Infectious Diseases in Children: Diagnosing the Impact of Climate Change-Related Disasters Using Integer-Valued Autoregressive Models with Overdispersion
Abstract
1. Introduction
2. Materials and Methods
2.1. Data Sources and Visualisation
2.1.1. Epidemiological Surveillance and Immunisation Information System Database
2.1.2. Indonesia Disaster Information Database
2.2. Integer-Valued Time-Series Models
2.2.1. INAR Models
2.2.2. INAR Models with Overdispersion
2.2.3. INAR Models with Explanatory Variables
3. Results and Discussion
3.1. Descriptive Statistics
3.2. Correlation Analysis
3.3. Time-Series Modelling
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ARI | Acute respiratory infection |
DHF | Dengue haemorrhagic fever |
INAR | Integer-valued autoregressive |
INAR-X | Integer-valued autoregressive with explanatory variables |
NSE | Nash–Sutcliffe efficiency |
PE | Poisson–exponential |
PL | Poisson–Lindley |
Appendix A. Estimation for INAR-X Models
References
- Proulx, K.; Daelmans, B.; Baltag, V.; Banati, P. Climate change impacts on child and adolescent health and well-being: A narrative review. J. Glob. Health 2024, 14, 04061. [Google Scholar] [CrossRef]
- Harapan, H.; Michie, A.; Mudatsir, M.; Sasmono, R.T.; Imrie, A. Epidemiology of dengue hemorrhagic fever in Indonesia: Analysis of five decades data from the National Disease Surveillance. BMC Res. Notes 2019, 12, 350. [Google Scholar] [CrossRef]
- Sulistiyowati, N.; Tjandrarini, D.H.; Titaley, C.R.; Que, B.J.; Hidayangsih, P.S.; Suparmi; Sudikno, S.; Purwatiningsih, Y.; Indrawati, L.; Siahaan, S.; et al. Suboptimal child healthcare practices and the development of multiple infectious diseases in children aged 24–59 months. Front. Public Health 2024, 12, 1340559. [Google Scholar] [CrossRef]
- Purnama, T.B.; Wagatsuma, K.; Saito, R. Prevalence and risk factors of acute respiratory infection and diarrhea among children under 5 years old in low-middle wealth household, Indonesia. Infect. Dis. Poverty 2025, 14, 95–104. [Google Scholar] [CrossRef] [PubMed]
- Bignier, C.; Havet, L.; Brisoux, M.; Omeiche, C.; Misra, S.; Gonsard, A.; Drummond, D. Climate change and children’s respiratory health. Paediatr. Respir. Rev. 2024, 53, 64–73. [Google Scholar] [CrossRef] [PubMed]
- Makrufardi, F.; Triasih, R.; Nurnaningsih, N.; Chung, K.F.; Lin, S.C.; Chuang, H.C. Extreme temperatures increase the risk of pediatric pneumonia: A systematic review and meta-analysis. Front. Pediatr. 2024, 12, 1329918. [Google Scholar] [CrossRef] [PubMed]
- Chua, P.L.C.; Ng, C.F.S.; Tobias, A.; Seposo, X.T.; Hashizume, M. Associations between ambient temperature and enteric infections by pathogen: A systematic review and meta-analysis. Lancet Planet. Health 2022, 6, e202–e218. [Google Scholar] [CrossRef]
- Lu, H.; Ayers, E.; Patel, P.; Mattoo, T.K. Body water percentage from childhood to old age. Kidney Res. Clin. Pract. 2023, 42, 340–348. [Google Scholar] [CrossRef]
- Wibawa, B.S.S.; Wang, Y.C.; Andhikaputra, G.; Lin, Y.K.; Hsieh, L.H.C.; Tsai, K.H. The impact of climate variability on dengue fever risk in central java, Indonesia. Clim. Serv. 2024, 33, 100433. [Google Scholar] [CrossRef]
- Thomson, M.C.; Stanberry, L.R. Climate change and vectorborne diseases. N. Engl. J. Med. 2022, 387, 1969–1978. [Google Scholar] [CrossRef]
- Ryco, F.A.; Syafararisa, D.P.; Suvany, A.; Sabilla, C.J.; Revia, M.; Ikrom, M. Tidal flood hazard assessment in Pekalongan City, Central Java. IOP Conf. Ser. Earth Environ. Sci. 2023, 012058, 012058. [Google Scholar]
- Herbanu, P.S.; Nurmaya, A.; Nisaa, R.M.; Wardana, R.A.; Sahid. The zoning of flood disasters by combining tidal flood and urban flood in Semarang City, Indonesia. IOP Conf. Ser. Earth Environ. Sci. 2024, 1314, 012028. [Google Scholar] [CrossRef]
- Arhatin, R.E.; Gaol, J.L.; Nurjaya, I.W.; Susilo, S.B.; Kushardono, D.; Nugroho, U.C.; Jumarang, M.I.; Sinurat, M.E.; Balbeid, N. Assessing land subsidence and analyzing tidal flooding in Tangerang, Banten. BIO Web Conf. 2024, 106, 04010. [Google Scholar] [CrossRef]
- Kumar, P.G.; Lekhana, P.; Tejaswi, M.; Chandrakala, S. Effects of vehicular emissions on the urban environment- a state of the art. Mater. Today Proc. 2021, 45, 6314–6320. [Google Scholar] [CrossRef]
- Sukayat, Y.; Setiawan, I.; Suharfaputra, U.; Kurnia, G. Determining factors for farmers to engage in sustainable agricultural practices: A case from Indonesia. Sustainability 2023, 15, 10548. [Google Scholar] [CrossRef]
- Suprapto, S. Waste management laws and policies in Indonesia: Challenges and opportunities. J. Appl. Phys. Sci. 2023, 8, 1–8. [Google Scholar] [CrossRef]
