.; Lin, J.J.; et al. A Phase Ib Trial of Personalized Neoantigen Therapy Plus Anti-PD-1 in Patients with Advanced Melanoma, Non-small Cell Lung Cancer, or Bladder Cancer. Cell 2020, 183, 347–362.e24. [Google Scholar] [CrossRef] [PubMed]
- Mims, A.S.; Kohlschmidt, J.; Borate, U.; Blachly, J.S.; Orwick, S.; Eisfeld, A.-K.; Papaioannou, D.; Nicolet, D.; Mrόzek, K.; Stein, E.; et al. A precision medicine classification for treatment of acute myeloid leukemia in older patients. J. Hematol. Oncol. J. Hematol. Oncol. 2021, 14, 96. [Google Scholar] [CrossRef] [PubMed]
- Heinemann, L.; Schramm, W.; Koenig, H.; Moritz, A.; Vesper, I.; Weissmann, J.; Kulzer, B. Benefit of Digital Tools Used for Integrated Personalized Diabetes Management: Results from the PDM-ProValue Study Program. J. Diabetes Sci. Technol. 2020, 14, 240–249. [Google Scholar] [CrossRef]
- Beleigoli, A.; Andrade, A.Q.; Diniz, M.D.F.; Ribeiro, A.L. Personalized Web-Based Weight Loss Behavior Change Program with and Without Dietitian Online Coaching for Adults with Overweight and Obesity: Randomized Controlled Trial. J. Med. Internet Res. 2020, 22, e17494. [Google Scholar] [CrossRef]
- Brewster, K.K.; Zilcha-Mano, S.; Wallace, M.L.; Kim, A.H.; Brown, P.J.; Roose, S.P.; Golub, J.S.; Galatioto, J.; Kuhlmey, M.; Rutherford, B.R. A precision medicine tool to understand who responds best to hearing aids in late-life depression. Int. J. Geriatr. Psychiatry 2022, 37, gps.5721. [Google Scholar] [CrossRef]
- Nagappa, A.N.; Kanoujia, J.; Bhatt, S.; Naik, V. (Eds.) Perspectives in Pharmacy Practice: Trends in Pharmaceutical Care; Springer: Singapore, 2022; ISBN 978-981-16-9212-3. [Google Scholar]
- Butler, R.M.; Ortiz, A.M.L.; Pennesi, J.; Crumby, E.K.; Cusack, C.E.; Levinson, C.A. A pilot randomized controlled trial of transdiagnostic network-informed personalized treatment for eating disorders versus enhanced cognitive behavioral therapy. Int. J. Eat. Disord. 2023, 56, 1674–1680. [Google Scholar] [CrossRef]
- O’Bryant, S.E.; Zhang, F.; Johnson, L.A.; Hall, J.; Edwards, M.; Grammas, P.; Oh, E.; Lyketsos, C.G.; Rissman, R.A. A Precision Medicine Model for Targeted NSAID Therapy in Alzheimer’s Disease. J. Alzheimer’s Dis. 2018, 66, 97–104. [Google Scholar] [CrossRef] [PubMed]
- Marquet, P.; Anglicheau, D.; Humeau, A.; Adrouche, S.; Saada, L.; Bisiaux, J.; Guillemin, S.; Lardy-Cléaud, A.; Rostaing, L. Tacrolimus Dose Requirement in De Novo Adult Kidney Transplant Patients Treated with Adoport® Can Be Anticipated. Transpl. Int. 2024, 37, 13495. [Google Scholar] [CrossRef]
- Areias, A.C.; Moulder, R.G.; Molinos, M.; Janela, D.; Bento, V.; Moreira, C.; Yanamadala, V.; Cohen, S.P.; Dias Correia, F.; Costa, F. Predicting Pain Response to a Remote Musculoskeletal Care Program for Low Back Pain Management: Development of a Prediction Tool. JMIR Med. Inform. 2024, 12, e64806. [Google Scholar] [CrossRef] [PubMed]
- Del Felice, A.; Castiglia, L.; Formaggio, E.; Cattelan, M.; Scarpa, B.; Manganotti, P.; Tenconi, E.; Masiero, S. Personalized transcranial alternating current stimulation (tACS) and physical therapy to treat motor and cognitive symptoms in Parkinson’s disease: A randomized cross-over trial. NeuroImage Clin. 2019, 22, 101768. [Google Scholar] [CrossRef] [PubMed]
