Polymorphism of Melanocortin Receptor Genes—Association with Inflammatory Traits and Diseases
Abstract
1. Introduction
2. Melanocortin System
3. Genetic Polymorphisms of Melanocortin Receptors and Their Biological Functions
3.1. MC1R Polymorphism
3.1.1. Pigmentation
3.1.2. UV Radiation Response
3.1.3. Inflammation and Immune Modulation
3.1.4. Risk of Melanoma
3.2. MC2R Polymorphism
3.2.1. Familial Glucocorticoid Deficiency (FGD)
3.2.2. Impaired Cortisol Response
3.2.3. Steroidogenesis
3.3. MC3R Polymorphism
3.3.1. Body Weight Regulation
3.3.2. Risk of Obesity
3.3.3. Appetite Control
3.4. MC4R Polymorphism
3.4.1. Regulation of Appetite
3.4.2. Risk of Obesity
3.4.3. Metabolic Effects
3.5. MC5R Polymorphism
4. Intracellular Signaling
4.1. G Protein-Coupled Receptor (GPCR) Mediated Signaling
4.1.1. Melanocortin 1 Receptor (MC1R)
4.1.2. Melanocortin 2 Receptor (MC2R)
4.1.3. Melanocortin 3 Receptor (MC3R)
4.1.4. Melanocortin 4 Receptor (MC4R)
4.1.5. Melanocortin 5 Receptor (MC5R)
5. G Protein Independent Signaling
6. β-Arrestin Dependent Signaling
7. The Melanocortin Receptor Activation Effect on Anti-Inflammatory Cells and Responses
8. Association of Melanocortin Receptors in Therapeutic Management of Inflammatory Disorders
8.1. Role of Melanocortin Receptors in Cutaneous Disorders
8.2. Role of Melanocortin Receptors in Cardiovascular Disorders
8.3. Role of Melanocortin Receptors in Ophthalmic Disorders
8.4. Role of Melanocortin Receptors in Respiratory Disorders
8.5. Role of Melanocortin Receptors in Sarcoidosis
8.6. Role of Melanocortin Receptors in Fibrotic and Sclerotic Disorders and Associated Neuroprotection
8.7. Role of Melanocortin Receptors in Gastrointestinal Disorders
8.8. Role of Melanocortin Receptors in Neurodegenerative Disorders
8.9. Role of Melanocortin Receptors in Hepatic Disorders
8.10. Role of Melanocortin Receptors in Bone Diseases
8.11. Role of Melanocortin Receptors in Reperfusion Injuries
8.12. Role of Melanocortin Receptors in Insulin Resistance, Obesity, and Diabetes
8.13. Role of Melanocortin Receptors in Pancreatic Diseases
9. USFDA Approved New Drugs
10. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
Abbreviations
MCR | Melanocortin receptor |
MSH | Melanocyte stimulating hormone |
ACTH | Adrenocorticotropic hormone |
POMC | Pro-opiomelanocortin |
PC | Prohormone convertase |
AGRP | Agouti-related protein |
ASIP | Agouti-signaling protein |
NF-kB | Nuclear factor kappa B |
MHC | Major histocompatibility complex |
CLIP | Corticotropin-like intermediate lobe peptide |
LPH | Lipotropin |
END | Endorphin |
MRAP | Melanocortin receptor accessory protein |
GPCR | G protein-coupled receptor |
PKA | Protein kinase A |
PKC | Protein kinase C |
CAMP | Cyclic adenosine monophosphate |
ERK | Extracellular signal-regulated kinase |
MAPK | Mitogen activated protein kinase |
PI3 | Phosphoinositide 3-kinase |
PLC | Phospholipase C |
IP3 | Inositol trisphosphate |
CREB | Cyclic AMP response element binding protein |
JAK/STAT | Janus kinase (JAK), signal transducer and activator of transcription protein (STAT) |
PDZ domain | Postsynaptic density protein (PSD95), Drosophila disc large tumor suppressor (DlgA), and zonula occludens-1 protein (zo-1) domain |
CCP | Clathrin-coated-pit |
A2Ar | Adenosine 2 A receptor |
ICAM | Intercellular adhesion molecule |
SIRS | Systemic inflammatory response syndrome |
USFDA | U.S. Food and Drug Administration |
RCI | Repository corticotropin injection |
NASH | Non-alcoholic steatohepatitis |
References
- Voisey, J.; Carroll, L.; Van Daal, A. Melanocortins and their receptors and antagonists. Curr. Drug Targets 2003, 4, 586–597. [Google Scholar] [CrossRef]
- Hill, J.W.; Faulkner, L.D. The role of the melanocortin system in metabolic disease: New developments and advances. Neuroendocrinology 2017, 104, 330–346. [Google Scholar] [CrossRef]
- Wang, W.; Guo, D.Y.; Lin, Y.J.; Tao, Y.X. Melanocortin regulation of inflammation. Front. Endocrinol. 2019, 10, 683. [Google Scholar] [CrossRef]
- Bellasio, S.; Nicolussi, E.; Bertorelli, R.; Reggiani, A. Melanocortin receptor agonists and antagonists modulate nociceptive sensitivity in the mouse formalin test. Eur. J. Pharmacol. 2003, 482, 127–132. [Google Scholar] [CrossRef]
- Wolf Horrell, E.M.; Boulanger, M.C.; D’Orazio, J.A. Melanocortin 1 receptor: Structure, function, and regulation. Front. Genet. 2016, 7, 95. [Google Scholar] [CrossRef]
- Doering, S.R.; Freeman, K.T.; Schnell, S.M.; Haslach, E.M.; Dirain, M.; Debevec, G.; Geer, P.; Santos, R.G.; Giulianotti, M.A.; Pinilla, C.; et al. Discovery of mixed pharmacology melanocortin-3 agonists and melanocortin-4 receptor tetrapeptide antagonist compounds (TACOs) based on the sequence Ac-Xaa1-Arg-(pI) DPhe-Xaa4-NH2. J. Med. Chem. 2017, 60, 4342–4357. [Google Scholar] [CrossRef]
- Kamermans, A.; Verhoeven, T.; van Het Hof, B.; Koning, J.J.; Borghuis, L.; Witte, M.; Van Horssen, J.; de Vries, H.E.; Rijnsburger, M. Setmelanotide, a novel, selective melanocortin receptor-4 agonist exerts anti-inflammatory actions in astrocytes and promotes an anti-inflammatory macrophage phenotype. Front. Immunol. 2019, 10, 2312. [Google Scholar] [CrossRef]
- Ng, T.F.; Manhapra, A.; Cluckey, D.; Choe, Y.; Vajram, S.; Taylor, A.W. Melanocortin 5 receptor expression and recovery of ocular immune privilege after uveitis. Ocul. Immunol. Inflamm. 2022, 30, 876–886. [Google Scholar] [CrossRef]
- Salazar-Onfray, F.; Lopez, M.; Lundqvist, A.; Aguirre, A.; Escobar, A.; Serrano, A.; Korenblit, C.; Petersson, M.; Chhajlani, V.; Larsson, O.; et al. Tissue distribution and differential expression of melanocortin 1 receptor, a malignant melanoma marker. Br. J. Cancer 2002, 87, 414–422. [Google Scholar] [CrossRef]
- Smit, N.; Le Poole, I.; van den Wijngaard, R.M.; Tigges, A.; Westerhof, W.; Das, P. Expression of different immunological markers by cultured human melanocytes. Arch. Dermatol. Res. 1993, 285, 356–365. [Google Scholar] [CrossRef]
- Sherman, E.X.; Hufnagel, D.A.; Weiss, D.S. MCR-1 confers cross-resistance to lysozyme. Lancet Infect. Dis. 2016, 16, 1226–1227. [Google Scholar] [CrossRef]
- Mattiuz, G.; Nicolò, S.; Antonelli, A.; Giani, T.; Baccani, I.; Cannatelli, A.; Clemente, A.M.; Castronovo, G.; Tanturli, M.; Cozzolino, F.; et al. mcr-1 gene expression modulates the inflammatory response of human macrophages to Escherichia coli. Infect. Immun. 2020, 88, 10–128. [Google Scholar] [CrossRef]
- Zhang, K.; Na, T.; Wang, L.; Gao, Q.; Yin, W.; Wang, J.; Yuan, B.Z. Human diploid MRC-5 cells exhibit several critical properties of human umbilical cord-derived mesenchymal stem cells. Vaccine 2014, 32, 6820–6827. [Google Scholar] [CrossRef] [PubMed]
