Regulatory Effects of Endometriosis-Associated Genetic Variants: A Multi-Tissue eQTL Analysis
Abstract
1. Introduction
2. Methodology
2.1. Variant Selection and Functional Annotation
2.2. eQTL Identification in Relevant Tissues
2.3. Functional Analysis Using Hallmark Gene Sets
2.4. Statistical Considerations
3. Results
3.1. Characterization of Endometriosis-Associated GWAS Variants
3.2. Functional Annotation and Gene Distribution of GWAS Variants
3.3. Identification of eQTL-Regulated Genes in Endometriosis-Associated Tissues
3.4. Functional Annotation of eQTL-Regulated Genes in Molecular Signature Sets
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Horne, A.W.; Missmer, S.A. Pathophysiology, Diagnosis, and Management of Endometriosis. BMJ 2022, 379, e070750. [Google Scholar] [CrossRef] [PubMed]
- Lamceva, J.; Uljanovs, R.; Strumfa, I. The Main Theories on the Pathogenesis of Endometriosis. Int. J. Mol. Sci. 2023, 24, 4254. [Google Scholar] [CrossRef]
- Allaire, C.; Bedaiwy, M.A.; Yong, P.J. Diagnosis and Management of Endometriosis. CMAJ 2023, 195, E363–E371. [Google Scholar] [CrossRef]
- Bulun, S.E.; Yildiz, S.; Adli, M.; Chakravarti, D.; Parker, J.B.; Milad, M.; Yang, L.; Chaudhari, A.; Tsai, S.; Wei, J.J.; et al. Endometriosis and Adenomyosis: Shared Pathophysiology. Fertil. Steril. 2023, 119, 746–750. [Google Scholar] [CrossRef]
- Lee, H.J.; Park, Y.M.; Jee, B.C.; Kim, Y.B.; Suh, C.S. Various Anatomic Locations of Surgically Proven Endometriosis: A Single-Center Experience. Obs. Gynecol. Sci. 2015, 58, 53–58. [Google Scholar] [CrossRef]
- Mabrouk, M.; Raimondo, D.; Cofano, M.; Cocchi, L.; Paradisi, R.; Seracchioli, R. Diagnosis and Treatment of Uncommon Ileal Endometriosis: A Case Report and Literature Review. Facts Views Vis. Obgyn 2021, 13, 405–410. [Google Scholar] [CrossRef] [PubMed]
- Yong, P.J.; Bedaiwy, M.A.; Alotaibi, F.; Anglesio, M.S. Pathogenesis of Bowel Endometriosis. Best Pract. Res. Clin. Obstet. Gynaecol. 2021, 71, 2–13. [Google Scholar] [CrossRef]
- Dai, Y.; Li, X.; Shi, J.; Leng, J. A Review of the Risk Factors, Genetics and Treatment of Endometriosis in Chinese Women: A Comparative Update. Reprod. Health 2018, 15, 82. [Google Scholar] [CrossRef]
- Rahmioglu, N.; Nyholt, D.R.; Morris, A.P.; Missmer, S.A.; Montgomery, G.W.; Zondervan, K.T. Genetic Variants Underlying Risk of Endometriosis: Insights from Meta-Analysis of Eight Genome-Wide Association and Replication Datasets. Hum. Reprod. Update 2014, 20, 702–716. [Google Scholar] [CrossRef] [PubMed]
- Albertsen, H.M.; Chettier, R.; Farrington, P.; Ward, K. Genome-Wide Association Study Link Novel Loci to Endometriosis. PLoS ONE 2013, 8, e58257. [Google Scholar] [CrossRef]
- The GTEx Consortium The GTEx Consortium Atlas of Genetic Regulatory Effects across Human Tissues. Science 2020, 369, 1318–1330. [CrossRef] [PubMed]