- Caiado, F.L.; Morii, K.Y.; Alves, M.L.D.B.; Destefani, A.C.; Destefani, V.C. Precision Medicine in Geriatric Care: Harnessing the Power of Genetic Profiling for Personalized Therapies in Older Adults. Rev. Ibero-Am. Humanid. Ciênc. Educ. 2024, 10, 2730–2740. [Google Scholar] [CrossRef]
- Tonin, F.S.; Aznar-Lou, I.; Pontinha, V.M.; Pontarolo, R.; Fernandez-Llimos, F. Principles of pharmacoeconomic analysis: The case of pharmacist-led interventions. Pharm. Pract. 2021, 19, 2302. [Google Scholar] [CrossRef]
- Vellekoop, H.; Versteegh, M.; Huygens, S.; Corro Ramos, I.; Szilberhorn, L.; Zelei, T.; Nagy, B.; Tsiachristas, A.; Koleva-Kolarova, R.; Wordsworth, S.; et al. The Net Benefit of Personalized Medicine: A Systematic Literature Review and Regression Analysis. Value Health 2022, 25, 1428–1438. [Google Scholar] [CrossRef]
- Sicklick, J.K.; Kato, S.; Okamura, R.; Schwaederle, M.; Hahn, M.E.; Williams, C.B.; De, P.; Krie, A.; Piccioni, D.E.; Miller, V.A.; et al. Molecular profiling of cancer patients enables personalized combination therapy: The I-PREDICT study. Nat. Med. 2019, 25, 744–750. [Google Scholar] [CrossRef]
- Rodon, J.; Soria, J.-C.; Berger, R.; Miller, W.H.; Rubin, E.; Kugel, A.; Tsimberidou, A.; Saintigny, P.; Ackerstein, A.; Braña, I.; et al. Genomic and transcriptomic profiling expands precision cancer medicine: The WINTHER trial. Nat. Med. 2019, 25, 751–758. [Google Scholar] [CrossRef]
- Lewis, M.J.; Çubuk, C.; Surace, A.E.A.; Sciacca, E.; Lau, R.; Goldmann, K.; Giorli, G.; Fossati-Jimack, L.; Nerviani, A.; Rivellese, F.; et al. Deep molecular profiling of synovial biopsies in the STRAP trial identifies signatures predictive of treatment response to biologic therapies in rheumatoid arthritis. Nat. Commun. 2025, 16, 5374. [Google Scholar] [CrossRef]
- Mueller, S.; Jain, P.; Liang, W.S.; Kilburn, L.; Kline, C.; Gupta, N.; Panditharatna, E.; Magge, S.N.; Zhang, B.; Zhu, Y.; et al. A pilot precision medicine trial for children with diffuse intrinsic pontine glioma—PNOC003: A report from the Pacific Pediatric Neuro-Oncology Consortium. Int. J. Cancer 2019, 145, 1889–1901. [Google Scholar] [CrossRef] [PubMed]
- Tie, J.; Cohen, J.D.; Wang, Y.; Christie, M.; Simons, K.; Lee, M.; Wong, R.; Kosmider, S.; Ananda, S.; McKendrick, J.; et al. Circulating Tumor DNA Analyses as Markers of Recurrence Risk and Benefit of Adjuvant Therapy for Stage III Colon Cancer. JAMA Oncol. 2019, 5, 1710. [Google Scholar] [CrossRef] [PubMed]
- Haas, G.J.; Zareba, K.M.; Ni, H.; Bello-Pardo, E.; Huggins, G.S.; Hershberger, R.E.; Hershberger, R.E.; Kinnamon, D.D.; Jordan, E.; Haas, G.J.; et al. Validating an Idiopathic Dilated Cardiomyopathy Diagnosis Using Cardiovascular Magnetic Resonance: The Dilated Cardiomyopathy Precision Medicine Study. Circ. Heart Fail. 2022, 15, e008877. [Google Scholar] [CrossRef]
- Kahwash, R.; Zile, M.R.; Chalasani, P.; Bertolet, B.; Gravelin, L.; Khan, M.S.; Wehking, J.; Van Dorn, B.; Sarkar, S.; Laager, V.; et al. Personalized Intervention Strategy Based on a Risk Score Generated from Subcutaneous Insertable Cardiac Monitor: Results from Phase 1 of ALLEVIATE-HF. J. Am. Heart Assoc. 2024, 13, e035501. [Google Scholar] [CrossRef]