- Slobedman, B.; Barry, P.A.; Spencer, J.V.; Avdic, S.; Abendroth, A. Virus-encoded homologs of cellular interleukin-10 and their control of host immune function. J. Virol. 2009, 83, 9618–9629. [Google Scholar] [CrossRef] [PubMed]
- Albensi, B.C. What is nuclear factor kappa B (NF-κB) doing in and to the mitochondrion? Front. Cell Dev. Biol. 2019, 7, 154. [Google Scholar] [CrossRef] [PubMed]
- Getting, S.J.; Christian, H.C.; Flower, R.J.; Perretti, M. Activation of melanocortin type 3 receptor as a molecular mechanism for adrenocorticotropic hormone efficacy in gouty arthritis. Arthritis Rheum. 2002, 46, 2765–2775. [Google Scholar] [CrossRef]
- Zhou, Y.; Cai, M. Novel approaches to the design of bioavailable melanotropins. Expert Opin. Drug Discov. 2017, 12, 1023–1030. [Google Scholar] [CrossRef]
- Ericson, M.D.; Lensing, C.J.; Fleming, K.A.; Schlasner, K.N.; Doering, S.R.; Haskell-Luevano, C. Bench-top to clinical therapies: A review of melanocortin ligands from 1954 to 2016. Biochim. Biophys. Acta (BBA) Mol. Basis Dis. 2017, 1863, 2414–2435. [Google Scholar] [CrossRef]
- Cai, M.; JHruby, V. The melanocortin receptor system: A target for multiple degenerative diseases. Curr. Protein Pept. Sci. 2016, 17, 488–496. [Google Scholar] [CrossRef]
- Cortés, R.; Navarro, S.; Agulleiro, M.J.; Guillot, R.; García-Herranz, V.; Sánchez, E.; Cerdá-Reverter, J.M. Evolution of the melanocortin system. Gen. Comp. Endocrinol. 2014, 209, 3–10. [Google Scholar] [CrossRef]
- Rocha, A.; Godino-Gimeno, A.; Cerdá-Reverter, J.M. Evolution of proopiomelanocortin. In Vitamins and Hormones; Academic Press: Cambridge, MA, USA, 2019; Volume 111, pp. 1–16. [Google Scholar]
- McNay, D.E.; Pelling, M.; Claxton, S.; Guillemot, F.; Ang, S.L. Mash1 is required for generic and subtype differentiation of hypothalamic neuroendocrine cells. Mol. Endocrinol. 2006, 20, 1623–1632. [Google Scholar] [CrossRef] [PubMed]
- Gantz, I.; Fong, T.M. The melanocortin system. Am. J. Physiol. Endocrinol. Metab. 2003, 284, E468-74. [Google Scholar] [CrossRef] [PubMed]
- Bouret, S.G. Developmental programming of hypothalamic melanocortin circuits. Exp. Mol. Med. 2022, 54, 403–413. [Google Scholar] [CrossRef]
- Yuan, X.C.; Tao, Y.X. Ligands for melanocortin receptors: Beyond melanocyte-stimulating hormones and adrenocorticotropin. Biomolecules 2022, 12, 1407. [Google Scholar] [CrossRef]
- Rouault, A.A.; Srinivasan, D.K.; Yin, T.C.; Lee, A.A.; Sebag, J.A. Melanocortin receptor accessory proteins (MRAPs): Functions in the melanocortin system and beyond. Biochim. Biophys. Acta (BBA) Mol. Basis Dis. 2017, 1863, 2462–2467. [Google Scholar] [CrossRef]
- Catania, A.; Lonati, C.; Sordi, A.; Carlin, A.; Leonardi, P.; Gatti, S. The melanocortin system in control of inflammation. Sci. World J. 2010, 10, 1840–1853. [Google Scholar] [CrossRef]
- Dores, R.M.; Liang, L.; Davis, P.; Thomas, A.L.; Petko, B. 60 Years of POMC: Melanocortin receptors: Evolution of ligand selectivity for melanocortin peptides. J. Mol. Endocrinol. 2016, 56, T119-33. [Google Scholar] [CrossRef]
- Abdel-malek, Z.A.; Suzuki, I.; Tada, A.; Im, S.; Akcali, C.A. The melanocortin-1 receptor and human pigmentation. Ann. N. Y. Acad. Sci. 1999, 885, 117–133. [Google Scholar] [CrossRef]
- Rees, J.L. The genetics of sun sensitivity in humans. Am. J. Hum. Genet. 2004, 75, 739–751. [Google Scholar] [CrossRef]
- Sturm, R.A. Molecular genetics of human pigmentation diversity. Hum. Mol. Genet. 2009, 18, R9–R17. [Google Scholar] [CrossRef]
- Bastiaens, M.T.; Ter Huurne, J.A.; Kielich, C.; Gruis, N.A.; Westendorp, R.G.; Vermeer, B.J.; Bavinck, J.N. Melanocortin-1 receptor gene variants determine the risk of nonmelanoma skin cancer independently of fair skin and red hair. Am. J. Hum. Genet. 2001, 68, 884–894. [Google Scholar] [CrossRef]
- Metherell, L.A.; Chapple, J.P.; Cooray, S.; David, A.; Becker, C.; Rüschendorf, F.; Naville, D.; Begeot, M.; Khoo, B.; Nürnberg, P.; et al. Mutations in MRAP, encoding a new interacting partner of the ACTH receptor, cause familial glucocorticoid deficiency type 2. Nat. Genet. 2005, 37, 166–170. [Google Scholar] [CrossRef] [PubMed]
- Guran, T.; Buonocore, F.; Saka, N.; Ozbek, M.N.; Aycan, Z.; Bereket, A.; Bas, F.; Darcan, S.; Bideci, A.; Guven, A.; et al. Rare causes of primary adrenal insufficiency: Genetic and clinical characterization of a large nationwide cohort. J. Clin. Endocrinol. Metab. 2016, 101, 284–292. [Google Scholar] [CrossRef] [PubMed]
- Chida, D.; Nakagawa, S.; Nagai, S.; Sagara, H.; Katsumata, H.; Imaki, T.; Suzuki, H.; Mitani, F.; Ogishima, T.; Shimizu, C.; et al. Melanocortin 2 receptor is required for adrenal gland development, steroidogenesis, and neonatal gluconeogenesis. Proc. Natl. Acad. Sci. USA 2007, 104, 18205–18210. [Google Scholar] [CrossRef] [PubMed]
- Cone, R.D. Studies on the physiological functions of the melanocortin system. Endocr. Rev. 2006, 27, 736–749. [Google Scholar] [CrossRef]
- Yang, Z.; Tao, Y.X. Mutations in melanocortin-3 receptor gene and human obesity. Prog. Mol. Biol. Transl. Sci. 2016, 140, 97–129. [Google Scholar]
- Butler, A.A.; Cone, R.D. Knockout studies defining different roles for melanocortin receptors in energy homeostasis. Ann. N. Y. Acad. Sci. 2003, 994, 240–245. [Google Scholar] [CrossRef]
- Farooqi, I.S.; O’Rahilly, S. Genetics of obesity in humans. Endocr. Rev. 2006, 27, 710–718. [Google Scholar] [CrossRef]
- Lubrano-Berthelier, C.; Dubern, B.; Lacorte, J.M.; Picard, F.; Shapiro, A.; Zhang, S.; Bertrais, S.; Hercberg, S.; Basdevant, A.; Clement, K.; et al. Melanocortin 4 receptor mutations in a large cohort of severely obese adults: Prevalence, functional classification, genotype-phenotype relationship, and lack of association with binge eating. J. Clin. Endocrinol. Metab. 2006, 91, 1811–1818. [Google Scholar] [CrossRef]
- Yeo, G.S.; Farooqi, I.S.; Aminian, S.; Halsall, D.J.; Stanhope, R.G.; O’Rahilly, S. A frameshift mutation in MC4R associated with dominantly inherited human obesity. Nat. Genet. 1998, 20, 111–112. [Google Scholar] [CrossRef]
- Lee, Y.S.; Challis, B.G.; Thompson, D.A.; Yeo, G.S.; Keogh, J.M.; Madonna, M.E.; Wraight, V.; Sims, M.; Vatin, V.; Meyre, D.; et al. A POMC variant implicates β-melanocyte-stimulating hormone in the control of human energy balance. Cell Metab. 2006, 3, 135–140. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Su, J.; Huang, T.; Wang, X.; Wu, C.; Li, J.; Li, J.; Zhang, J.; Wang, Y. Characterization of the chicken melanocortin 5 receptor and its potential role in regulating hepatic glucolipid metabolism. Front. Physiol. 2022, 13, 917712. [Google Scholar] [CrossRef] [PubMed]