- Yahman, Y.; Setyagama, A. Government policy in regulating the environment for development of sustainable environment in Indonesia. Environ. Dev. Sustain. 2023, 25, 12829–12840. [Google Scholar] [CrossRef]
- Cardinal, M.; Roy, R.; Lambert, J. On the application of integer-valued time series models for the analysis of disease incidence. Stat. Med. 1999, 18, 2025–2039. [Google Scholar] [CrossRef]
- Ahdika, A.; Lusiyana, N. Comparison of INAR(1)-Poisson model and Markov prediction model in forecasting the number of DHF patients in west java Indonesia. J. Phys. Conf. Ser. 2017, 814, 012002. [Google Scholar] [CrossRef]
- McKenzie, E. Some simple models for discrete variate time series. JAWRA J. Am. Water Resour. Assoc. 1985, 21, 645–650. [Google Scholar] [CrossRef]
- Al-Osh, M.A.; Alzaid, A.A. First-order integer-valued autoregressive (INAR(1)) process. J. Time Ser. Anal. 1987, 8, 261–275. [Google Scholar] [CrossRef]
- Maiti, R.; Biswas, A. Coherent forecasting for over-dispersed time series of count data. Braz. J. Probab. Stat. 2015, 29, 747–766. [Google Scholar] [CrossRef]
- Tian, S.; Wang, D.; Cui, S. A seasonal geometric INAR process based on negative binomial thinning operator. Stat. Pap. 2020, 61, 2561–2581. [Google Scholar] [CrossRef]
- Mojica, V.J.C.; Co, F.F. Performance evaluation and comparison of integer-valued time series models for measles outbreak detection in Cavite. Philipp. Stat. 2019, 68, 1–25. [Google Scholar]
- Lívio, T.; Khan, N.M.; Bourguignon, M.; Bakouch, H.S. An INAR(1) model with Poisson–Lindley innovations. Econ. Bull. 2018, 38, 1505–1513. [Google Scholar]
- Mohammadpour, M.; Bakouch, H.S.; Shirozhan, M. Poisson–Lindley INAR(1) model with applications. Braz. J. Probab. Stat. 2018, 32, 262–280. [Google Scholar] [CrossRef]
- Helldén, D.; Andersson, C.; Nilsson, M.; Ebi, K.L.; Friberg, P.; Alfvén, T. Climate change and child health: A scoping review and an expanded conceptual framework. Lancet Planet. Health 2021, 5, e164–e175. [Google Scholar] [CrossRef]
- President of the Republic of Indonesia. Undang-Undang Republik Indonesia Nomor 35 Tahun 2014 Tentang Perubahan Atas Undang-Undang Nomor 23 Tahun 2002 Tentang Perlindungan Anak. 2014. Available online: https://peraturan.bpk.go.id/Details/38723/uu-no-35-tahun-2014 (accessed on 8 April 2025).
- Syuhada, K.; Wibisono, A.; Hakim, A.; Addini, F. COVID-19 risk data during lockdown-like policy in Indonesia. Data Brief 2021, 35, 106801. [Google Scholar] [CrossRef] [PubMed]
- George, C.M.; Cirhuza, L.B.; Kuhl, J.; Williams, C.; Coglianese, N.; Thomas, E.; Bauler, S.; François, R.; Saxton, R.; Presence, A.S.; et al. Child mouthing of feces and fomites and animal contact are associated with diarrhea and impaired growth among young children in the Democratic Republic of the Congo: A prospective cohort study (REDUCE Program). J. Pediatr. 2021, 228, 110–116. [Google Scholar] [CrossRef]
- Liu, J.; Tian, X.; Deng, Y.; Du, Z.; Liang, T.; Hao, Y.; Zhang, D. Risk factors associated with dengue virus infection in Guangdong Province: A community-based case-control study. Int. J. Environ. Res. Public Health 2019, 16, 617. [Google Scholar] [CrossRef] [PubMed]
- Deng, J.; Zhang, H.; Wang, Y.; Liu, Q.; Du, M.; Yan, W.; Qin, C.; Zhang, S.; Chen, W.; Zhou, L.; et al. Global, regional, and national burden of dengue infection in children and adolescents: An analysis of the Global Burden of Disease Study 2021. EClinicalMedicine 2024, 78, 102943. [Google Scholar] [CrossRef] [PubMed]
- Mamenun; Koesmaryono, Y.; Sopaheluwakan, A.; Hidayati, R.; Dasanto, B.D.; Aryati, R. Spatiotemporal characterization of dengue incidence and its correlation to climate parameters in Indonesia. Insects 2024, 15, 366. [Google Scholar] [CrossRef]
- Mokhtar, S.; Ratterree, D.C.P.; Britt, A.F.; Fisher, R.; Ndeffo-Mbah, M.L. Global risk of dengue outbreaks and the impact of El Niño events. Environ. Res. 2024, 262, 119830. [Google Scholar] [CrossRef]
- Pirani, M.; Lorenz, C.; de Azevedo, T.S.; Barbosa, G.L.; Blangiardo, M.; Chiaravalloti-Neto, F. Effects of the El Niño-Southern Oscillation and seasonal weather conditions on Aedes aegypti infestation in the State of São Paulo (Brazil): A Bayesian spatio-temporal study. PLoS Neglected Trop. Dis. 2024, 18, e0012397. [Google Scholar] [CrossRef]
- National Disaster Management Agency (BNPB) of the Republic of Indonesia. Peraturan BNPB Nomor 7 Tahun 2023 tentang Petunjuk Pelaksanaan Standar Data Kejadian dan Dampak Bencana. 2023. Available online: https://data.bnpb.go.id/dataset/juklak-standar-data-kejadian-dan-dampak-bencana (accessed on 10 June 2025).