- Cerezo, M.; Sollis, E.; Ji, Y.; Lewis, E.; Abid, A.; Bircan, K.O.; Hall, P.; Hayhurst, J.; John, S.; Mosaku, A.; et al. The NHGRI-EBI GWAS Catalog: Standards for Reusability, Sustainability and Diversity. Nucleic Acids Res. 2025, 53, D998–D1005. [Google Scholar] [CrossRef]
- McLaren, W.; Gil, L.; Hunt, S.E.; Riat, H.S.; Ritchie, G.R.S.; Thormann, A.; Flicek, P.; Cunningham, F. The Ensembl Variant Effect Predictor. Genome Biol. 2016, 17, 122. [Google Scholar] [CrossRef]
- Menyhart, O.; Kothalawala, W.J.; Győrffy, B. A Gene Set Enrichment Analysis for Cancer Hallmarks. J. Pharm. Anal. 2025, 15, 101065. [Google Scholar] [CrossRef]
- Cardoso, J.V.; Perini, J.A.; Machado, D.E.; Pinto, R.; Medeiros, R. Systematic Review of Genome-Wide Association Studies on Susceptibility to Endometriosis. Eur. J. Obstet. Gynecol. Reprod. Biol. 2020, 255, 74–82. [Google Scholar] [CrossRef]
- Fung, J.N.; Rogers, P.A.W.; Montgomery, G.W. Identifying the Biological Basis of GWAS Hits for Endometriosis1. Biol. Reprod. 2015, 92, 87, 1–12. [Google Scholar] [CrossRef]
- Lalami, I.; Abo, C.; Borghese, B.; Chapron, C.; Vaiman, D. Genomics of Endometriosis: From Genome Wide Association Studies to Exome Sequencing. Int. J. Mol. Sci. 2021, 22, 7297. [Google Scholar] [CrossRef]
- Guare, L.A.; Das, J.; Caruth, L.; Rajagopalan, A.; Akerele, A.T.; Brumpton, B.M.; Chen, T.-T.; Kottyan, L.; Lin, Y.-F.; Moreno, E.; et al. Expanding the Genetic Landscape of Endometriosis: Integrative-Omics Analyses Uncover Key Pathways from a Multi-Ancestry Study of over 900,000 Women 2024. medRxiv 2024. [Google Scholar] [CrossRef]
- Edwards, T.L.; Giri, A.; Hellwege, J.N.; Hartmann, K.E.; Stewart, E.A.; Jeff, J.M.; Bray, M.J.; Pendergrass, S.A.; Torstenson, E.S.; Keaton, J.M.; et al. A Trans-Ethnic Genome-Wide Association Study of Uterine Fibroids. Front. Genet. 2019, 10, 511. [Google Scholar] [CrossRef]
- Lee, A.W.; Templeman, C.; Stram, D.A.; Beesley, J.; Tyrer, J.; Berchuck, A.; Pharoah, P.P.; Chenevix-Trench, G.; Pearce, C.L.; Ness, R.B.; et al. Evidence of a Genetic Link between Endometriosis and Ovarian Cancer. Fertil. Steril. 2016, 105, 35–43, e1–10. [Google Scholar] [CrossRef] [PubMed]
- Dai, Y.; Liu, X.; Zhu, Y.; Mao, S.; Yang, J.; Zhu, L. Exploring Potential Causal Genes for Uterine Leiomyomas: A Summary Data-Based Mendelian Randomization and FUMA Analysis. Front. Genet. 2022, 13, 890007. [Google Scholar] [CrossRef] [PubMed]
- Venkatesh, S.S.; Wittemans, L.B.L.; Palmer, D.S.; Baya, N.A.; Ferreira, T.; Hill, B.; Lassen, F.H.; Parker, M.J.; Reibe, S.; Elhakeem, A.; et al. Genome-Wide Analyses Identify 21 Infertility Loci and over 400 Reproductive Hormone Loci across the Allele Frequency Spectrum. medRxiv 2025, 57, 1107–1118. [Google Scholar] [CrossRef]
- Matalliotaki, C.; Matalliotakis, M.; Rahmioglu, N.; Mavromatidis, G.; Matalliotakis, I.; Koumantakis, G.; Zondervan, K.; Spandidos, D.A.; Goulielmos, G.N.; Zervou, M.I. Role of FN1 and GREB1 Gene Polymorphisms in Endometriosis. Mol. Med. Rep. 2019, 20, 111–116. [Google Scholar] [CrossRef]