- Ji, L.Q.; Hong, Y.; Tao, Y.X. Melanocortin-5 receptor: Pharmacology and its regulation of energy metabolism. Int. J. Mol. Sci. 2022, 23, 8727. [Google Scholar] [CrossRef] [PubMed]
- Taylor, A.W.; Kitaichi, N.; Biros, D. Melanocortin 5 receptor and ocular immunity. Cell Mol Biol 2006, 52, 53–59. [Google Scholar]
- Maisto, R.; Oltra, M.; Vidal-Gil, L.; Martínez-Gil, N.; Sancho-Pellúz, J.; Filippo, C.D.; Rossi, S.; DAmico, M.; Barcia, J.M.; Romero, F.J. ARPE-19-derived VEGF-containing exosomes promote neovascularization in HUVEC: The role of the melanocortin receptor 5. Cell Cycle 2019, 18, 413–424. [Google Scholar] [CrossRef]
- Amin, M.; Ott, J.; Wu, R.; Postolache, T.T.; Gragnoli, C. Implication of melanocortin receptor genes in the familial comorbidity of type 2 diabetes and depression. Int. J. Mol. Sci. 2022, 23, 8350. [Google Scholar] [CrossRef]
- Rodrigues, A.R.; Almeida, H.; Gouveia, A.M. Intracellular signaling mechanisms of the melanocortin receptors: Current state of the art. Cell. Mol. Life Sci. 2015, 72, 1331–1345. [Google Scholar] [CrossRef]
- Mountjoy, K.G.; Kong, P.L.; Taylor, J.A.; Willard, D.H.; Wilkison, W.O. Melanocortin receptor-mediated mobilization of intracellular free calcium in HEK293 cells. Physiol. Genom. 2001, 5, 11–19. [Google Scholar] [CrossRef]
- Herraiz, C.; Journe, F.; Abdel-Malek, Z.; Ghanem, G.; Jiménez-Cervantes, C.; García-Borrón, J.C. Signaling from the human melanocortin 1 receptor to ERK1 and ERK2 mitogen-activated protein kinases involves transactivation of cKIT. Mol. Endocrinol. 2011, 25, 138–156. [Google Scholar] [CrossRef]
- Cheng, L.B.; Cheng, L.; Bi, H.E.; Zhang, Z.Q.; Yao, J.; Zhou, X.Z.; Jiang, Q. Alpha-melanocyte stimulating hormone protects retinal pigment epithelium cells from oxidative stress through activation of melanocortin 1 receptor–Akt–mTOR signaling. Biochem. Biophys. Res. Commun. 2014, 443, 447–452. [Google Scholar] [CrossRef]
- Roy, S.; Pinard, S.; Chouinard, L.; Gallo-Payet, N. Adrenocorticotropin hormone (ACTH) effects on MAPK phosphorylation in human fasciculata cells and in embryonic kidney 293 cells expressing human melanocortin 2 receptor (MC2R) and MC2R accessory protein (MRAP) β. Mol. Cell. Endocrinol. 2011, 336, 31–40. [Google Scholar] [CrossRef]
- Gallo-Payet, N.; Grazzini, E.; Côté, M.; Chouinard, L.; Chorvátová, A.; Bilodeau, L.; Payet, M.D.; Guillon, G. Role of Ca2+ in the action of adrenocorticotropin in cultured human adrenal glomerulosa cells. J. Clin. Investig. 1996, 98, 460–466. [Google Scholar] [CrossRef] [PubMed]
- Kilianova, Z.; Basora, N.; Kilian, P.; Payet, M.D.; Gallo-Payet, N. Human melanocortin receptor 2 expression and functionality: Effects of protein kinase A and protein kinase C on desensitization and internalization. Endocrinology 2006, 147, 2325–2337. [Google Scholar] [CrossRef] [PubMed]
- Winnay, J.N.; Hammer, G.D. Adrenocorticotropic hormone-mediated signaling cascades coordinate a cyclic pattern of steroidogenic factor 1-dependent transcriptional activation. Mol. Endocrinol. 2006, 20, 147–166. [Google Scholar] [CrossRef] [PubMed]
- Bertolini, A.; Tacchi, R.; Vergoni, A.V. Brain effects of melanocortins. Pharmacol. Res. 2009, 59, 13–47. [Google Scholar] [CrossRef]
- Chai, B.; Li, J.Y.; Zhang, W.; Ammori, J.B.; Mulholland, M.W. Melanocortin-3 receptor activates MAP kinase via PI3 kinase. Regul. Pept. 2007, 139, 115–121. [Google Scholar] [CrossRef]
- Newman, E.A.; Chai, B.X.; Zhang, W.; Li, J.Y.; Ammori, J.B.; Mulholland, M.W. Activation of the melanocortin-4 receptor mobilizes intracellular free calcium in immortalized hypothalamic neurons. J. Surg. Res. 2006, 132, 201–207. [Google Scholar] [CrossRef]
- Chai, B.; Li, J.Y.; Zhang, W.; Newman, E.; Ammori, J.; Mulholland, M.W. Melanocortin-4 receptor-mediated inhibition of apoptosis in immortalized hypothalamic neurons via mitogen-activated protein kinase. Peptides 2006, 27, 2846–2857. [Google Scholar] [CrossRef]
- Chai, B.; Li, J.Y.; Zhang, W.; Wang, H.; Mulholland, M.W. Melanocortin-4 receptor activation inhibits c-Jun N-terminal kinase activity and promotes insulin signaling. Peptides 2009, 30, 1098–1104. [Google Scholar] [CrossRef]
- Rodrigues, A.R.; Almeida, H.; Gouveia, A.M. α-MSH signalling via melanocortin 5 receptor promotes lipolysis and impairs re-esterification in adipocytes. Biochim. Biophys. Acta (BBA) Mol. Cell Biol. Lipids 2013, 1831, 1267–1275. [Google Scholar] [CrossRef]
- Rodrigues, A.R.; Almeida, H.; Gouveia, A.M. Melanocortin 5 receptor signaling and internalization: Role of MAPK/ERK pathway and β-arrestins 1/2. Mol. Cell. Endocrinol. 2012, 361, 69–79. [Google Scholar] [CrossRef] [PubMed]
- Hoogduijn, M.J.; McGurk, S.; Smit, N.P.; Nibbering, P.H.; Ancans, J.; Van Der Laarse, A.; Thody, A.J. ligand-dependent activation of the Melanocortin 5 receptor: cAMP production and Ryanodine receptor-dependent elevations of [Ca2+] i. Biochem. Biophys. Res. Commun. 2002, 290, 844–850. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.; McGarrigle, D.; Huang, X.Y. When a G protein-coupled receptor does not couple to a G protein. Mol. Biosyst. 2007, 3, 849–854. [Google Scholar] [CrossRef] [PubMed]
- Buggy, J.J. Binding of α-melanocyte-stimulating hormone to its G-protein-coupled receptor on B-lymphocytes activates the Jak/STAT pathway. Biochem. J. 1998, 331, 211–216. [Google Scholar] [CrossRef]
- Jun, D.J.; Na, K.Y.; Kim, W.; Kwak, D.; Kwon, E.J.; Yoon, J.H.; Yea, K.; Lee, H.; Kim, J.; Suh, P.G.; et al. Melanocortins induce interleukin 6 gene expression and secretion through melanocortin receptors 2 and 5 in 3T3-L1 adipocytes. J. Mol. Endocrinol. 2010, 44, 225. [Google Scholar] [CrossRef]
- Liu, T.; Zhang, L.; Joo, D.; Sun, S.C. NF-κB signaling in inflammation. Signal Transduct. Target. Therapy 2017, 2, 17023. [Google Scholar] [CrossRef]
- Manna, S.K.; Aggarwal, B.B. α-Melanocyte-stimulating hormone inhibits the nuclear transcription factor NF-κB activation induced by various inflammatory agents. J. Immunol. 1998, 161, 2873–2880. [Google Scholar] [CrossRef]
- Taherzadeh, S.; Sharma, S.; Chhajlani, V.; Gantz, I.; Rajora, N.; Demitri, M.T.; Kelly, L.; Zhao, H.; Ichiyama, T.; Catania, A.; et al. α-MSH and its receptors in regulation of tumor necrosis factor-α production by human monocyte/macrophages. Am. J. Physiol.-Regul. Integr. Comp. Physiol. 1999, 276, R1289-94. [Google Scholar] [CrossRef]
- Akbulut, S.; Byersdorfer, C.A.; Larsen, C.P.; Zimmer, S.L.; Humphreys, T.D.; Clarke, B.L. Expression of the melanocortin 5 receptor on rat lymphocytes. Biochem. Biophys. Res. Commun. 2001, 281, 1086–1092. [Google Scholar] [CrossRef]