- Nudleman, E.; Muftuoglu, I.K.; Gaber, R.; Robinson, J.; Drenser, K.; Capone, A.; Trese, M.T. Glaucoma after Lens-Sparing Vitrectomy for Advanced Retinopathy of Prematurity. Ophthalmology 2018, 125, 671–675. [Google Scholar] [CrossRef] [PubMed]
- Virkud, Y.V.; Burks, A.W.; Steele, P.H.; Edwards, L.J.; Berglund, J.P.; Jones, S.M.; Scurlock, A.M.; Perry, T.T.; Pesek, R.D.; Vickery, B.P. Novel baseline predictors of adverse events during oral immunotherapy in children with peanut allergy. J. Allergy Clin. Immunol. 2017, 139, 882–888.e5. [Google Scholar] [CrossRef]
- Saini, S.S.; Shrivastav, A.K.; Kumar, J.; Sundaram, V.; Mukhopadhyay, K.; Dutta, S.; Ray, P.; Kumar, P. Predictors of Mortality in Neonatal Shock: A Retrospective Cohort Study. Shock 2022, 57, 199–204. [Google Scholar] [CrossRef]
- Richard-Devantoy, S.; Orri, M.; Bertrand, J.-A.; Greenway, K.T.; Turecki, G.; Gunnell, D.; Power, C.; Geoffroy, M.-C. Childhood cognitive skill trajectories and suicide by mid-adulthood: An investigation of the 1958 British Birth Cohort. Psychol. Med. 2021, 51, 400–407. [Google Scholar] [CrossRef] [PubMed]
- Chronis-Tuscano, A.; Wang, C.H.; Strickland, J.; Almirall, D.; Stein, M.A. Personalized Treatment of Mothers with ADHD and Their Young At-Risk Children: A SMART Pilot. J. Clin. Child. Adolesc. Psychol. 2016, 45, 510–521. [Google Scholar] [CrossRef] [PubMed]
- D’Souza, G.M.; Churchill, N.W.; Guan, D.X.; Khoury, M.A.; Graham, S.J.; Kumar, S.; Fischer, C.E.; Schweizer, T.A. The Relationship between History of Traumatic Brain Injury and Longitudinal Changes in Cortical Thickness among Patients with Alzheimer’s Disease. J. Prev. Alzheimers’s Dis. 2024, 11, 1348–1354. [Google Scholar] [CrossRef]
- Celis-Morales, C.; Livingstone, K.M.; Marsaux, C.F.M.; Macready, A.L.; Fallaize, R.; O’Donovan, C.B.; Woolhead, C.; Forster, H.; Walsh, M.C.; Navas-Carretero, S.; et al. Effect of personalized nutrition on health-related behaviour change: Evidence from the Food4me European randomized controlled trial. Int. J. Epidemiol. 2017, 46, 578–588. [Google Scholar] [CrossRef]
- Guo, S.; Hu, Y.; Rao, Y.; Jiang, Z.; Li, C.; Lin, Y.; Xu, S.; Zhao, D.; Wei, L.; Huang, S.; et al. L-aspartate ameliorates diet-induced obesity by increasing adipocyte energy expenditure. Diabetes Obes. Metab. 2025, 27, 606–618. [Google Scholar] [CrossRef]
- Kohl, J.; Brame, J.; Centner, C.; Wurst, R.; Fuchs, R.; Sehlbrede, M.; Tinsel, I.; Maiwald, P.; Fichtner, U.A.; Armbruster, C.; et al. Effects of a Web-Based Lifestyle Intervention on Weight Loss and Cardiometabolic Risk Factors in Adults with Overweight and Obesity: Randomized Controlled Clinical Trial. J. Med. Internet Res. 2023, 25, e43426. [Google Scholar] [CrossRef]
- Lédée, N.; Petitbarat, M.; Dray, G.; Chevrier, L.; Kazhalawi, A.; Rahmati, M.; Vicaut, E.; Diallo, A.; Cassuto, N.G.; Ruoso, L.; et al. Endometrial immune profiling and precision therapy increase live birth rate after embryo transfer: A randomised controlled trial. Front. Immunol. 2025, 16, 1523871. [Google Scholar] [CrossRef]
- Andreassen, C.H.; Holt, R.; Juel Mortensen, L.; Knudsen, N.K.; Nielsen, J.E.; Poulsen, N.N.; Yahyavi, S.K.; Boisen, I.M.; Cui, Z.; Ongaro, L.; et al. Denosumab stimulates spermatogenesis in infertile men with preserved Sertoli cell capacity. Cell Rep. Med. 2024, 5, 101783. [Google Scholar] [CrossRef]