- Sex Hormone Candidate Gene Polymorphisms Are Associated with Endometriosis. Int. J. Mol. Sci. 2022, 23, 13691. [CrossRef]
- Sun, S.; Liu, Y.; Li, L.; Xiong, L.; Jiao, M.; Yang, J.; Li, X.; Liu, W. Unveiling the Shared Genetic Architecture between Testosterone and Polycystic Ovary Syndrome. Sci. Rep. 2024, 14, 23931. [Google Scholar] [CrossRef] [PubMed]
- Adewuyi, E.O.; Sapkota, Y.; International Endogene Consortium (IEC); 23andMe Research Team; International Headache Genetics Consortium (IHGC); Auta, A.; Yoshihara, K.; Nyegaard, M.; Griffiths, L.R.; Montgomery, G.W.; et al. Shared Molecular Genetic Mechanisms Underlie Endometriosis and Migraine Comorbidity. Genes 2020, 11, 268. [Google Scholar] [CrossRef] [PubMed]
- Cooper, Y.A.; Teyssier, N.; Dräger, N.M.; Guo, Q.; Davis, J.E.; Sattler, S.M.; Yang, Z.; Patel, A.; Wu, S.; Kosuri, S.; et al. Functional Regulatory Variants Implicate Distinct Transcriptional Networks in Dementia. Science 2022, 377, eabi8654. [Google Scholar] [CrossRef]
- Cotto, K.C.; Feng, Y.-Y.; Ramu, A.; Richters, M.; Freshour, S.L.; Skidmore, Z.L.; Xia, H.; McMichael, J.F.; Kunisaki, J.; Campbell, K.M.; et al. Integrated Analysis of Genomic and Transcriptomic Data for the Discovery of Splice-Associated Variants in Cancer. Nat. Commun. 2023, 14, 1589. [Google Scholar] [CrossRef]
- Elliott, K.; Larsson, E. Non-Coding Driver Mutations in Human Cancer. Nat. Rev. Cancer 2021, 21, 500–509. [Google Scholar] [CrossRef]
- Zhang, F.; Lupski, J.R. Non-Coding Genetic Variants in Human Disease. Hum. Mol. Genet. 2015, 24, R102–R110. [Google Scholar] [CrossRef]
- Chatterjee, S.; Ahituv, N. Gene Regulatory Elements, Major Drivers of Human Disease. Annu. Rev. Genom. Hum. Genet. 2017, 18, 45–63. [Google Scholar] [CrossRef]
- Lin, Z.; Fan, W.; Sui, X.; Wang, J.; Zhao, J. Necroptosis-Related LncRNA Signatures for Prognostic Prediction in Uterine Corpora Endometrial Cancer. Reprod. Sci. 2023, 30, 576–589. [Google Scholar] [CrossRef]
- Wang, S.; Yi, M.; Zhang, X.; Zhang, T.; Jiang, L.; Cao, L.; Zhou, Y.; Fang, X. Effects of CDKN2B-AS1 on Cellular Proliferation, Invasion and AKT3 Expression Are Attenuated by miR-424-5p in a Model of Ovarian Endometriosis. Reprod. Biomed. Online 2021, 42, 1057–1066. [Google Scholar] [CrossRef]
- Yang, D.; Ma, J.; Ma, X.-X. CDKN2B-AS1 Promotes Malignancy as a Novel Prognosis-Related Molecular Marker in the Endometrial Cancer Immune Microenvironment. Front. Cell Dev. Biol. 2021, 9, 721676. [Google Scholar] [CrossRef]
- Pitzer, L.M.; Moroney, M.R.; Nokoff, N.J.; Sikora, M.J. WNT4 Balances Development vs Disease in Gynecologic Tissues and Women’s Health. Endocrinology 2021, 162, bqab093. [Google Scholar] [CrossRef] [PubMed]
- Kiewisz, J.; Waśniewski, T.; Kieżun, J.; Skowrońska, A.; Kaczmarek, M.M.; Szóstak, B.; Kowalczyk, A.E.; Kmieć, Z. WNT4 Gene and Protein Expression in Endometrial Cancer and Its Significance. Cancers 2023, 15, 4780. [Google Scholar] [CrossRef] [PubMed]