- Giuliani, D.; Mioni, C.; Altavilla, D.; Leone, S.; Bazzani, C.; Minutoli, L.; Bitto, A.; Cainazzo, M.M.; Marini, H.; Zaffe, D.; et al. Both early and delayed treatment with melanocortin 4 receptor-stimulating melanocortins produces neuroprotection in cerebral ischemia. Endocrinology 2006, 147, 1126–1135. [Google Scholar] [CrossRef]
- Caruso, C.; Durand, D.; Schiöth, H.B.; Rey, R.; Seilicovich, A.; Lasaga, M. Activation of melanocortin 4 receptors reduces the inflammatory response and prevents apoptosis induced by lipopolysaccharide and interferon-γ in astrocytes. Endocrinology 2007, 148, 4918–4926. [Google Scholar] [CrossRef] [PubMed]
- Giuliani, D.; Ottani, A.; Neri, L.; Zaffe, D.; Grieco, P.; Jochem, J.; Cavallini, G.M.; Catania, A.; Guarini, S. Multiple beneficial effects of melanocortin MC4 receptor agonists in experimental neurodegenerative disorders: Therapeutic perspectives. Prog. Neurobiol. 2017, 148, 40–56. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Zhao, L.; Sherchan, P.; Ding, Y.; Yu, J.; Nowrangi, D.; Tang, J.; Xia, Y.; Zhang, J.H. Activation of melanocortin receptor 4 with RO27-3225 attenuates neuroinflammation through AMPK/JNK/p38 MAPK pathway after intracerebral hemorrhage in mice. J. Neuroinflamm. 2018, 15, 106. [Google Scholar] [CrossRef] [PubMed]
- Haqq, A.M.; Chung, W.K.; Dollfus, H.; Haws, R.M.; Martos-Moreno, G.Á.; Poitou, C.; A Yanovski, J.; Mittleman, R.S.; Yuan, G.; Forsythe, E.; et al. Efficacy and safety of setmelanotide, a melanocortin-4 receptor agonist, in patients with Bardet-Biedl syndrome and Alström syndrome: A multicentre, randomised, double-blind, placebo-controlled, phase 3 trial with an open-label period. Lancet Diabetes Endocrinol. 2022, 10, 859–868. [Google Scholar] [CrossRef]
- Chen, W.; Li, J.; Qu, H.E.; Song, Z.; Yang, Z.; Huo, J.; Jiang, H.; Huang, Q.; Huo, M.; Liu, B.; et al. The melanocortin 1 receptor (MC1R) inhibits the inflammatory response in Raw 264.7 cells and atopic dermatitis (AD) mouse model. Mol. Biol. Rep. 2013, 40, 1987–1996. [Google Scholar] [CrossRef]
- Andoh, T.; Akasaka, C.; Shimizu, K.; Lee, J.B.; Yoshihisa, Y.; Shimizu, T. Involvement of α-Melanocyte–Stimulating Hormone–Thromboxane A2 System on Itching in Atopic Dermatitis. Am. J. Pathol. 2019, 189, 1775–1785. [Google Scholar] [CrossRef]
- Hiramoto, K.; Kobayashi, H.; Ishii, M.; Sato, E.; Inoue, M. Increased alpha-melanocyte-stimulating hormone (α-MSH) levels and melanocortin receptors expression associated with pigmentation in an NC/Nga mouse model of atopic dermatitis. Exp. Dermatol. 2010, 19, 132–136. [Google Scholar] [CrossRef]
- Luo, L.F.; Shi, Y.; Zhou, Q.; Xu, S.Z.; Lei, T.C. Insufficient expression of the melanocortin-1 receptor by human dermal fibroblasts contributes to excess collagen synthesis in keloid scars. Exp. Dermatol. 2013, 22, 764–766. [Google Scholar] [CrossRef]
- Hart Sailors, M.L.; Folsom, A.R.; Ballantyne, C.M.; Hoelscher, D.M.; Jackson, A.S.; Linda Kao, W.H.; Pankow, J.S.; Bray, M.S. Genetic variation and decreased risk for obesity in the Atherosclerosis Risk in Communities Study. Diabetes Obes. Metab. 2007, 9, 548–557. [Google Scholar] [CrossRef]
- Rinne, P.; Silvola, J.M.; Hellberg, S.; Ståhle, M.; Liljenbäck, H.; Salomäki, H.; Koskinen, E.; Nuutinen, S.; Saukko, P.; Knuuti, J.; et al. Pharmacological activation of the melanocortin system limits plaque inflammation and ameliorates vascular dysfunction in atherosclerotic mice. Arterioscler. Thromb. Vasc. Biol. 2014, 34, 1346–1354. [Google Scholar]
- Lede, V.; Franke, C.; Meusel, A.; Teupser, D.; Ricken, A.; Thiery, J.; Schiller, J.; Huster, D.; Schöneberg, T.; Schulz, A. Severe atherosclerosis and hypercholesterolemia in mice lacking both the melanocortin type 4 receptor and low density lipoprotein receptor. PLoS ONE 2016, 11, e0167888. [Google Scholar] [CrossRef]
- Rinne, P.; Rami, M.; Nuutinen, S.; Santovito, D.; van der Vorst, E.P.; Guillamat-Prats, R.; Lyytikäinen, L.P.; Raitoharju, E.; Oksala, N.; Ring, L.; et al. Melanocortin 1 receptor signaling regulates cholesterol transport in macrophages. Circulation 2017, 136, 83–97. [Google Scholar] [CrossRef]
- Rinne, P.; Kadiri, J.J.; Velasco-Delgado, M.; Nuutinen, S.; Viitala, M.; Hollmén, M.; Rami, M.; Savontaus, E.; Steffens, S. Melanocortin 1 receptor deficiency promotes atherosclerosis in apolipoprotein E−/− mice. Arterioscler. Thromb. Vasc. Biol. 2018, 38, 313–323. [Google Scholar] [CrossRef] [PubMed]
- Nuutinen, S.; Ailanen, L.; Savontaus, E.; Rinne, P. Melanocortin overexpression limits diet-induced inflammation and atherosclerosis in LDLR−/− mice. J. Endocrinol. 2018, 236, 111–123. [Google Scholar] [CrossRef]
- Kadiri, J.J.; Thapa, K.; Kaipio, K.; Cai, M.; Hruby, V.J.; Rinne, P. Melanocortin 3 receptor activation with [D-Trp8]-γ-MSH suppresses inflammation in apolipoprotein E deficient mice. Eur. J. Pharmacol. 2020, 880, 173186. [Google Scholar] [CrossRef] [PubMed]
- Lee, D.J.; Biros, D.J.; Taylor, A.W. Injection of an alpha-melanocyte stimulating hormone expression plasmid is effective in suppressing experimental autoimmune uveitis. Int. Immunopharmacol. 2009, 9, 1079–1086. [Google Scholar] [CrossRef] [PubMed]
- Edling, A.E.; Gomes, D.; Weeden, T.; Dzuris, J.; Stefano, J.; Pan, C.; Williams, J.; Kaplan, J.; Perricone, M.A. Immunosuppressive activity of a novel peptide analog of alpha-melanocyte stimulating hormone (α-MSH) in experimental autoimmune uveitis. J. Neuroimmunol. 2011, 236, 1–9. [Google Scholar] [CrossRef]
- Lee, D.J.; Taylor, A.W. Both MC5r and A2Ar Are Required for Protective Regulatory Immunity in the Spleen of Post–Experimental Autoimmune Uveitis in Mice. J. Immunol. 2013, 191, 4103–4111. [Google Scholar]
- Lee, D.J.; Preble, J.; Lee, S.; Foster, C.S.; Taylor, A.W. MC5r and A2Ar deficiencies during experimental autoimmune uveitis identifies distinct T cell polarization programs and a biphasic regulatory response. Sci. Rep. 2016, 6, 37790. [Google Scholar] [CrossRef]
- Muhammad, F.Y.; Peters, K.; Wang, D.; Lee, D.J. Exacerbation of autoimmune uveitis by obesity occurs through the melanocortin 5 receptor. J. Leukoc. Biol. 2019, 106, 879–887. [Google Scholar] [CrossRef]
- Ng, T.F.; Dawit, K.; Taylor, A.W. Melanocortin receptor agonists suppress experimental autoimmune uveitis. Exp. Eye Res. 2022, 218, 108986. [Google Scholar] [CrossRef]
- Ng, T.F.; Taylor, A.W. Stimulating the melanocortin system in uveitis and diabetes preserves the structure and anti-inflammatory activity of the retina. Int. J. Mol. Sci. 2023, 24, 6928. [Google Scholar] [CrossRef]