- Atuyambe, L.M.; Ediau, M.; Orach, C.G.; Musenero, M.; Bazeyo, W. Land slide disaster in eastern Uganda: Rapid assessment of water, sanitation and hygiene situation in Bulucheke camp, Bududa district. Environ. Health 2011, 10, 38. [Google Scholar] [CrossRef]
- Davies, G.I.; McIver, L.; Kim, Y.; Hashizume, M.; Iddings, S.; Chan, V. Water-borne diseases and extreme weather events in Cambodia: Review of impacts and implications of climate change. Int. J. Environ. Res. Public Health 2015, 12, 191–213. [Google Scholar] [CrossRef]
- Gaver, D.P.; Lewis, P.A. First-order autoregressive gamma sequences and point processes. Adv. Appl. Probab. 1980, 12, 727–745. [Google Scholar] [CrossRef]
- Brännäs, K. Explanatory variables in the AR(1) count data model. Umeå Econ. Stud. 1995. Available online: https://www.usbe.umu.se/digitalAssets/39/39103_ues381.pdf (accessed on 1 April 2025).
- Enciso-Mora, V.; Neal, P.; Rao, T.S. Integer valued AR processes with explanatory variables. Sankhyā Indian J. Stat. Ser. B 2009, 71, 248–263. [Google Scholar]
- Moriña, D.; Puig, P.; Ríos, J.; Vilella, A.; Trilla, A. A statistical model for hospital admissions caused by seasonal diseases. Stat. Med. 2011, 30, 3125–3136. [Google Scholar] [CrossRef]
- Syuhada, K.; Wanda, D.; Hartati, S. A simple statistical method for measuring health status for a child: The case of Indonesia. J. Appl. Probab. Stat. 2015, 10, 23–32. [Google Scholar]
- Wang, X. Variable selection for first-order Poisson integer-valued autoregressive model with covariables. Aust. N. Z. J. Stat. 2020, 62, 278–295. [Google Scholar] [CrossRef]
- Sankaran, M. The discrete Poisson–Lindley distribution. Biometrics 1970, 26, 145–149. [Google Scholar] [CrossRef]
- Cha, J.H. Poisson Lindley process and its main properties. Stat. Probab. Lett. 2019, 152, 74–81. [Google Scholar] [CrossRef]
- Syuhada, K.; Tjahjono, V.; Hakim, A. Compound Poisson–Lindley process with Sarmanov dependence structure and its application for premium-based spectral risk forecasting. Appl. Math. Comput. 2024, 467, 128492. [Google Scholar] [CrossRef]
- Syuhada, K.; Alzaid, A.; Salah, D. Prediction limits for Poisson INAR(1) process. J. Math. Fundam. Sci. 2015, 47, 117–125. [Google Scholar]
- Weiss, C.H. Serial dependence and regression of Poisson INARMA models. J. Stat. Plan. Inference 2008, 138, 2975–2990. [Google Scholar] [CrossRef]
- Schweer, S.; Weiss, C.H. Compound Poisson INAR(1) processes: Stochastic properties and testing for overdispersion. Comput. Stat. Data Anal. 2014, 77, 267–284. [Google Scholar] [CrossRef]
- Lindley, D.V. Fiducial distributions and Bayes’ theorem. J. R. Stat. Soc. Ser. B (Methodol.) 1958, 20, 102–107. [Google Scholar] [CrossRef]
- Jazi, M.A.; Jones, G.; Lai, C.D. Integer valued AR(1) with geometric innovations. J. Iran. Stat. Soc. 2012, 11, 173–190. [Google Scholar]
- Ghitany, M.E.; Al-Mutairi, D.K. Estimation methods for the discrete Poisson–Lindley distribution. J. Stat. Comput. Simul. 2009, 79, 1–9. [Google Scholar] [CrossRef]
- ul Haq, I.; Mehmood, Z.; Ahmed, B.; Shah, J.; Begum, N.; Hajira, B.; Xu, J.; Wang, S. Determinants of diarrhea among children aged 1 to 6 years in flood-affected areas of Pakistan: A cross-sectional study. Am. J. Trop. Med. Hyg. 2023, 110, 323–330. [Google Scholar] [CrossRef]
- Yazdi, M.S.; Ardalan, M.A.; Hosseini, M.; Zoshk, M.Y.; Hami, Z.; Heidari, R.; Mosaed, R.; Chamanara, M. Infectious diarrhea risks as a public health emergency in floods; a systematic review and meta-analysis. Arch. Acad. Emerg. Med. 2024, 12, e46. [Google Scholar] [PubMed]
- Wang, P.; Asare, E.O.; Pitzer, V.E.; Dubrow, R.; Chen, K. Floods and diarrhea risk in young children in low- and middle-income countries. JAMA Pediatr. 2023, 177, 1206–1214. [Google Scholar] [CrossRef]
- National Disaster Management Agency (BNPB) of the Republic of Indonesia. Indeks Risiko Bencana Indonesia Tahun 2024. 2025. Available online: https://inarisk.bnpb.go.id/IRBI-2024/mobile/index.html (accessed on 11 June 2025).
- Government of the Province of the Special Region of Jakarta. Pantau Banjir Jakarta. 2025. Available online: https://pantaubanjir.jakarta.go.id (accessed on 11 June 2025).