- Zubrzycka, A.; Migdalska-Sęk, M.; Jędrzejczyk, S.; Brzeziańska-Lasota, E. The Expression of TGF-Β1, SMAD3, ILK and miRNA-21 in the Ectopic and Eutopic Endometrium of Women with Endometriosis. Int. J. Mol. Sci. 2023, 24, 2453. [Google Scholar] [CrossRef] [PubMed]
- Ramos-Nino, M.E.; Obadiah, A.A.; Ozugha, I.O.; Ramdass, P.V.A.K. The Association Between Asthma and Endometriosis: A Systematic Review and Metanalysis. J. Respir. 2025, 5, 6. [Google Scholar] [CrossRef]
- Raya-Sandino, A.; Lozada-Soto, K.M.; Rajagopal, N.; Garcia-Hernandez, V.; Luissint, A.-C.; Brazil, J.C.; Cui, G.; Koval, M.; Parkos, C.A.; Nangia, S.; et al. Claudin-23 Reshapes Epithelial Tight Junction Architecture to Regulate Barrier Function. Nat. Commun. 2023, 14, 1–22. [Google Scholar] [CrossRef]
- Khatri, B.; Tessneer, K.L.; Rasmussen, A.; Aghakhanian, F.; Reksten, T.R.; Adler, A.; Alevizos, I.; Anaya, J.-M.; Aqrawi, L.A.; Baecklund, E.; et al. Genome-Wide Association Study Identifies Sjögren’s Risk Loci with Functional Implications in Immune and Glandular Cells. Nat. Commun. 2022, 13, 4287. [Google Scholar] [CrossRef]
- Chakkour, M.; Greenberg, M.L. Insights into the Roles of Inositol Hexakisphosphate Kinase 1 (IP6K1) in Mammalian Cellular Processes. J. Biol. Chem. 2024, 300, 107116. [Google Scholar] [CrossRef]
- Xie, M.; Li, Y.; Meng, Y.-Z.; Xu, P.; Yang, Y.-G.; Dong, S.; He, J.; Hu, Z. Uterine Natural Killer Cells: A Rising Star in Human Pregnancy Regulation. Front. Immunol. 2022, 13, 918550. [Google Scholar] [CrossRef]
- Yin, W.; Li, X.; Liu, P.; Li, Y.; Liu, J.; Yu, S.; Tai, S. Digestive System Deep Infiltrating Endometriosis: What Do We Know. J. Cell. Mol. Med. 2023, 27, 3649–3661. [Google Scholar] [CrossRef]
- Morelli, M.; Galluzzo, M.; Madonna, S.; Scarponi, C.; Scaglione, G.L.; Galluccio, T.; Andreani, M.; Pallotta, S.; Girolomoni, G.; Bianchi, L.; et al. HLA-Cw6 and Other HLA-C Alleles, as Well as MICB-DT, DDX58, and TYK2 Genetic Variants Associate with Optimal Response to Anti-IL-17A Treatment in Patients with Psoriasis. Expert Opin. Biol. Ther. 2021, 21, 259–270. [Google Scholar] [CrossRef] [PubMed]
- Yang, C.; Shangguan, C.; Cai, C.; Xu, J.; Qian, X. LncRNA HCP5 Participates in the Tregs Functions in Allergic Rhinitis and Drives Airway Mucosal Inflammatory Response in the Nasal Epithelial Cells. Inflammation 2022, 45, 1281–1297. [Google Scholar] [CrossRef] [PubMed]
- Jin, Y.; Zhai, M.; Cao, R.; Yu, H.; Wu, C.; Liu, Y. Silencing MFHAS1 Induces Pyroptosis via the JNK-Activated NF-ΚB/Caspase1/ GSDMD Signal Axis in Breast Cancer. Curr. Pharm. Des. 2023, 29, 3408–3420. [Google Scholar] [CrossRef]
- Abramiuk, M.; Grywalska, E.; Małkowska, P.; Sierawska, O.; Hrynkiewicz, R.; Niedźwiedzka-Rystwej, P. The Role of the Immune System in the Development of Endometriosis. Cells 2022, 11, 2028. [Google Scholar] [CrossRef]
- Machairiotis, N.; Vasilakaki, S.; Thomakos, N. Inflammatory Mediators and Pain in Endometriosis: A Systematic Review. Biomedicines 2021, 9, 54. [Google Scholar] [CrossRef] [PubMed]