- Gómez Torrijos, E.; Moreno Lozano, L.; Extremera Ortega, A.; González Jimenez, O.; Mur Gimeno, P.; Borja Segade, J.; Alfaya Arias, T.; García Rodríguez, R. Eosinophilic Esophagitis: Personalized Treatment with an Elimination Diet Based on IgE Levels in Children Aged. J. Investig. Allergol. Clin. Immunol. 2019, 29, 155–157. [Google Scholar] [CrossRef] [PubMed]
- Chan, K.W.; Ip, T.P.; Kwong, A.S.K.; Lui, S.L.; Chan, G.C.W.; Cowling, B.J.; Yiu, W.H.; Wong, D.W.L.; Liu, Y.; Feng, Y.; et al. Semi-individualised Chinese medicine treatment as an adjuvant management for diabetic nephropathy: A pilot add-on, randomised, controlled, multicentre, open-label pragmatic clinical trial. BMJ Open 2016, 6, e010741. [Google Scholar] [CrossRef]
- Rodriguez, G.M.; Wood, E.H.; Xiao, L.; Duron, Y.; O’Brien, D.; Koontz, Z.; Rosas, L.G.; Patel, M.I. Community health workers and precision medicine: A randomized controlled trial. Contemp. Clin. Trials 2022, 121, 106906. [Google Scholar] [CrossRef] [PubMed]
- Malpetti, M.; Holland, N.; Jones, P.S.; Ye, R.; Cope, T.E.; Fryer, T.D.; Hong, Y.T.; Savulich, G.; Rittman, T.; Passamonti, L.; et al. Synaptic density in carriers of C9orf72 mutations: A [11C]UCB-J PET study. Ann. Clin. Transl. Neurol. 2021, 8, 1515–1523. [Google Scholar] [CrossRef] [PubMed]
- Amar, D.; Gay, N.R.; Jean-Beltran, P.M.; Bae, D.; Dasari, S.; Dennis, C.; Evans, C.R.; Gaul, D.A.; Ilkayeva, O.; Ivanova, A.A.; et al. Temporal dynamics of the multi-omic response to endurance exercise training. Nature 2024, 629, 174–183. [Google Scholar] [CrossRef]
- Amar, D.; Gay, N.R.; Jimenez-Morales, D.; Jean Beltran, P.M.; Ramaker, M.E.; Raja, A.N.; Zhao, B.; Sun, Y.; Marwaha, S.; Gaul, D.; et al. The mitochondrial multi-omic response to exercise training across tissues. bioRxiv 2023. [Google Scholar] [CrossRef]
- Vebr, M.; Pomahačová, R.; Sýkora, J.; Schwarz, J. A Narrative Review of Cytokine Networks: Pathophysiological and Therapeutic Implications for Inflammatory Bowel Disease Pathogenesis. Biomedicines 2023, 11, 3229. [Google Scholar] [CrossRef] [PubMed]
- Noone, J.; Mucinski, J.M.; DeLany, J.P.; Sparks, L.M.; Goodpaster, B.H. Understanding the variation in exercise responses to guide personalized physical activity prescriptions. Cell Metab. 2024, 36, 702–724. [Google Scholar] [CrossRef]
- Rębiś, K.; Klusiewicz, A.; Długołęcka, B.; Różański, P.; Kowieski, K.; Kowalski, T. Estimation of Lactate Thresholds, Aerobic Capacity and Recovery Rate from Muscle Oxygen Saturation in Highly Trained Speed Skaters and Healthy Untrained Individuals. J. Clin. Med. 2024, 13, 5340. [Google Scholar] [CrossRef]
- Pinheiro, M.C.; Costa, H.E.; Mariana, M.; Cairrao, E. Sleep Deprivation and Its Impact on Insulin Resistance. Endocrines 2025, 6, 49. [Google Scholar] [CrossRef]
- Naveed, K.; Goldberg, N.; Shore, E.; Dhoot, A.; Gabrielson, D.; Goodarzi, Z.; Lin, Y.; Pai, M.; Pardy, N.A.; Robinson, S.; et al. Defining ferritin clinical decision limits to improve diagnosis and treatment of iron deficiency: A modified Delphi study. Int. J. Lab. Hematol. 2023, 45, 377–386. [Google Scholar] [CrossRef]
- Li, L.; Luo, Y.; Wang, R.; Huo, D.; Song, B.; Hao, Y.; Zhou, Y. Optical Fiber Sensing Technology for Sports Monitoring: A Comprehensive Review. Photonics 2025, 12, 963. [Google Scholar] [CrossRef]