- Al-Manji, A.; Wirayuda, A.A.B.; Eltayib, R.A.A.; Al-Azri, M.; Chan, M.F. Factors contributing to mosquito-borne disease: A systematic review in the Middle East and North Africa (MENA) region. Curr. Res. Parasitol. Vector-Borne Dis. 2025, 8, 100281. [Google Scholar] [CrossRef] [PubMed]
- Jaelani, L.M.; Fahlefi, R.; Khoiri, M.; Rochman, J.P.G.N. The rainfall effect analysis of landslide occurrence on Mount Slopes of Wilis. Int. J. Adv. Sci. Eng. Inf. Technol. 2020, 10, 298–303. [Google Scholar] [CrossRef]
- Herath, J.M.M.K.; De Silva, W.A.P.P.; Weeraratne, T.C.; Karunaratne, S.H.P.P. Breeding habitat preference of the dengue vector mosquitoes Aedes aegypti and Aedes albopictus from urban, semiurban, and rural areas in Kurunegala district, Sri Lanka. J. Trop. Med. 2024, 2024, 4123543. [Google Scholar] [CrossRef]
- Valdez, L.D.; Sibona, G.J.; Condat, C.A. Impact of rainfall on Aedes aegypti populations. Ecol. Model. 2018, 385, 96–105. [Google Scholar] [CrossRef]
- Anagnostopoulou, P.; Schittny, J.C. Anatomy and development of the respiratory system. In ERS Handbook of Paediatric Respiratory Medicine, 2nd ed.; Eber, E., Midulla, F., Eds.; European Respiratory Society: Lausanne, Switzerland, 2021; pp. 1–13. [Google Scholar]
- Luby, S.P.; Brooks, W.A.; Zaman, K.; Hossain, S.; Ahmed, T. Infectious diseases and vaccine sciences: Strategic directions. J. Health Popul. Nutr. 2008, 6, 295–310. [Google Scholar] [CrossRef]
- U.S. Centers for Diseases Control and Prevention. Explaining How Vaccines Work. 2024. Available online: https://www.cdc.gov/vaccines/basics/explaining-how-vaccines-work.html (accessed on 3 September 2025).
- Agho, K.E.; Ahmed, T.; Fleming, C.; Dhami, M.V.; Miner, C.A.; Torome, R.; Ogbo, F.A. Breastfeeding practices among adolescent mothers and associated factors in Bangladesh (2004–2014). Nutrients 2021, 13, 557. [Google Scholar] [CrossRef]
- Ejigu, N.; Sarbecha, N.; Seyoum, K.; Gomora, D.; Geta, G.; Chele, K.; Mengistu, S.; Eshetu, D.; Admasu, Y.; Mesfin, T.; et al. Prevalence of low birth weight and associated factors in Ethiopia: An umbrella review of systematic review and meta-analyses. PLoS Glob. Public Health 2025, 5, e0004556. [Google Scholar] [CrossRef]
- Camacho-Morales, A.; Caba, M.; García-Juárez, M.; Caba-Flores, M.D.; Viveros-Contreras, R.; Martínez-Valenzuela, C. Breastfeeding contributes to physiological immune programming in the newborn. Front. Pediatr. 2021, 9, 744104. [Google Scholar] [CrossRef]
- Mathiarasan, S.; Hüls, A. Impact of environmental injustice on children’s health—Interaction between air pollution and socioeconomic status. Int. J. Environ. Res. Public Health 2021, 18, 795. [Google Scholar] [CrossRef] [PubMed]
- Alene, K.A.; Gordon, C.A.; Clements, A.C.; Williams, G.M.; Gray, D.J.; Zhou, X.N.; Li, Y.; Utzinger, J.; Kurscheid, J.; Forsyth, S.; et al. Spatial analysis of schistosomiasis in Hunan and Jiangxi provinces in the People’s Republic of China. Diseases 2022, 10, 93. [Google Scholar] [CrossRef] [PubMed]
- Silveira, J.R.S.; Lima, S.V.M.A.; Dos Santos, A.D.; Siqueira, L.S.; Santos, G.R.d.S.; Sousa, Á.F.L.d.; de Oliveira, L.B.; Mendes, I.A.C.; Ribeiro, C.J.N. Impact of the COVID-19 pandemic surveillance of visceral leishmaniasis in Brazil: An ecological study. Infect. Dis. Rep. 2024, 16, 116–127. [Google Scholar] [CrossRef] [PubMed]
- van der Vaart, A.W. Asymptotic Statistics; Cambridge University Press: Cambridge, UK, 1998. [Google Scholar]
Distribution for | |||||
---|---|---|---|---|---|
Poisson–exponential () | (overdispersion) | ||||
Poisson–Lindley () | (overdispersion) |
Age Group | Statistic | Diarrhoea | DHF | ARI | |||
---|---|---|---|---|---|---|---|