- Tavares, I.; Martins, R.; Ribeiro, I.P.; Esteves, L.; Caramelo, F.; Abrantes, A.M.; Neves, R.; Caetano-Oliveira, R.; Botelho, M.F.; de Melo, J.B.; et al. Development of a Genomic Predictive Model for Cholangiocarcinoma Using Copy Number Alteration Data. J. Clin. Pathol. 2022, 75, 274–278. [Google Scholar] [CrossRef]
- Hu, B.; Zhang, D.; Zhao, K.; Wang, Y.; Pei, L.; Fu, Q.; Ma, X. Spotlight on USP4: Structure, Function, and Regulation. Front. Cell Dev. Biol. 2021, 9, 595159. [Google Scholar] [CrossRef]
- Ye, P.; Jiang, P.; Ye, L.; Liu, M.; Fang, Q.; Yu, P.; Luo, J.; Su, H.; Yang, W. PRAG1 Condensation Drives Cell Contraction Under Stress. Biomolecules 2025, 15, 379. [Google Scholar] [CrossRef] [PubMed]
- Haijes, H.A.; Koster, M.J.E.; Rehmann, H.; Li, D.; Hakonarson, H.; Cappuccio, G.; Hancarova, M.; Lehalle, D.; Reardon, W.; Schaefer, G.B.; et al. De Novo Heterozygous POLR2A Variants Cause a Neurodevelopmental Syndrome with Profound Infantile-Onset Hypotonia. Am. J. Hum. Genet. 2019, 105, 283–301. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, X.; Han, C.; Wan, G.; Huang, X.; Ivan, C.; Jiang, D.; Rodriguez-Aguayo, C.; Lopez-Berestein, G.; Rao, P.H.; et al. TP53 Loss Creates Therapeutic Vulnerability in Colorectal Cancer. Nature 2015, 520, 697–701. [Google Scholar] [CrossRef]
- Gilliam-Vigh, H.; Suppli, M.P.; Heimbürger, S.M.N.; Lund, A.B.; Knop, F.K.; Ellegaard, A.-M. Cholesin mRNA Expression in Human Intestinal, Liver, and Adipose Tissues. Nutrients 2025, 17, 619. [Google Scholar] [CrossRef]
- Yuan, L.; Meng, Y.; Xiang, J. SNX16 Is Required for Hepatocellular Carcinoma Survival via Modulating the EGFR-AKT Signaling Pathway. Sci. Rep. 2024, 14, 13093. [Google Scholar] [CrossRef]
- Zhao, J.-W.; Zhao, W.-Y.; Cui, X.-H.; Xing, L.; Shi, J.-C.; Yu, L. The Role of the Mitochondrial Ribosomal Protein Family in Detecting Hepatocellular Carcinoma and Predicting Prognosis, Immune Features, and Drug Sensitivity. Clin. Transl. Oncol. 2024, 26, 496–514. [Google Scholar] [CrossRef]
- Yang, J.-H.; Wu, M.-Y.; Chen, C.-D.; Chen, M.-J.; Yang, Y.-S.; Ho, H.-N. Altered Apoptosis and Proliferation in Endometrial Stromal Cells of Women with Adenomyosis. Hum. Reprod. 2007, 22, 945–952. [Google Scholar] [CrossRef] [PubMed]
- Yamamoto, K.; Fujiyama, Y.; Andoh, A.; Bamba, T.; Okabe, H. Oxidative Stress Increases MICA and MICB Gene Expression in the Human Colon Carcinoma Cell Line (CaCo-2). Biochim. Et Biophys. Acta (BBA)—Gen. Subj. 2001, 1526, 10–12. [Google Scholar] [CrossRef]
- Feng, Q.; Yu, S.; Mao, Y.; Ji, M.; Wei, Y.; He, G.; Chang, W.; Zhu, D.; Ren, L.; Xu, J. High MICB Expression as a Biomarker for Good Prognosis of Colorectal Cancer. J. Cancer Res. Clin. Oncol. 2020, 146, 1405–1413. [Google Scholar] [CrossRef]