- Kantrowitz, A.B.; Ben-David, K.; Morris, M.; Wittels, H.L.; Wishon, M.J.; McDonald, S.M.; Renaghan, E.J.; Feigenbaum, L.A.; Wittels, S.H. Pulse rate variability is not the same as heart rate variability: Findings from a large, diverse clinical population study. Front. Physiol. 2025, 16, 1630032. [Google Scholar] [CrossRef] [PubMed]
- Lam, E.; Aratia, S.; Wang, J.; Tung, J. Measuring Heart Rate Variability in Free-Living Conditions Using Consumer-Grade Photoplethysmography: Validation Study. JMIR Biomed. Eng. 2020, 5, e17355. [Google Scholar] [CrossRef]
- Korsbæk, J.J.; Jensen, R.H.; Beier, D.; Wibroe, E.A.; Hagen, S.M.; Molander, L.D.; Gillum, M.P.; Svart, K.; Kogelman, L.J.; Hansen, T.F.; et al. Hansen1Abstracts from the 17th European Headache Congress (EHC). J. Headache Pain 2024, 25, 123. [Google Scholar] [CrossRef]
- Varillas-Delgado, D. Influence of Genetic Polymorphisms and Biochemical Biomarkers on Response to Nutritional Iron Supplementation and Performance in a Professional Football Team: A Pilot Longitudinal Study. Nutrients 2025, 17, 1379. [Google Scholar] [CrossRef]
- Messenburger, G.P.; Nuñez, F.F.; Porepp, O.; Collares, L.D.N.; Delpino, F.M.; De Barros, C.C.; Pieniz, S. Influence of the CYP1A2 genotype on the exercise performance of physically active individuals under caffeine supplementation: A systematic review. Nutr. Res. 2025, 144, 16–31. [Google Scholar] [CrossRef]
- Taylor, C.; Crosby, I.; Yip, V.; Maguire, P.; Pirmohamed, M.; Turner, R.M. A Review of the Important Role of CYP2D6 in Pharmacogenomics. Genes 2020, 11, 1295. [Google Scholar] [CrossRef]
- Ting, S.; Schug, S. The pharmacogenomics of pain management: Prospects for personalized medicine. J. Pain Res. 2016, 9, 49–56. [Google Scholar] [CrossRef]
- Latifi, S.; Kafshgar, Z.; Yousefi, A. Evaluation of hop tests based on Y-Balance test and FMS test outcomes in volleyball and basketball players to identify those prone to injury: A potential predictor of injury. BMC Sports Sci. Med. Rehabil. 2024, 16, 187. [Google Scholar] [CrossRef]
- Li, L.; Meng, F.; Yao, S.; Shi, Q.; Luo, C. The effects of an 8-week functional training program on functional movement and physical fitness in male university students: A randomized controlled trial. Front. Public Health 2025, 13, 1641590. [Google Scholar] [CrossRef]
- Garbarino, S.; Lanteri, P.; Bragazzi, N.L.; Magnavita, N.; Scoditti, E. Role of sleep deprivation in immune-related disease risk and outcomes. Commun. Biol. 2021, 4, 1304. [Google Scholar] [CrossRef] [PubMed]
- Immanuel, S.; Teferra, M.N.; Baumert, M.; Bidargaddi, N. Heart Rate Variability for Evaluating Psychological Stress Changes in Healthy Adults: A Scoping Review. Neuropsychobiology 2023, 82, 187–202. [Google Scholar] [CrossRef]
- Penggalih, M.H.S.T.; Sutanto, Y.S.; Taslim, N.A.; Syahputra, R.A.; Hardinsyah, H.; Tjandrawinata, R.R.; Nurkolis, F. Precision nutrition in sports science: An opinion on omics-based personalization and athletic outcomes. Front. Nutr. 2025, 12, 1611440. [Google Scholar] [CrossRef]
- Zhao, Q.; Zhang, C.; Zhang, W.; Zhang, S.; Liu, Q.; Guo, Y. Applications and challenges of biomarker-based predictive models in proactive health management. Front. Public Health 2025, 13, 1633487. [Google Scholar] [CrossRef]