Period 1 | Period 2 | Period 1 | Period 2 | Period 1 | Period 2 | ||
0–7 days | Mean | 8.34 | 3.96 | 0.04 | 0.07 | 28.00 | 6.21 |
Variance | 79.83 | 21.18 | 0.06 | 0.28 | 988.16 | 84.95 | |
Skewness | 1.96 | 1.92 | 6.36 | 7.35 | 1.83 | 2.97 | |
Kurtosis | 7.66 | 6.27 | 46.01 | 55.02 | 7.28 | 14.97 | |
Dispersion | 9.57 | 5.34 | 1.37 | 4.00 | 35.29 | 13.68 | |
8–28 days | Mean | 59.88 | 15.68 | 0.14 | 0.12 | 215.83 | 33.81 |
Variance | 1670.32 | 178.18 | 0.23 | 0.25 | 28,360.11 | 1084.91 | |
Skewness | 1.36 | 2.43 | 5.12 | 4.50 | 1.31 | 2.21 | |
Kurtosis | 4.61 | 10.77 | 36.04 | 23.42 | 4.63 | 8.16 | |
Dispersion | 27.90 | 11.36 | 1.70 | 2.06 | 131.40 | 32.09 | |
29 days–11 months | Mean | 1635.46 | 775.91 | 4.41 | 4.21 | 4898.54 | 1748.68 |
Variance | 160,695.69 | 127,418.83 | 19.36 | 9.31 | 2,666,240.20 | 1,167,432.22 | |
Skewness | 0.62 | 0.30 | 2.61 | 0.51 | 1.30 | 0.33 | |
Kurtosis | 2.60 | 2.34 | 13.08 | 2.27 | 5.05 | 2.08 | |
Dispersion | 98.26 | 164.22 | 4.39 | 2.21 | 544.29 | 667.61 | |
12 months–4 years | Mean | 4080.89 | 2505.16 | 21.72 | 18.68 | 11,945.51 | 5255.67 |
Variance | 900,079.34 | 1753,768.24 | 263.99 | 271.43 | 14,430,398.60 | 14,022,945.23 | |
Skewness | 1.88 | 0.32 | 2.33 | 2.07 | 1.47 | 0.49 | |
Kurtosis | 10.25 | 2.09 | 12.08 | 8.26 | 6.91 | 2.19 | |
Dispersion | 220.56 | 700.06 | 12.15 | 14.53 | 1208.02 | 2668.16 | |
5–9 years | Mean | 1717.45 | 1134.40 | 39.88 | 38.47 | 8229.88 | 4151.86 |
Variance | 199,010.33 | 404,042.39 | 1383.04 | 1470.08 | 5,529,578.22 | 9,608,725.41 | |
Skewness | 3.01 | 0.20 | 2.35 | 2.53 | 0.88 | 0.51 | |
Kurtosis | 17.83 | 1.70 | 10.56 | 10.91 | 3.91 | 2.12 | |
Dispersion | 115.88 | 356.17 | 34.68 | 38.21 | 671.89 | 2314.32 | |
10–14 years | Mean | 1125.36 | 678.60 | 39.20 | 44.26 | 4633.88 | 2317.72 |
Variance | 76,707.17 | 150,724.57 | 1285.97 | 2402.34 | 1,892,112.73 | 3,182,916.42 | |
Skewness | 1.83 | 0.28 | 1.79 | 2.48 | 0.70 | 0.50 | |
Kurtosis | 9.76 | 1.88 | 7.18 | 9.90 | 3.47 | 1.96 | |
Dispersion | 68.16 | 222.11 | 32.80 | 54.27 | 408.32 | 1373.30 | |
15–19 years | Mean | 1095.85 | 670.79 | 32.66 | 34.19 | 4207.86 | 2011.28 |
Variance | 72,759.12 | 135,860.78 | 836.49 | 1318.52 | 1,773,481.51 | 2,288,682.99 | |
Skewness | 1.17 | 0.33 | 1.90 | 2.85 | 1.02 | 0.68 | |
Kurtosis | 5.06 | 2.14 | 7.39 | 13.02 | 4.91 | 2.47 | |
Dispersion | 66.40 | 202.54 | 25.61 | 38.56 | 421.47 | 1137.92 | |
Total | Mean | 9723.23 | 5784.51 | 138.06 | 140.02 | 34,159.50 | 15,525.23 |
Variance | 4,719,290.80 | 9,066,456.29 | 13,843.25 | 19,533.09 | 102,428,067.87 | 124,122,128.07 | |
Skewness | 1.74 | 0.21 | 2.06 | 2.60 | 0.98 | 0.48 | |
Kurtosis | 9.57 | 1.88 | 8.79 | 11.09 | 4.23 | 2.11 | |
Dispersion | 485.36 | 1567.37 | 100.27 | 139.50 | 2998.52 | 7994.87 |
Statistic | Flood | Landslide | Extreme Weather | |||
---|---|---|---|---|---|---|
Period 1 | Period 2 | Period 1 | Period 2 | Period 1 | Period 2 | |
Mean | 1.21 | 1.04 | 0.15 | 0.30 | 0.21 | 0.21 |
Variance | 3.05 | 1.96 | 0.25 | 0.53 | 0.30 | 0.24 |
Skewness | 2.17 | 2.53 | 3.94 | 2.52 | 3.10 | 2.28 |
Kurtosis | 8.76 | 12.03 | 20.19 | 8.48 | 13.64 | 7.44 |
Dispersion | 2.52 | 1.90 | 1.60 | 1.79 | 1.42 | 1.14 |
Age Group | Model | NSE | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Period 1 | ||||||||||
0–7 days | PE-INAR(1)-X | −0.33 | −0.60 * | −7.11 * | 2.12 * | 1.77 * | −0.01 | −0.05 | −0.40 | 26.44% |
PL-INAR(1)-X | −0.33 | −0.60 * | −7.08 * | 2.12* | 1.20 * | −0.01 | −0.04 | −0.36 | 26.43% | |
8–28 days | PE-INAR(1)-X | 0.22 | 0.34 * | −0.55 * | 0.56 | 3.45 * | −0.27 * | −0.64 * | −0.88 * | 43.04% |
PL-INAR(1)-X | 0.22 | 0.34 * | −0.54 * | 0.57 | 2.78 * | −0.25 * | −0.62 * | −0.86 * | 43.03% | |