- Li, Y.-X.; Liu, T.; Liang, Y.-W.; Huang, J.-J.; Huang, J.-S.; Liu, X.-G.; Cheng, Z.-Y.; Lu, S.-X.; Li, M.; Huang, L. Integrative Analysis of Long Non-Coding RNA and Messenger RNA Expression in Toll-like Receptor 4-Primed Mesenchymal Stem Cells of Ankylosing Spondylitis. Ann Transl Med 2021, 9, 1563. [Google Scholar] [CrossRef]
- Hu, S.; Ge, M.; Gao, L.; Jiang, M.; Hu, K. LncRNA HCP5 as a Potential Therapeutic Target and Prognostic Biomarker for Various Cancers: A Meta-analysis and Bioinformatics Analysis. Cancer Cell Int. 2021, 21, 686. [Google Scholar] [CrossRef]
- Kyrönlahti, A.; Vetter, M.; Euler, R.; Bielinska, M.; Jay, P.Y.; Anttonen, M.; Heikinheimo, M.; Wilson, D.B. GATA4 Deficiency Impairs Ovarian Function in Adult Mice1. Biol. Reprod. 2011, 84, 1033–1044. [Google Scholar] [CrossRef]
- Gulìa, C.; Signore, F.; Gaffi, M.; Gigli, S.; Votino, R.; Nucciotti, R.; Bertacca, L.; Zaami, S.; Baffa, A.; Santini, E.; et al. Y RNA: An Overview of Their Role as Potential Biomarkers and Molecular Targets in Human Cancers. Cancers 2020, 12, 1238. [Google Scholar] [CrossRef]
- Cunningham, G.M.; Shen, F.; Wu, X.; Cantor, E.L.; Gardner, L.; Philips, S.; Jiang, G.; Bales, C.L.; Tan, Z.; Liu, Y.; et al. The Impact of SBF2 on Taxane-Induced Peripheral Neuropathy. PLOS Genet. 2022, 18, e1009968. [Google Scholar] [CrossRef] [PubMed]
- Wei, S.; Yi, T.; OuYang, Z.; Wu, J. Association between ABO Blood Type and Type I Endometrial Cancer: A Retrospective Study. J. Obstet. Gynaecol. 2023, 43, 2153026. [Google Scholar] [CrossRef]
- Zhou, Y.; Chen, Y.; Shi, Y.; Wu, L.; Tan, Y.; Li, T.; Chen, Y.; Xia, J.; Hu, R. FAM117B Promotes Gastric Cancer Growth and Drug Resistance by Targeting the KEAP1/NRF2 Signaling Pathway. J. Clin. Invest. 2023, 133, e158705. [Google Scholar] [CrossRef]
- Bonjoch, L.; Fernandez-Rozadilla, C.; Alvarez-Barona, M.; Lopez-Novo, A.; Herrera-Pariente, C.; Amigo, J.; Bujanda, L.; Remedios, D.; Dacal, A.; Cubiella, J.; et al. BMPR2 as a Novel Predisposition Gene for Hereditary Colorectal Polyposis. Gastroenterology 2023, 165, 162–172.e5. [Google Scholar] [CrossRef] [PubMed]
- Giacomini, E.; Minetto, S.; Li Piani, L.; Pagliardini, L.; Somigliana, E.; Viganò, P. Genetics and Inflammation in Endometriosis: Improving Knowledge for Development of New Pharmacological Strategies. Int. J. Mol. Sci. 2021, 22, 9033. [Google Scholar] [CrossRef] [PubMed]
- Linder, A.; Westbom-Fremer, S.; Mateoiu, C.; Olsson Widjaja, A.; Österlund, T.; Veerla, S.; Ståhlberg, A.; Ulfenborg, B.; Hedenfalk, I.; Sundfeldt, K. Genomic Alterations in Ovarian Endometriosis and Subsequently Diagnosed Ovarian Carcinoma. Hum. Reprod. 2024, 39, 1141–1154. [Google Scholar] [CrossRef]
- Pejovic, T.; Cathcart, A.M.; Alwaqfi, R.; Brooks, M.N.; Kelsall, R.; Nezhat, F.R. Genetic Links between Endometriosis and Endometriosis-Associated Ovarian Cancer—A Narrative Review (Endometriosis-Associated Cancer). Life 2024, 14, 704. [Google Scholar] [CrossRef]