- Getting, S.J.; Riffo-Vasquez, Y.; Pitchford, S.; Kaneva, M.; Grieco, P.; Page, C.P.; Perretti, M.; Spina, D. A role for MC3R in modulating lung inflammation. Pulm. Pharmacol. Ther. 2008, 21, 866–873. [Google Scholar] [CrossRef]
- Raap, U.; Brzoska, T.; Sohl, S.; Päth, G.; Emmel, J.; Herz, U.; Braun, A.; Luger, T.; Renz, H. α-Melanocyte-stimulating hormone inhibits allergic airway inflammation. J. Immunol. 2003, 171, 353–359. [Google Scholar] [CrossRef] [PubMed]
- Colombo, G.; Gatti, S.; Sordi, A.; Turcatti, F.; Carlin, A.; Rossi, C.; Lonati, C.; Catania, A. Production and effects of α-melanocyte-stimulating hormone during acute lung injury. Shock 2007, 27, 326–333. [Google Scholar] [CrossRef] [PubMed]
- Xu, P.B.; Mao, Y.F.; Meng, H.B.; Tian, Y.P.; Deng, X.M. STY39, a novel alpha-melanocyte-stimulating hormone analogue, attenuates bleomycin-induced pulmonary inflammation and fibrosis in mice. Shock 2011, 35, 308–314. [Google Scholar] [CrossRef] [PubMed]
- Deng, J.; Hu, X.; Yuen, P.S.; Star, R.A. α-Melanocyte–stimulating hormone inhibits lung injury after renal ischemia/reperfusion. Am. J. Respir. Crit. Care Med. 2004, 169, 749–756. [Google Scholar] [CrossRef]
- Kristensen, J.; Jonassen, T.E.; Rehling, M.; Tønnesen, E.; Sloth, E.; Nielsen, S.; Frøkiær, J. The α-MSH analogue AP214 attenuates rise in pulmonary pressure and fall in ejection fraction in lipopolysaccharide-induced systemic inflammatory response syndrome in pigs. Clin. Physiol. Funct. Imaging 2011, 31, 54–60. [Google Scholar] [CrossRef]
- Moscowitz, A.E.; Asif, H.; Lindenmaier, L.B.; Calzadilla, A.; Zhang, C.; Mirsaeidi, M. The importance of melanocortin receptors and their agonists in pulmonary disease. Front. Med. 2019, 6, 145. [Google Scholar] [CrossRef]
- Drent, M.; Crouser, E.D.; Grunewald, J. Challenges of sarcoidosis and its management. N. Engl. J. Med. 2021, 385, 1018–1032. [Google Scholar] [CrossRef]
- Mirsaeidi, M.; Baughman, R.P. Repository corticotropin injection for the treatment of pulmonary sarcoidosis: A narrative review. Pulm. Ther. 2022, 8, 43–55. [Google Scholar] [CrossRef]
- Miller, M.A.; Bass, H.E. Effect of Acthar-c (ACTH) in sarcoidosis. Ann. Intern. Med. 1952, 37, 776–784. [Google Scholar] [CrossRef]
- Baughman, R.P.; Barney, J.B.; O’Hare, L.; Lower, E.E. A retrospective pilot study examining the use of Acthar gel in sarcoidosis patients. Respir. Med. 2016, 110, 66–72. [Google Scholar] [CrossRef]
- Baughman, R.P.; Sweiss, N.; Keijsers, R.; Birring, S.S.; Shipley, R.; Saketkoo, L.A.; Lower, E.E. Repository corticotropin for chronic pulmonary sarcoidosis. Lung 2017, 195, 313–322. [Google Scholar] [CrossRef]
- Chopra, I.; Qin, Y.; Kranyak, J.; Gallagher, J.R.; Heap, K.; Carroll, S.; Wan, G.J. Repository corticotropin injection in patients with advanced symptomatic sarcoidosis: Retrospective analysis of medical records. Ther. Adv. Respir. Dis. 2019, 13, 1753466619888127. [Google Scholar] [CrossRef]
- Bindra, J.; Chopra, I.; Hayes, K.; Niewoehner, J.; Panaccio, M.; Wan, G.J. Cost-Effectiveness of Acthar Gel versus Standard of Care for the Treatment of Advanced Symptomatic Sarcoidosis. Clin. Outcomes Res. 2023, 15, 739–752. [Google Scholar] [CrossRef]
- Friedman, A.P. Do hyporesponsive genetic variants of the melanocortin 1 receptor contribute to the etiology of multiple sclerosis? Med. Hypotheses 2004, 62, 49–52. [Google Scholar] [CrossRef]
- Dwyer, T.; van der Mei, I.; Ponsonby, A.L.; Taylor, B.V.; Stankovich, J.; McKay, J.D.; Thomson, R.J.; Polanowski, A.M.; Dickinson, J.L. Melanocortin 1 receptor genotype, past environmental sun exposure, and risk of multiple sclerosis. Neurology 2008, 71, 583–589. [Google Scholar] [CrossRef]
- Strange, R.C.; Ramachandran, S.; Zeegers, M.P.; Emes, R.D.; Abraham, R.; Raveendran, V.; Boggild, M.; Gilford, J.; Hawkins, C.P. The Multiple Sclerosis Severity Score: Associations with MC1R single nucleotide polymorphisms and host response to ultraviolet radiation. Mult. Scler. J. 2010, 16, 1109–1116. [Google Scholar] [CrossRef]
- Neumann Andersen, G.; Andersen, M.; Nagaeva, O.; Wikberg, J.E.; Mincheva-Nilsson, L. Dermal melanocortin receptor rebound in diffuse systemic sclerosis after anti-TGFβ1 antibody therapy. Scand. J. Immunol. 2012, 76, 478–482. [Google Scholar] [CrossRef]
- Partridge, J.M.; Weatherby, S.J.; Woolmore, J.A.; Highland, D.J.; Fryer, A.A.; Mann, C.L.; Boggild, M.D.; Ollier, W.E.; Strange, R.C.; Hawkins, C.P. Susceptibility and outcome in MS: Associations with polymorphisms in pigmentation-related genes. Neurology 2004, 62, 2323–2325. [Google Scholar] [CrossRef]
- Kokot, A.; Sindrilaru, A.; Schiller, M.; Sunderkötter, C.; Kerkhoff, C.; Eckes, B.; Scharffetter-Kochanek, K.; Luger, T.A.; Böhm, M. α-melanocyte–stimulating hormone suppresses bleomycin-induced collagen synthesis and reduces tissue fibrosis in a mouse model of scleroderma: Melanocortin peptides as a novel treatment strategy for scleroderma? Arthritis Rheum. Off. J. Am. Coll. Rheumatol. 2009, 60, 592–603. [Google Scholar] [CrossRef] [PubMed]
- Kondo, M.; Suzuki, T.; Kawano, Y.; Kojima, S.; Miyashiro, M.; Matsumoto, A.; Kania, G.; Błyszczuk, P.; Ross, R.L.; Mulipa, P.; et al. Dersimelagon, a novel oral melanocortin 1 receptor agonist, demonstrates disease-modifying effects in preclinical models of systemic sclerosis. Arthritis Res. Ther. 2022, 24, 210. [Google Scholar] [CrossRef] [PubMed]
- Napoli, S. ACTH gel in the treatment of multiple sclerosis exacerbation: A case study. Int. Med. Case Rep. J. 2015, 8, 23–27. [Google Scholar] [CrossRef] [PubMed]
- Montero-Melendez, T. ACTH: The forgotten therapy. In Seminars in Immunology; Academic Press: Cambridge, MA, USA, 2015; Volume 27, pp. 216–226. [Google Scholar]
- Benjamins, J.A.; Nedelkoska, L.; Bealmear, B.; Lisak, R.P. ACTH protects mature oligodendroglia from excitotoxic and inflammation-related damage in vitro. Glia 2013, 61, 1206–1217. [Google Scholar] [CrossRef]
- Benjamins, J.A.; Nedelkoska, L.; Lisak, R.P. Adrenocorticotropin hormone 1-39 promotes proliferation and differentiation of oligodendroglial progenitor cells and protects from excitotoxic and inflammation-related damage. J. Neurosci. Res. 2014, 92, 1243–1251. [Google Scholar] [CrossRef]
- Lisak, R.P.; Nedelkoska, L.; Bealmear, B.; Benjamins, J.A. Melanocortin receptor agonist ACTH 1–39 protects rat forebrain neurons from apoptotic, excitotoxic and inflammation-related damage. Exp. Neurol. 2015, 273, 161–167. [Google Scholar] [CrossRef]
- Lisak, R.P.; Nedelkoska, L.; Benjamins, J.A. The melanocortin ACTH 1-39 promotes protection of oligodendrocytes by astroglia. J. Neurol. Sci. 2016, 362, 21–26. [Google Scholar] [CrossRef]