- Wilczyński, B.; Biały, M.; Zorena, K. An Interpretable Machine Learning Framework for Athlete Motor Profiling Using Multi-Domain Field Assessments: A Proof-of-Concept Study. Appl. Sci. 2025, 15, 6436. [Google Scholar] [CrossRef]
- Hoog Antink, C.; Mai, Y.; Peltokangas, M.; Leonhardt, S.; Oksala, N.; Vehkaoja, A. Accuracy of heart rate variability estimated with reflective wrist-PPG in elderly vascular patients. Sci. Rep. 2021, 11, 8123. [Google Scholar] [CrossRef] [PubMed]
- Tayfur, A.; Haque, A.; Salles, J.I.; Malliaras, P.; Screen, H.; Morrissey, D. Are Landing Patterns in Jumping Athletes Associated with Patellar Tendinopathy? A Systematic Review with Evidence Gap Map and Meta-analysis. Sports Med. 2022, 52, 123–137. [Google Scholar] [CrossRef] [PubMed]
- Schaefer, G.O.; Ballantyne, A. Ethics of digital contact tracing wearables. J. Med. Ethics 2022, 48, 611–615. [Google Scholar] [CrossRef] [PubMed]
- Molla, G.; Bitew, M. Revolutionizing Personalized Medicine: Synergy with Multi-Omics Data Generation, Main Hurdles, and Future Perspectives. Biomedicines 2024, 12, 2750. [Google Scholar] [CrossRef]
- Ambalavanan, R.; Snead, R.S.; Marczika, J.; Towett, G.; Malioukis, A.; Mbogori-Kairichi, M. Challenges and strategies in building a foundational digital health data integration ecosystem: A systematic review and thematic synthesis. Front. Health Serv. 2025, 5, 1600689. [Google Scholar] [CrossRef]
- Cinti, C.; Trivella, M.G.; Joulie, M.; Ayoub, H.; Frenzel, M. The Roadmap toward Personalized Medicine: Challenges and Opportunities. J. Pers. Med. 2024, 14, 546. [Google Scholar] [CrossRef]
- Knowles, L.; Luth, W.; Bubela, T. Paving the road to personalized medicine: Recommendations on regulatory, intellectual property and reimbursement challenges. J. Law. Biosci. 2017, 4, 453–506. [Google Scholar] [CrossRef]
- Akomolafe, O.O.; Okoli, A.O.; Merotiwon, D.O. A Systematic Review of Personalized Medicine’s Role in Improving Cancer Therapy and Outcomes. Int. J. Pharma Growth Res. Rev. 2025, 2, 24–29. [Google Scholar] [CrossRef]
- Francisco, K.K.Y.; Apuhin, A.E.C.; Maravilla, N.M.A.T.; Byers, M.C.; Karim, H.A.; Tan, M.J.T.; AlDahoul, N. Personalized medicine and health equity: Overcoming cost barriers and ethical challenges. Int. J. Equity Health 2025, 24, 224. [Google Scholar] [CrossRef]
- Bagger, F.O.; Borgwardt, L.; Jespersen, A.S.; Hansen, A.R.; Bertelsen, B.; Kodama, M.; Nielsen, F.C. Whole genome sequencing in clinical practice. BMC Med. Genom. 2024, 17, 39. [Google Scholar] [CrossRef] [PubMed]
- Simeon, O.; Awolola; Oyeniyi, E.O.; Taiwo, E.; Muniru; Rhoda, L.; Awodire. Advancing Health Equity in Genomic Medicine: Reducing Disparities In Rare Disease Diagnosis. Int. J. Soc. Health Med. Res. 2025, 10, 015. [Google Scholar] [CrossRef]
- Singh, R.R.; Garg, A. Evaluating IBM Watson’s Role in Oncology Treatment Decisions: A Case Study on AI-Based Clinical Decision Support. Hematol. Disord. Single-Cell Era 2025, 1, 21–32. [Google Scholar] [CrossRef]
- Ahmed, L.; Constantinidou, A.; Chatzittofis, A. Patients’ perspectives related to ethical issues and risks in precision medicine: A systematic review. Front. Med. 2023, 10, 1215663. [Google Scholar] [CrossRef] [PubMed]