- Orr, N.L.; Albert, A.; Liu, Y.D.; Lum, A.; Hong, J.; Ionescu, C.L.; Senz, J.; Nazeran, T.M.; Lee, A.F.; Noga, H.; et al. KRAS Mutations and Endometriosis Burden of Disease. J. Pathol. Clin. Research 2023, 9, 302–312. [Google Scholar] [CrossRef]
- Yachida, N.; Yoshihara, K.; Suda, K.; Nakaoka, H.; Ueda, H.; Sugino, K.; Yamaguchi, M.; Mori, Y.; Yamawaki, K.; Tamura, R.; et al. Biological Significance of KRAS Mutant Allele Expression in Ovarian Endometriosis. Cancer Sci. 2021, 112, 2020–2032. [Google Scholar] [CrossRef]
- Zhang, L.; Zhu, Q.; Zhao, Q.; Lin, X.; Song, H.; Liu, H.; Zhu, G.; Lu, S.; Cao, B. Tumor-Infiltrating Immune Cell Score as an Independent Prognostic Predictor for Endometrial Carcinoma: Insights from a Comprehensive Analysis of the Immune Landscape. Cancer Rep. 2024, 7, e1939. [Google Scholar] [CrossRef] [PubMed]
- Mackenzie, R.W.; Elliott, B.T. Akt/PKB Activation and Insulin Signaling: A Novel Insulin Signaling Pathway in the Treatment of Type 2 Diabetes. Diabetes Metab. Syndr. Obes. 2014, 7, 55–64. [Google Scholar] [CrossRef]
- Reis, F.M.; Petraglia, F.; Taylor, R.N. Endometriosis: Hormone Regulation and Clinical Consequences of Chemotaxis and Apoptosis. Hum. Reprod. Update 2013, 19, 406–418. [Google Scholar] [CrossRef] [PubMed]
- Shen, H.-H.; Zhang, T.; Yang, H.-L.; Lai, Z.-Z.; Zhou, W.-J.; Mei, J.; Shi, J.-W.; Zhu, R.; Xu, F.-Y.; Li, D.-J.; et al. Ovarian Hormones-Autophagy-Immunity Axis in Menstruation and Endometriosis. Theranostics 2021, 11, 3512–3526. [Google Scholar] [CrossRef] [PubMed]
- Hou, D.-Y.; Lu, J.-J.; Zhang, X.; Abudukeyoumu, A.; Li, M.-Q.; Zhu, X.-Y.; Xie, F. Heme Metabolism and HO-1 in the Pathogenesis and Potential Intervention of Endometriosis. Am. J. Reprod. Immunol. 2024, 91, e13855. [Google Scholar] [CrossRef]
- Powell, S.G.; Sharma, P.; Masterson, S.; Wyatt, J.; Arshad, I.; Ahmed, S.; Lash, G.; Cross, M.; Hapangama, D.K. Vascularisation in Deep Endometriosis: A Systematic Review with Narrative Outcomes. Cells 2023, 12, 1318. [Google Scholar] [CrossRef]
- Bora, G.; Yaba, A. The Role of Mitogen-Activated Protein Kinase Signaling Pathway in Endometriosis. J. Obstet. Gynaecol. Res. 2021, 47, 1610–1623. [Google Scholar] [CrossRef]
- Burney, R.O.; Giudice, L.C. Pathogenesis and Pathophysiology of Endometriosis. Fertil. Steril. 2012, 98, 511–519. [Google Scholar] [CrossRef]
- Mokhtari, T.; Irandoost, E.; Sheikhbahaei, F. Stress, Pain, Anxiety, and Depression in Endometriosis–Targeting Glial Activation and Inflammation. Int. Immunopharmacol. 2024, 132, 111942. [Google Scholar] [CrossRef] [PubMed]
- Taylor, H.S.; Kotlyar, A.M.; Flores, V.A. Endometriosis Is a Chronic Systemic Disease: Clinical Challenges and Novel Innovations. Lancet 2021, 397, 839–852. [Google Scholar] [CrossRef] [PubMed]
Chromosome | No. of Variants | Top Significant Variant(s) (rsID) * | p-Value(s) |
---|---|---|---|
1 | 42 | rs10917151, rs56319427, rs72665317 | 5 × 10−44, 4 × 10−41, 5 × 10−34 |
2 | 38 | rs11674184 | 3 × 10−26 |
3 | 21 | ||
4 | 17 | rs1903068 | 7 × 10−27 |
5 | 19 | ||