29 days–11 months | PE-INAR(1)-X | 0.43 * | −0.04 | 0.21 * | −0.18 * | 6.53 * | −0.03 | −0.27 * | 0.10 * | 42.72% |
PL-INAR(1)-X | 0.43 * | −0.04 | 0.21 * | −0.18 * | 5.84 * | −0.03 | −0.27 * | 0.10 * | 42.72% | |
12 months–4 years | PE-INAR(1)-X | 2.91 * | −0.20 * | 0.96 | 884.39 | 5.65 * | −86.20 * | −104.83 * | 0.10 | 11.58% |
PL-INAR(1)-X | 0.30 * | −0.19 * | −0.24 * | 0.19 | 6.83 * | 0.04 * | 0.04 * | −0.03 | 32.65% | |
5–9 years | PE-INAR(1)-X | 0.42 * | −0.24 * | −0.54 * | 1.05 * | 6.59 * | 0.07 * | 0.14 * | −0.51 * | 31.58% |
PL-INAR(1)-X | 0.37 * | −0.19 * | −0.61 * | 6.40 | 5.91 * | 0.06 * | 0.16 * | −22.58 * | 29.77% | |
10–14 years | PE-INAR(1)-X | 0.24 * | −0.21 * | 0.02 | −0.44 * | 6.27 * | 0.05 * | −0.11 * | 0.22 * | 28.96% |
PL-INAR(1)-X | 0.24 * | −0.21 * | 0.02 | −0.44 * | 5.58 * | 0.05 * | −0.11 * | 0.22 * | 28.96% | |
15–19 years | PE-INAR(1)-X | 0.49 * | −0.27 * | 0.31 * | −0.44 * | 6.10 * | 0.07 * | −0.27 * | 0.32 * | 41.41% |
PL-INAR(1)-X | 0.49 * | −0.27 * | 0.31 * | −0.44 * | 5.41 * | 0.07 * | −0.27 * | 0.32 * | 41.41% | |
Total | PE-INAR(1)-X | 0.38 * | −0.19 * | −0.46 * | 0.09 | 8.35 * | 0.04 * | 0.11 * | 0.03 | 34.16% |
PL-INAR(1)-X | 0.38 * | −0.19 * | −0.46 * | 0.09 | 7.66 * | 0.04 * | 0.11 * | 0.03 | 34.16% | |
Period 2 | ||||||||||
0–7 days | PE-INAR(1)-X | −87.35 * | 87.72 * | 85.12 * | 1.16 * | 1.63 * | −0.77 * | −0.42 | −0.60 * | 48.94% |
PL-INAR(1)-X | −53.89 * | 54.13 * | 19.14 * | −109.25 * | 1.03 * | −0.57 * | −0.06 | −0.10 | 51.37% | |
8–28 days | PE-INAR(1)-X | −25.44 * | −4.63 | −4.96 | −5.68 * | 2.74 * | 0.04 | −0.11 * | 0.02 | 58.20% |
PL-INAR(1)-X | −22.34 * | −20.09 * | −9.23 | −7.14 * | 2.10 * | 0.04 | −0.10 * | 0.01 | 58.20% | |
29 days–11 months | PE-INAR(1)-X | 68.09 * | −10.22 * | 12.17 * | 9.42 * | 4.27 * | −15.80 | −1.17 | −112.49 * | 94.83% |
PL-INAR(1)-X | 4.86 * | −0.54 * | 9.55 * | −1.55 * | −526.71 * | 27.13 * | 149.54 * | 14.45 * | 95.22% | |
12 months–4 years | PE-INAR(1)-X | 4.44 * | −0.36 * | 31.45 * | −1.63 * | −34.32 * | −15.45 * | 3.38 * | −13.51 * | 93.98% |
PL-INAR(1)-X | 1.84 * | −0.11 | 0.22 | 0.27 | 5.72 * | −0.37 * | −0.45 | −2600.49 | 94.62% | |
5–9 years | PE-INAR(1)-X | 2.54 * | 0.04 | 16.82 | −0.71 * | 5.24 * | −0.57 | −1.70 | −18.39 * | 96.05% |
PL-INAR(1)-X | 4.07 * | 0.12 | 32.73 * | −1.84 * | −33.08 * | −32.66 * | 2.07 * | −18.07 * | 95.61% | |
10–14 years | PE-INAR(1)-X | 1.56 * | −0.20 * | 213.19 * | 0.35 * | 5.12 * | −0.12 | −1.08 | −1.23 | 92.88% |
PL-INAR(1)-X | 1.55 * | −0.19 * | 1.38 | 0.30 | 4.45 * | −0.15 | −0.65 | −1.06 | 92.88% | |
15–19 years | PE-INAR(1)-X | 3.91 * | −0.44 * | 31.80 * | −1.19 * | −38.11 * | −9.63 * | 5.10 * | 1.79 * | 91.82% |
PL-INAR(1)-X | 1.81 * | −0.39 * | 0.31 * | −0.18 | 4.19 * | 0.10 * | −0.15 | −0.12 | 92.64% | |
Total | PE-INAR(1)-X | 2505.99 * | −0.02 | 987.54 | −2504.27 * | -28.40 * | 2.46 * | −0.99 * | 17.09 * | 95.48% |
PL-INAR(1)-X | 2.17 * | −0.15 | 0.61 | -0.10 | 6.32 * | −0.34 | −0.64 | −17.93 * | 95.57% |
Age Group | Model | NSE | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Period 1 | ||||||||||
0–7 days | PE-INAR(1)-X | −38.70 * | 0.74 * | 9.81 * | −6.74 | −2.81 * | −23.43 * | −17.88 * | −24.21 * | −0.37% |
PL-INAR(1)-X | −37.18 * | 3.62 * | 9.33 * | 0.14 | −2.87 * | −17.27 * | −20.78 * | −20.21 * | –0.37% | |
8–28 days | PE-INAR(1)-X | −70.04 * | −5.46 * | −3.31 * | −0.99 | −2.03 * | 0.14 * | 0.05 | −11.78 * | 2.56% |
PL-INAR(1)-X | −40.92 * | 10.35 * | −3.51 * | −0.58 | −1.84 * | −33.45 * | −28.14 * | −24.40 * | 0.88% | |
29 days–11 months | PE-INAR(1)-X | 0.09 | −0.62 * | −0.17 | −1.08 | 0.69 * | 0.20 * | 0.23 * | −0.10 | 19.17% |
PL-INAR(1)-X | 0.10 | −0.63 * | −0.16 | −1.09 | 0.25 * | 0.18 * | 0.20 * | −0.09 | 18.94% | |