- Benjamins, J.A.; Nedelkoska, L.; Lisak, R.P. Melanocortin receptor subtypes are expressed on cells in the oligodendroglial lineage and signal ACTH protection. J. Neurosci. Res. 2018, 96, 427–435. [Google Scholar] [CrossRef]
- Mykicki, N.; Herrmann, A.M.; Schwab, N.; Deenen, R.; Sparwasser, T.; Limmer, A.; Wachsmuth, L.; Klotz, L.; Köhrer, K.; Faber, C.; et al. Melanocortin-1 receptor activation is neuroprotective in mouse models of neuroinflammatory disease. Sci. Transl. Med. 2016, 8, 362ra146. [Google Scholar] [CrossRef]
- Lipton, J.M.; Catania, A. Mechanisms of anti-inflammatory action of the neuroimmunomodulatory peptide α-MSH. Ann. N. Y. Acad. Sci. 1998, 840, 373–380. [Google Scholar] [CrossRef] [PubMed]
- Kannengiesser, K.; Maaser, C.; Heidemann, J.; Luegering, A.; Ross, M.; Brzoska, T.; Bohm, M.; Luger, T.A.; Domschke, W.; Kucharzik, T. Melanocortin-derived tripeptide KPV has anti-inflammatory potential in murine models of inflammatory bowel disease. Inflamm. Bowel Dis. 2008, 14, 324–331. [Google Scholar] [CrossRef] [PubMed]
- Bettenworth, D.; Buyse, M.; Böhm, M.; Mennigen, R.; Czorniak, I.; Kannengiesser, K.; Brzoska, T.; Luger, T.A.; Kucharzik, T.; Domschke, W.; et al. The tripeptide KdPT protects from intestinal inflammation and maintains intestinal barrier function. Am. J. Pathol. 2011, 179, 1230–1242. [Google Scholar] [CrossRef] [PubMed]
- Ozturk, C.C.; Oktay, S.; Yuksel, M.; Akakin, D.; Yarat, A.; Kasimay Cakir, O. Anti-inflammatory effects of nesfatin-1 in rats with acetic acid-induced colitis and underlying mechanisms. J. Physiol. Pharmacol. 2015, 66, 741–750. [Google Scholar]
- Dodd, J.; Jordan, R.; Makhlina, M.; Barnett, K.; Roffel, A.; Spana, C.; Obr, A.; Dhingra, P.; Kayne, P.S. A novel oral formulation of the melanocortin-1 receptor agonist PL8177 resolves inflammation in preclinical studies of inflammatory bowel disease and is gut restricted in rats, dogs, and humans. Front. Immunol. 2023, 14, 1083333. [Google Scholar] [CrossRef]
- Vercruysse, P.; Sinniger, J.; El Oussini, H.; Scekic-Zahirovic, J.; Dieterlé, S.; Dengler, R.; Meyer, T.; Zierz, S.; Kassubek, J.; Fischer, W.; et al. Alterations in the hypothalamic melanocortin pathway in amyotrophic lateral sclerosis. Brain 2016, 139, 1106–1122. [Google Scholar] [CrossRef]
- Giuliani, D.; Neri, L.; Canalini, F.; Calevro, A.; Ottani, A.; Vandini, E.; Sena, P.; Zaffe, D.; Guarini, S. NDP-α-MSH induces intense neurogenesis and cognitive recovery in Alzheimer transgenic mice through activation of melanocortin MC4 receptors. Mol. Cell. Neurosci. 2015, 67, 13–21. [Google Scholar] [CrossRef]
- Tell-Marti, G.; Puig-Butille, J.A.; Potrony, M.; Plana, E.; Badenas, C.; Antonell, A.; Sanchez-Valle, R.; Molinuevo, J.L.; Lleo, A.; Alcolea, D.; et al. A common variant in the MC1R gene (p. V92M) is associated with Alzheimer’s disease risk. J. Alzheimer’s Dis. 2017, 56, 1065–1074. [Google Scholar] [CrossRef]
- Lau, J.K.; Tian, M.; Shen, Y.; Lau, S.F.; Fu, W.Y.; Fu, A.K.; Ip, N.Y. Melanocortin receptor activation alleviates amyloid pathology and glial reactivity in an Alzheimer’s disease transgenic mouse model. Sci. Rep. 2021, 11, 4359. [Google Scholar] [CrossRef]
- Daini, E.; Vandini, E.; Bodria, M.; Liao, W.; Baraldi, C.; Secco, V.; Ottani, A.; Zoli, M.; Giuliani, D.; Vilella, A. Melanocortin receptor agonist NDP-α-MSH improves cognitive deficits and microgliosis but not amyloidosis in advanced stages of AD progression in 5XFAD and 3xTg mice. Front. Immunol. 2023, 13, 1082036. [Google Scholar] [CrossRef]
- Itoh, M.; Suganami, T.; Nakagawa, N.; Tanaka, M.; Yamamoto, Y.; Kamei, Y.; Terai, S.; Sakaida, I.; Ogawa, Y. Melanocortin 4 receptor–deficient mice as a novel mouse model of nonalcoholic steatohepatitis. Am. J. Pathol. 2011, 179, 2454–2463. [Google Scholar] [CrossRef]
- Itoh, M.; Kato, H.; Suganami, T.; Konuma, K.; Marumoto, Y.; Terai, S.; Sakugawa, H.; Kanai, S.; Hamaguchi, M.; Fukaishi, T.; et al. Hepatic crown-like structure: A unique histological feature in non-alcoholic steatohepatitis in mice and humans. PLoS ONE 2013, 8, e82163. [Google Scholar] [CrossRef]
- Lee, T.H.; Jawan, B.; Chou, W.Y.; Lu, C.N.; Wu, C.L.; Kuo, H.M.; Concejero, A.M.; Wang, C.H. α-Melanocyte-stimulating hormone gene therapy reverses carbon tetrachloride induced liver fibrosis in mice. J. Gene Med. 2006, 8, 764–772. [Google Scholar] [CrossRef] [PubMed]
- Böhm, M.; Grässel, S. Role of proopiomelanocortin-derived peptides and their receptors in the osteoarticular system: From basic to translational research. Endocr. Rev. 2012, 33, 623–651. [Google Scholar] [CrossRef] [PubMed]
- Zhong, Q.; Sridhar, S.; Ruan, L.; Ding, K.H.; Xie, D.; Insogna, K.; Kang, B.; Xu, J.; Bollag, R.J.; Isales, C.M. Multiple melanocortin receptors are expressed in bone cells. Bone 2005, 36, 820–831. [Google Scholar] [CrossRef] [PubMed]
- Grässel, S.; Opolka, A.; Anders, S.; Straub, R.H.; Grifka, J.; Luger, T.A.; Böhm, M. The melanocortin system in articular chondrocytes: Melanocortin receptors, pro-opiomelanocortin, precursor proteases, and a regulatory effect of α-melanocyte–stimulating hormone on proinflammatory cytokines and extracellular matrix components. Arthritis Rheum. Off. J. Am. Coll. Rheumatol. 2009, 60, 3017–3027. [Google Scholar] [CrossRef]
- Cornish, J.; Callon, K.E.; Mountjoy, K.G.; Bava, U.; Lin, J.M.; Myers, D.E.; Naot, D.; Reid, I.R. α-Melanocyte-stimulating hormone is a novel regulator of bone. Am. J. Physiol. Endocrinol. Metab. 2003, 284, E1181-90. [Google Scholar] [CrossRef]
- Zhao, J.; Wei, K.; Jiang, P.; Chang, C.; Xu, L.; Xu, L.; Shi, Y.; Guo, S.; He, D. G-Protein-Coupled receptors in rheumatoid arthritis: Recent insights into mechanisms and functional roles. Front. Immunol. 2022, 13, 907733. [Google Scholar] [CrossRef]
- Graue, J.; Timmen, M.; Schmitz, K.; Kronenberg, D.; Böhm, M.; Sivaraj, K.K.; Bixel, M.G.; Stange, R. Anti-inflammatory treatment using alpha melanocyte stimulating hormone (α-MSH) does not alter osteoblasts differentiation and fracture healing. BMC Musculoskelet. Disord. 2025, 26, 123. [Google Scholar] [CrossRef]
- Patel, H.B.; Bombardieri, M.; Sampaio, A.L.; D’Acquisto, F.; Gray, M.; Grieco, P.; Getting, S.J.; Pitzalis, C.; Perretti, M. Anti-inflammatory and antiosteoclastogenesis properties of endogenous melanocortin receptor type 3 in experimental arthritis. FASEB J. 2010, 24, 4835–4843. [Google Scholar] [CrossRef]
- Montero-Melendez, T.; Patel, H.B.; Seed, M.; Nielsen, S.; Jonassen, T.E.; Perretti, M. The melanocortin agonist AP214 exerts anti-inflammatory and proresolving properties. Am. J. Pathol. 2011, 179, 259–269. [Google Scholar] [CrossRef] [PubMed]