- Bonomi, L.; Huang, Y.; Ohno-Machado, L. Privacy challenges and research opportunities for genomic data sharing. Nat. Genet. 2020, 52, 646–654. [Google Scholar] [CrossRef]
- Mubarak, S.; Ashraf, M. Ethics considerations for precision medicine research and genetic testing in low- and middle-income countries. East. Mediterr. Health J. 2024, 30, 455–460. [Google Scholar] [CrossRef]
- Williamson, S.M.; Prybutok, V. Balancing Privacy and Progress: A Review of Privacy Challenges, Systemic Oversight, and Patient Perceptions in AI-Driven Healthcare. Appl. Sci. 2024, 14, 675. [Google Scholar] [CrossRef]


| Biomarker | Drug | Therapeutic | Application | Reference |
|---|---|---|---|---|
| HLA-B 5701 | Abacavir | HIV/Antiretroviral therapy | Screening HLA-B5701 before Abacavir reduces the risk of severe hypersensitivity reactions. | [40] |
| CYP2C19 (poor/intermediate metabolizer variants) | Clopidogrel | Cardiology/antiplatelet therapy | Identifying poor metabolizers allows alternative drug choice or dose adjustment to ensure efficacy and safety. | [41] |
| TPMT (and sometimes NUDT15) | Azathioprine, 6-Mercaptopurine | Oncology/immunosuppression/autoimmune disease | Genotyping TPMT (and sometimes NUDT15) before thiopurines helps identify patients at risk of severe myelosuppression → dose reduction or alternative therapy. | [42] |
| DPYD (deficiency or reduced-function variants) | 5-Fluorouracil, Capecitabine | Oncology/chemotherapy | DPYD genotyping before fluoropyrimidine therapy can predict the risk of severe toxicity, allowing dose adjustment or alternative therapy. | [43] |
| UGT1A1 (reduced-function alleles, e.g., 28 variants | Irinotecan | Oncology/chemotherapy | UGT1A1 genotyping predicts the risk of severe irinotecan-related toxicity (neutropenia, diarrhea) and guides dose adjustment or alternative therapy. | [44] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Bakr, A.; Basem, Y.; Sherif, A.; Ata, A.; Saad, N.N.; Fayed, Y.E.; Tamer, M.; Elkady, M.N.; Abdelmonem, R. Tailored Therapeutic Strategies for Fetuses, Neonates, Pediatrics, Geriatrics, Athletes, and Critical Cases in the Era of Personalized Medicine. Diseases 2026, 14, 12. https://doi.org/10.3390/diseases14010012
Bakr A, Basem Y, Sherif A, Ata A, Saad NN, Fayed YE, Tamer M, Elkady MN, Abdelmonem R. Tailored Therapeutic Strategies for Fetuses, Neonates, Pediatrics, Geriatrics, Athletes, and Critical Cases in the Era of Personalized Medicine. Diseases. 2026; 14(1):12. https://doi.org/10.3390/diseases14010012
Chicago/Turabian StyleBakr, Ahmed, Youssef Basem, Abanoub Sherif, Alamer Ata, Nada Nabil Saad, Yassmin Emarh Fayed, Maria Tamer, Malak Nasr Elkady, and Rehab Abdelmonem. 2026. "Tailored Therapeutic Strategies for Fetuses, Neonates, Pediatrics, Geriatrics, Athletes, and Critical Cases in the Era of Personalized Medicine" Diseases 14, no. 1: 12. https://doi.org/10.3390/diseases14010012
APA StyleBakr, A., Basem, Y., Sherif, A., Ata, A., Saad, N. N., Fayed, Y. E., Tamer, M., Elkady, M. N., & Abdelmonem, R. (2026). Tailored Therapeutic Strategies for Fetuses, Neonates, Pediatrics, Geriatrics, Athletes, and Critical Cases in the Era of Personalized Medicine. Diseases, 14(1), 12. https://doi.org/10.3390/diseases14010012