12 months–4 years | PE-INAR(1)-X | 0.57 * | 0.13 * | −0.32 | −0.54 | 1.88 * | 0.07 | −1.36 * | 0.52 * | 45.99% |
PL-INAR(1)-X | 0.58 * | 0.13 * | −0.32 | −0.56 | 1.29 * | 0.06 | −1.31 * | 0.50 * | 45.97% | |
5–9 years | PE-INAR(1)-X | 0.08 | 1.44 * | 1.62 * | 1.95 | 2.36 * | −0.59 * | 0.97 * | −0.87 * | 58.98% |
PL-INAR(1)-X | 0.41 * | 0.86 | 18.84 * | −0.31 | 1.45 * | −0.07 | −1.85 * | 0.78 * | 61.64% | |
10–14 years | PE-INAR(1)-X | 0.32 * | 2.79 * | −5.11 * | 4.72 * | 2.08 * | −1.98 * | 2.76 * | −1.91 * | 67.87% |
PL-INAR(1)-X | 0.81 * | 1.83 | 31.76 | 2.09 | 0.31 * | 0.01 | −2.09 * | 1.09 * | 67.45% | |
15–19 years | PE-INAR(1)-X | 0.43 * | 40.97 * | −21.47 * | 1.21 | 1.81 * | −25.66 * | 2.81 * | −0.88 | 62.42% |
PL-INAR(1)-X | 0.76 * | 2.05 * | 18.61 * | −0.20 | 0.58 * | 0.08 | −1.96 * | 0.90 * | 65.10% | |
Total | PE-INAR(1)-X | 0.89 * | 1.54 | 17.98 | 0.35 | 2.44 * | 0.03 | −2.25 * | 1.00 * | 66.38% |
PL-INAR(1)-X | 0.44 * | 2.60 * | −4.55 * | 3.27 | 2.68 * | −1.82 * | 2.57 * | −1.77 * | 64.34% | |
Period 2 | ||||||||||
0–7 days | PE-INAR(1)-X | −27.10 * | 0.14 | 0.15 | 0.16 | −1.39 | −8.84 * | −8.35 * | −8.41 * | 4.55% |
PL-INAR(1)-X | −27.25 * | 0.14 | 0.15 | 0.16 | −1.55 * | −7.99 * | −7.48 * | −7.55 * | 4.55% | |
8–28 days | PE-INAR(1)-X | −7.48 * | 5.34 * | 0.00 | −2.46 * | −1.67 * | −0.76 | 0.54 | −12.90 * | 5.32% |
PL-INAR(1)-X | −7.85 * | 5.70 * | −0.21 | −11.81 * | −1.80 * | −0.68 | 0.47 | −16.81 * | 5.28% | |
29 days–11 months | PE-INAR(1)-X | −18.69 * | 19.40 * | 19.83 * | 37.99 * | 1.16 * | −0.60 * | −0.70 | −0.94 | 39.14% |
PL-INAR(1)-X | −16.12 * | 16.82 * | 17.23 * | 101.74 * | 0.66 * | −0.53 * | −0.60 | −0.84 | 39.12% | |
12 months–4 years | PE-INAR(1)-X | −1.21 * | 2.33 * | 1.20 * | 1.06 | 2.33 * | −0.65 | 0.09 | 0.01 | 59.40% |
PL-INAR(1)-X | −1.19 * | 2.30 * | 1.19 * | 1.06 | 1.71 * | −0.58 | 0.09 | 0.01 | 59.39% | |
5–9 years | PE-INAR(1)-X | −0.40 | 1.51 | 23.24 * | −0.27 | 2.66 * | −0.20 | −19.38 * | 0.21 | 60.91% |
PL-INAR(1)-X | −0.40 | 1.51 | 34.71 * | −0.27 | 2.03 * | −0.19 | −30.56 * | 0.20 | 60.91% | |
10–14 years | PE-INAR(1)-X | 0.19 | 1.56 | 2.14 * | −0.81 * | 2.29 * | −0.26 * | −18.76 * | 1.11 * | 70.50% |
PL-INAR(1)-X | 0.18 | 1.57 | 2.14 * | −0.78 * | 1.68 * | −0.25 * | −30.63 * | 1.06 * | 70.48% | |
15–19 years | PE-INAR(1)-X | −0.19 | 1.51 | 2.93 * | 1.41 * | 2.35 * | −0.14 | −0.97 | −0.62 * | 63.52% |
PL-INAR(1)-X | −0.20 | 1.51 | 2.88 * | 1.41 * | 1.74 * | −0.13 | −0.85 | −0.57 * | 63.52% | |
Total | PE-INAR(1)-X | −0.10 | 1.50 | 22.46 * | 0.18 | 3.73 * | −0.19 | −17.95 * | 0.27 * | 67.76% |
PL-INAR(1)-X | −0.10 | 1.50 | 21.06 * | 0.18 | 3.06 * | −0.19 | −15.78 * | 0.26 * | 67.76% |
Age Group | Model | NSE | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Period 1 | ||||||||||
0–7 days | PE-INAR(1)-X | 0.12 | −0.57 * | 1.19 | 0.65 | 2.70 * | 0.18 * | −2.30 * | −0.39 | 25.16% |
PL-INAR(1)-X | 0.12 | −0.58 * | 1.22 | 0.66 | 2.06 * | 0.17 * | −2.20 * | −0.37 | 25.16% | |
8–28 days | PE-INAR(1)-X | 0.25 | −0.39 * | 2.13 * | −0.09 | 4.58 * | 0.17 * | −1.76 * | 0.03 | 29.68% |
PL-INAR(1)-X | 0.25 | −0.39 * | 2.13 * | −0.09 | 3.90 * | 0.17 * | −1.73 * | 0.03 | 29.68% | |
29 days–11 months | PE-INAR(1)-X | 1.25 * | 1.40 * | 0.49 * | −1.66 * | 7.03 * | −1.19 * | −1.97 * | 1.04 * | 66.50% |
PL-INAR(1)-X | 1.25 * | 1.40 * | 0.49 * | −1.66 * | 6.34 * | −1.19 * | −1.96 * | 1.04 * | 66.51% | |
12 months–4 years | PE-INAR(1)-X | 1.02 * | 1.36 * | 0.62 * | −1.62 * | 8.10 * | −1.12 * | −3.84 | 0.95 * | 60.74% |
PL-INAR(1)-X | 4.04 * | −0.20 * | −0.85 * | 0.20 | −44.08 * | −12.02 * | 29.13 * | −6.51 * | 50.89% | |
5–9 years | PE-INAR(1)-X | 0.68 * | −0.06 | 1.71 * | 0.40 | 7.93 * | 0.01 | −11.12 | −0.07 | 53.16% |