- Lorenz, J.; Seebach, E.; Hackmayer, G.; Greth, C.; Bauer, R.J.; Kleinschmidt, K.; Bettenworth, D.; Böhm, M.; Grifka, J.; Grässel, S. Melanocortin 1 receptor-signaling deficiency results in an articular cartilage phenotype and accelerates pathogenesis of surgically induced murine osteoarthritis. PLoS ONE 2014, 9, e105858. [Google Scholar] [CrossRef]
- Kaneva, M.K.; Kerrigan, M.J.; Grieco, P.; Curley, G.P.; Locke, I.C.; Getting, S.J. Chondroprotective and anti-inflammatory role of melanocortin peptides in TNF-α activated human C-20/A4 chondrocytes. Br. J. Pharmacol. 2012, 167, 67–79. [Google Scholar] [CrossRef]
- Madeira, M.F.; Queiroz-Junior, C.M.; Montero-Melendez, T.; Werneck, S.M.; Corrêa, J.D.; Soriani, F.M.; Garlet, G.P.; Souza, D.G.; Teixeira, M.M.; Silva, T.A.; et al. Melanocortin agonism as a viable strategy to control alveolar bone loss induced by oral infection. FASEB J. 2016, 30, 4033–4041. [Google Scholar] [CrossRef]
- Bazzani, C.; Mioni, C.; Ferrazza, G.; Cainazzo, M.M.; Bertolini, A.; Guarini, S. Involvement of the central nervous system in the protective effect of melanocortins in myocardial ischaemia/reperfusion injury. Resuscitation 2002, 52, 109–115. [Google Scholar] [CrossRef]
- Leoni, G.; Voisin, M.B.; Carlson, K.; Getting, S.J.; Nourshargh, S.; Perretti, M. The melanocortin MC1 receptor agonist BMS-470539 inhibits leucocyte trafficking in the inflamed vasculature. Br. J. Pharmacol. 2010, 160, 171–180. [Google Scholar] [CrossRef]
- Bazzani, C.; Guarini, S.; Botticelli, A.R.; Zaffe, D.; Tomasi, A.; Bini, A.; Cainazzo, M.M.; Ferrazza, G.; Mioni, C.; Bertolini, A. Protective effect of melanocortin peptides in rat myocardial ischemia. J. Pharmacol. Exp. Ther. 2001, 297, 1082–1087. [Google Scholar] [CrossRef]
- Catania, A.; Lonati, C.; Sordi, A.; Leonardi, P.; Carlin, A.; Gatti, S. The peptide NDP-MSH induces phenotype changes in the heart that resemble ischemic preconditioning. Peptides 2010, 31, 116–122. [Google Scholar] [CrossRef]
- Guarini, S.; Schiöth, H.B.; Mioni, C.; Cainazzo, M.; Ferrazza, G.; Giuliani, D.; Wikberg, J.E.; Bertolini, A.; Bazzani, C. MC 3 receptors are involved in the protective effect of melanocortins in myocardial ischemia/reperfusion-induced arrhythmias. Naunyn-Schmiedeberg’s Arch. Pharmacol. 2002, 366, 177–182. [Google Scholar] [CrossRef] [PubMed]
- Mioni, C.; Giuliani, D.; Cainazzo, M.M.; Leone, S.; Iannone, C.; Bazzani, C.; Grieco, P.; Novellino, E.; Tomasi, A.; Bertolini, A.; et al. Further evidence that melanocortins prevent myocardial reperfusion injury by activating melanocortin MC3 receptors. Eur. J. Pharmacol. 2003, 477, 227–234. [Google Scholar] [CrossRef] [PubMed]
- Getting, S.J.; Di Filippo, C.; Christian, H.C.; Lam, C.W.; Rossi, F.; D’Amico, M.; Perretti, M. MC-3 receptor and the inflammatory mechanisms activated in acute myocardial infarct. J. Leukoc. Biol. 2004, 76, 845–853. [Google Scholar] [CrossRef]
- Getting, S.J.; Di Filippo, C.; D’Amico, M.; Perretti, M. The melanocortin peptide HP228 displays protective effects in acute models of inflammation and organ damage. Eur. J. Pharmacol. 2006, 532, 138–144. [Google Scholar] [CrossRef] [PubMed]
- Ottani, A.; Giuliani, D.; Galantucci, M.; Spaccapelo, L.; Novellino, E.; Grieco, P.; Jochem, J.; Guarini, S. Melanocortins counteract inflammatory and apoptotic responses to prolonged myocardial ischemia/reperfusion through a vagus nerve-mediated mechanism. Eur. J. Pharmacol. 2010, 637, 124–130. [Google Scholar] [CrossRef] [PubMed]
- Ottani, A.; Galantucci, M.; Ardimento, E.; Neri, L.; Canalini, F.; Calevro, A.; Zaffe, D.; Novellino, E.; Grieco, P.; Giuliani, D.; et al. Modulation of the JAK/ERK/STAT signaling in melanocortin-induced inhibition of local and systemic responses to myocardial ischemia/reperfusion. Pharmacol. Res. 2013, 72, 1–8. [Google Scholar] [CrossRef]
- Ottani, A.; Neri, L.; Canalini, F.; Calevro, A.; Rossi, R.; Cappelli, G.; Ballestri, M.; Giuliani, D.; Guarini, S. Protective effects of the melanocortin analog NDP-α-MSH in rats undergoing cardiac arrest. Eur. J. Pharmacol. 2014, 745, 108–116. [Google Scholar] [CrossRef]
- Ottani, A.; Giuliani, D.; Neri, L.; Calevro, A.; Canalini, F.; Vandini, E.; Cainazzo, M.M.; Ruberto, I.A.; Barbieri, A.; Rossi, R.; et al. NDP-α-MSH attenuates heart and liver responses to myocardial reperfusion via the vagus nerve and JAK/ERK/STAT signaling. Eur. J. Pharmacol. 2015, 769, 22–32. [Google Scholar] [CrossRef]
- Lee, Y.S.; Park, J.J.; Chung, K.Y. Change of Melanocortin Receptor Expression in Rat Kidney Ischemia–Reperfusion Injury. In Transplantation Proceedings; Elsevier: Amsterdam, The Netherlands, 2008; Volume 40, pp. 2142–2144. [Google Scholar]
- Lonati, C.; Battistin, M.; Dondossola, D.E.; Bassani, G.A.; Brambilla, D.; Merighi, R.; Leonardi, P.; Carlin, A.; Meroni, M.; Zanella, A.; et al. NDP-MSH treatment recovers marginal lungs during ex vivo lung perfusion (EVLP). Peptides 2021, 141, 170552. [Google Scholar] [CrossRef]
- Leoni, G.; Patel, H.B.; Sampaio, A.L.; Gavins, F.N.; Murray, J.F.; Grieco, P.; Getting, S.J.; Perretti, M. Inflamed phenotype of the mesenteric microcirculation of melanocortin type 3 receptor-null mice after ischemia-reperfusion. FASEB J. 2008, 22, 4228. [Google Scholar] [CrossRef]
- Liu, D.; Zhang, H.G.; Chang, M.T.; Li, Y.; Zhang, L.Y. Melanocortin-4 receptor agonists alleviate intestinal dysfunction in secondary intra-abdominal hypertension rat model. J. Surg. Res. 2015, 195, 263–270. [Google Scholar] [CrossRef]
- Regan, C.; Shepherd, C.; Strack, A.; Weinberg, D.; Nargund, R.; Ye, Z.; Pollard, P.; Fong, T.; Reynolds, I.; Lynch, J. Lack of protection with a novel, selective melanocortin receptor subtype-4 agonist RY767 in a rat transient middle cerebral artery occlusion stroke model. Pharmacology 2008, 83, 38–44. [Google Scholar] [CrossRef]
- Filippenkov, I.B.; Stavchansky, V.V.; Denisova, A.E.; Yuzhakov, V.V.; Sevan’kaeva, L.E.; Sudarkina, O.Y.; Dmitrieva, V.G.; Gubsky, L.V.; Myasoedov, N.F.; Limborska, S.A.; et al. Novel insights into the protective properties of acth (4-7) pgp (semax) peptide at the transcriptome level following cerebral ischaemia–reperfusion in rats. Genes 2020, 11, 681. [Google Scholar] [CrossRef]
- Sudarkina, O.Y.; Filippenkov, I.B.; Stavchansky, V.V.; Denisova, A.E.; Yuzhakov, V.V.; Sevan’kaeva, L.E.; Valieva, L.V.; Remizova, J.A.; Dmitrieva, V.G.; Gubsky, L.V.; et al. Brain protein expression profile confirms the protective effect of the ACTH (4–7) PGP peptide (Semax) in a rat model of cerebral ischemia–reperfusion. Int. J. Mol. Sci. 2021, 22, 6179. [Google Scholar] [CrossRef] [PubMed]
- Holloway, P.M.; Durrenberger, P.F.; Trutschl, M.; Cvek, U.; Cooper, D.; Orr, A.W.; Perretti, M.; Getting, S.J.; Gavins, F.N. Both MC1 and MC3 Receptors Provide Protection From Cerebral Ischemia-Reperfusion–Induced Neutrophil Recruitment. Arterioscler. Thromb. Vasc. Biol. 2015, 35, 1936–1944. [Google Scholar] [CrossRef] [PubMed]
- Minutoli, L.; Bitto, A.; Squadrito, F.; Irrera, N.; Rinaldi, M.; Nicotina, P.A.; Arena, S.; Magno, C.; Marini, H.; Spaccapelo, L.; et al. Melanocortin 4 receptor activation protects against testicular ischemia-reperfusion injury by triggering the cholinergic antiinflammatory pathway. Endocrinology 2011, 152, 3852–3861. [Google Scholar] [CrossRef] [PubMed]
- Robinson, G.N.; Pickering, R.J. Melanocortins and their potential for the treatment, prevention and amelioration of complications of diabetes. Diabetology 2024, 5, 69–84. [Google Scholar] [CrossRef]
- Costa, J.L.; Hochgeschwender, U.; Brennan, M. The role of melanocyte-stimulating hormone in insulin resistance and type 2 diabetes mellitus. Treat. Endocrinol. 2006, 5, 7–13. [Google Scholar] [CrossRef]
- Obici, S.; Feng, Z.; Tan, J.; Liu, L.; Karkanias, G.; Rossetti, L. Central melanocortin receptors regulate insulin action. J. Clin. Investig. 2001, 108, 1079–1085. [Google Scholar] [CrossRef]
- Wan, J.; Wang, J.; Wagner, L.E.; Wang, O.H.; Gui, F.; Chen, J.; Zhu, X.; Haddock, A.N.; Edenfield, B.H.; Haight, B.; et al. Pancreas-specific CHRM3 activation causes pancreatitis in mice. JCI Insight 2021, 6, e132585. [Google Scholar] [CrossRef]
- Jahovic, N.; Arbak, S.; Tekeli, Ö.; Alican, İ. α-Melanocyte stimulating hormone has beneficial effects on cerulein-induced acute pancreatitis. Peptides 2004, 25, 129–132. [Google Scholar] [CrossRef]
- Rinne, P.; Taylor, A.W.; Montero-Melendez, T. Melanocortins and melanocortin receptors in the regulation of inflammation: Mechanisms and novel therapeutic strategies. Front. Immunol. 2023, 14, 1226886. [Google Scholar] [CrossRef]
- Montero-Melendez, T.; Boesen, T.; Jonassen, T.E. Translational advances of melanocortin drugs: Integrating biology, chemistry and genetics. In Seminars in Immunology; Academic Press: Cambridge, MA, USA, 2022; Volume 59, p. 101603. [Google Scholar]
Melanocortin Receptors | Key Polymorphisms | Tissue Distribution | Agonist | Antagonist | Function | Mutation |
---|---|---|---|---|---|---|
MC1R | rs1805007 (R151C), rs1805008 (R160W), rs1805009 (D294H), rs2228479 (V92M) | Melanocyte, keratinocyte, neutrophil, macrophage, monocyte | α-MSH, β-MSH, γ-MSH | ASIP | Melanin production and pigmentation, response to UV radiation, inflammation and immunomodulation | Increased risk of melanoma; Major depressive disorder (MDD) |
MC2R | Rare mutations: S74I, D103N, R146H, nonsense variants | Adrenal cortex | ACTH | ACTH(7-38) | Adrenal gland function, production of cortisol | Familial glucocorticoid deficiency; Major depressive disorder (MDD) |
MC3R | V81I, I172V | Hypothalamus and limbic system | α-MSH, β-MSH, γ-MSH | AGRP | Energy homeostasis, regulation of food intake and appetite, cell proliferation, neuronal regeneration, myocardial reperfusion | Risk of obesity |
MC4R | Multiple loss-of-function variants | Brain, adipose tissue | α-MSH, β-MSH, γ-MSH | AGRP | Regulation of food intake and appetite, energy expenditure, thermogenesis | Most common monogenic cause of severe early-onset obesity type 2 diabetes |
MC5R | Functional variants under investigation | Adrenal gland, adipose tissue, lung, liver | α-MSH, β-MSH, γ-MSH, ACTH | Stress response, cognitive function, and fetal brain development | Major depressive disorder (MDD) |
Generic Name (Brand) | Mechanism of Action | Primary Target(s) | Indication | Year of FDA Approval/Trial Status | Route of Administration | Trial Phase (If Investigational) | Known Adverse Effects |
---|---|---|---|---|---|---|---|
Bremelanotide (Vyleesi) | Nonselective melanocortin receptor agonist (MC4R, MC1R) | MC4R > MC1R | Hypoactive sexual desire disorder (HSDD) | Approved, 2019 | Subcutaneous injection (on-demand, auto-injector) | – | Nausea, flushing, injection site reactions, headache, transient ↑ BP |
Afamelanotide (Scenesse) | MC1R agonist; increases eumelanin production in skin | MC1R | Erythropoietic protoporphyria (EPP) | Approved, 2019 | Subcutaneous implant (biodegradable, every 2 months) | – | Nausea, headache, hyperpigmentation, implant-site reactions |
Setmelanotide (Imcivree) | Highly selective MC4R agonist (20× less activity at MC3R/MC1R) | MC4R | Chronic weight management in patients ≥ 6 years with POMC, PCSK1, or LEPR deficiency | Approved, 2020 | Subcutaneous injection (daily) | – | Nausea, diarrhea, injection site reactions, depression, sexual adverse effects (erections) |
Dersimelagon (MT-7117) | Oral selective MC1R agonist; increases eumelanin production | MC1R | Erythropoietic protoporphyria (EPP) | Investigational | Oral (capsule) | Phase III (EPP) | Nausea, hyperpigmentation, fatigue (reported in early-phase studies) |
PL8177 | Potent, selective MC1R agonist with anti-inflammatory properties | MC1R | Ulcerative colitis, inflammatory bowel disease | Investigational | Oral (enteric-coated)/subcutaneous | Phase II (UC) | GI symptoms, injection site pain (early studies) |
AP1189 (Resomelagon) | Oral small-molecule biased MC1R/MC3R agonist | MC1R, MC3R | Rheumatoid arthritis, nephrotic syndrome | Investigational | Oral | Phase II (RA, nephrotic syndrome) | Mild GI symptoms, headache (early trials) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bardhan, M.; Anand, A.; Javed, A.; Chilo, M.A.; Khan, N.; Garg, T.; Surana, A.; Huang, H.; Samim, M.M.; Suresh, V.; et al. Polymorphism of Melanocortin Receptor Genes—Association with Inflammatory Traits and Diseases. Diseases 2025, 13, 305. https://doi.org/10.3390/diseases13090305
Bardhan M, Anand A, Javed A, Chilo MA, Khan N, Garg T, Surana A, Huang H, Samim MM, Suresh V, et al. Polymorphism of Melanocortin Receptor Genes—Association with Inflammatory Traits and Diseases. Diseases. 2025; 13(9):305. https://doi.org/10.3390/diseases13090305
Chicago/Turabian StyleBardhan, Mainak, Ayush Anand, Amaan Javed, Maria Andrea Chilo, Nida Khan, Tulika Garg, Arihant Surana, Helen Huang, M M Samim, Vinay Suresh, and et al. 2025. "Polymorphism of Melanocortin Receptor Genes—Association with Inflammatory Traits and Diseases" Diseases 13, no. 9: 305. https://doi.org/10.3390/diseases13090305
APA StyleBardhan, M., Anand, A., Javed, A., Chilo, M. A., Khan, N., Garg, T., Surana, A., Huang, H., Samim, M. M., Suresh, V., Khare, A., Menon, B., & Kundu, T. (2025). Polymorphism of Melanocortin Receptor Genes—Association with Inflammatory Traits and Diseases. Diseases, 13(9), 305. https://doi.org/10.3390/diseases13090305