PL-INAR(1)-X | 0.90 * | −0.18 * | 2.18 * | 35.07 * | 7.11 * | 0.08 * | −24.35 * | −3.40 | 50.92% | |
10–14 years | PE-INAR(1)-X | 0.94 * | −0.14 * | 1.64 * | 180.97 * | 7.21 * | 0.05 * | −54.85 * | −2.47 | 55.06% |
PL-INAR(1)-X | 0.79 * | −0.06 * | 1.38 * | 0.40 | 6.62 * | −0.02 | −16.75 | 0.02 | 57.71% | |
15–19 years | PE-INAR(1)-X | 0.76 * | −0.18 * | 2.25 * | 5797.69 | 7.20 * | 0.07 * | −17.44 * | −0.70 | 44.38% |
PL-INAR(1)-X | 0.76 * | −0.18 * | 2.25 * | 103.77 * | 6.50 * | 0.07 * | −19.89 * | −0.69 | 44.38% | |
Total | PE-INAR(1)-X | 0.98 * | −0.01 | 1.32 * | 0.32 | 9.17 * | −0.03 | −23.26 * | 0.01 | 61.66% |
PL-INAR(1)-X | 1.20 * | 3.82 * | 0.22 | −1.79 * | 8.35 * | −39.82 * | −13.84 | 1.01 * | 63.72% | |
Period 2 | ||||||||||
0–7 days | PE-INAR(1)-X | −0.07 | −0.01 | −24.70 * | 1.17 * | 1.40 * | 0.11 | −0.06 | −0.55 | 15.14% |
PL-INAR(1)-X | −0.62 | 0.54 * | −1.42 * | 0.10 | 1.16 * | −0.19 | −0.53 | −0.58 * | 14.98% | |
8–28 days | PE-INAR(1)-X | −0.72 | 1.94 * | −0.62 | −6.82 * | 2.92 * | −0.03 | −0.01 | 0.33 * | 21.81% |
PL-INAR(1)-X | −0.72 | 1.94 * | −0.62 | −6.82 * | 2.27 * | −0.02 | −0.01 | 0.32 * | 21.82% | |
29 days–11 months | PE-INAR(1)-X | 2.41 * | −0.32 | 44.49 * | 4465.52 | 5.10 * | 0.15 | −0.48 | 0.08 | 86.86% |
PL-INAR(1)-X | 2.41 * | −0.32 | 42.20 * | 373.05 * | 4.41 * | 0.15 | −0.48 | 0.08 | 86.87% | |
12 months–4 years | PE-INAR(1)-X | 2.51 * | −0.45 * | 15.47 * | 32.48 * | 6.28 * | 0.10 | −0.29 | 0.25 | 88.36% |
PL-INAR(1)-X | 2.51 * | −0.45 * | 73.46 * | 22.66 * | 5.59 * | 0.10 | −0.29 | 0.25 | 88.36% | |
5–9 years | PE-INAR(1)-X | 1.95 * | 0.08 | 127.58 * | 367.45 * | 6.80 * | −1.46 | −0.36 | −16.74 * | 85.88% |
PL-INAR(1)-X | 2.04 * | 0.10 | 20.72 * | 21.11 * | 6.07 * | −2.21 | −0.26 | 0.36 | 86.65% | |
10–14 years | PE-INAR(1)-X | 1.58 * | 0.40 | 251.09 | 3278.54 | 6.46 * | −4.62 | −0.14 | −0.45 | 83.93% |
PL-INAR(1)-X | 2.98 * | −0.21 | 127.01 * | 290.81 | −82.57 * | 4.49 * | 24.58 * | 2.62 * | 81.53% | |
15–19 years | PE-INAR(1)-X | 1.98 * | −0.40 * | 19.52 * | 63.28 * | 5.68 * | 0.04 | −0.21 | −0.01 | 85.20% |
PL-INAR(1)-X | 1.98 * | −0.40 * | 33.84 * | 60.48 * | 4.99 * | 0.04 | −0.21 | −0.02 | 85.20% | |
Total | PE-INAR(1)-X | 2.13 * | 0.01 | 15.20 * | 52.47 * | 7.96 * | −1.49 | −0.26 | 0.11 | 88.14% |
PL-INAR(1)-X | 3.58 * | −0.51 * | 18.71 * | 90.44 * | −9.81 * | −1.86 | −4.04 * | −14.85 * | 86.59% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wanda, D.; Jacinta, H.A.; Hakim, A.R.; Ahdika, A.; Susanti, S.S.; Syuhada, K. Infectious Diseases in Children: Diagnosing the Impact of Climate Change-Related Disasters Using Integer-Valued Autoregressive Models with Overdispersion. Diseases 2025, 13, 303. https://doi.org/10.3390/diseases13090303
Wanda D, Jacinta HA, Hakim AR, Ahdika A, Susanti SS, Syuhada K. Infectious Diseases in Children: Diagnosing the Impact of Climate Change-Related Disasters Using Integer-Valued Autoregressive Models with Overdispersion. Diseases. 2025; 13(9):303. https://doi.org/10.3390/diseases13090303
Chicago/Turabian StyleWanda, Dessie, Holivia Almira Jacinta, Arief Rahman Hakim, Atina Ahdika, Suryane Sulistiana Susanti, and Khreshna Syuhada. 2025. "Infectious Diseases in Children: Diagnosing the Impact of Climate Change-Related Disasters Using Integer-Valued Autoregressive Models with Overdispersion" Diseases 13, no. 9: 303. https://doi.org/10.3390/diseases13090303
APA StyleWanda, D., Jacinta, H. A., Hakim, A. R., Ahdika, A., Susanti, S. S., & Syuhada, K. (2025). Infectious Diseases in Children: Diagnosing the Impact of Climate Change-Related Disasters Using Integer-Valued Autoregressive Models with Overdispersion. Diseases, 13(9), 303. https://doi.org/10.3390/diseases13090303