6 | 43 | rs71575922, rs13211170, rs17215781 | 1 × 10−31, 6 × 10−30, 9 × 10−27 |
7 | 25 | ||
8 | 66 | ||
9 | 37 | ||
10 | 33 | ||
11 | 16 | rs11031005, rs3858429 | 2 × 10−32, 6 × 10−32 |
12 | 28 | ||
13 | 9 | ||
14 | 9 | ||
15 | 16 | ||
16 | 1 | ||
17 | 15 | ||
18 | 6 | ||
19 | 11 | ||
20 | 4 | ||
21 | 4 | ||
22 | 1 | ||
X | 4 |
Tissue | Mapped Genes | Slope | Variants | Tissue | Mapped Genes | Slope | Variants |
---|---|---|---|---|---|---|---|
Colon Sigmoid | SNX16 | 0.4 | rs114323125 | Uterus | HCP5 | 0.62 | rs2534685, rs2534687, rs2894221 |
Colon Sigmoid | POLR2A | −0.37 | rs12936464 | Uterus | MICB-DT | 0.62 | rs2534685, rs2534687, rs2894221 |
Colon Sigmoid | C7orf50 | −0.35 | rs10256972 | Uterus | MICB | 0.61 | rs2516408 |
Colon Sigmoid | SEPTIN9 | −0.33 | rs98229 | Uterus | GATA4 | −0.51 | rs13248109, rs13250871, rs4840573 |
Colon Sigmoid | PPP1R3B-DT | −0.26 | rs1458942 | Uterus | LINC00208 | −0.51 | rs13248109, rs13250871, rs4840573 |
Colon Sigmoid | GATA4 | −0.25 | rs13248109, rs13250871, rs4840573 | Uterus | NGF-AS1 | −0.46 | rs7544256 |
Colon Sigmoid | LINC00208 | −0.25 | rs13248109, rs13250871, rs4840573 | Uterus | XKR6 | −0.43 | rs10109025, rs11250097, rs11250098 |
Colon Sigmoid | ARL14EP-DT | 0.25 | rs11031005, rs3858429, rs74485684 | Uterus | FAM167A | −0.41 | rs12156009 |
Colon Sigmoid | RPL35P2 | −0.25 | rs112495680 | Uterus | FAM167A-AS1 | −0.41 | rs12156009 |
Colon Sigmoid | SMIM29 | −0.25 | rs112495680 | Uterus | FAM117B | −0.33 | rs72928925 |
Ileum | C7orf50 | −0.42 | rs10256972 | Vagina | MICB | 0.92 | rs2516408 |
Ileum | POLR2A | −0.38 | rs12936464 | Vagina | HCP5 | 0.8 | rs2534685, rs2534687, rs2894221 |
Ileum | ENTR1P2 | 0.34 | rs34390425 | Vagina | MICB-DT | 0.8 | rs2534685, rs2534687, rs2894221 |
Ileum | MRPS14 | 0.34 | rs34390425 | Vagina | C7orf50 | −0.53 | rs10256972 |
Ileum | MICB | −0.33 | rs2516408 | Vagina | CLDN23 | −0.51 | rs519019, rs572366, rs693109, rs7825636, rs7829975 |
Ileum | HCP5 | −0.33 | rs2534685 | Vagina | LINC02949 | 0.48 | rs2976950 |
Ileum | MICB-DT | −0.33 | rs2534685 | Vagina | LINC02950 | 0.47 | rs7837587 |
Ileum | RABGAP1L | 0.26 | rs4480415 | Vagina | FAM86B3P | −0.46 | rs17603933, rs55852693 |
Ileum | GATA4 | −0.21 | rs13248109, rs13250871, rs4840573 | Vagina | C2 | 0.43 | rs644045 |
Ileum | LINC00208 | −0.21 | rs13248109, rs13250871, rs4840573 | Vagina | ARL14EP-DT | 0.42 | rs3858429, rs74485684 |
Ovary | FAM86B3P | 0.52 | rs17603933 | Whole Blood | FAM117B | −0.41 | rs72928925 |
Ovary | HEY2-AS1 | −0.5 | rs2226158 | Whole Blood | Y_RNA | 0.39 | rs495828 |
Ovary | LINC02523 | −0.5 | rs2226158 | Whole Blood | BMPR2 | −0.37 | rs6435157 |
Ovary | LINC02949 | −0.49 | rs2976950 | Whole Blood | MTCO1P17 | −0.37 | rs6435157 |
Ovary | NGF-AS1 | −0.47 | rs7544256 | Whole Blood | SBF2 | 0.36 | rs59479500 |
Ovary | C7orf50 | −0.35 | rs10256972 | Whole Blood | ABO | 0.31 | rs495828, rs507666 |
Ovary | WDR27 | 0.28 | rs12193197 | Whole Blood | F5 | −0.3 | rs1894692 |
Ovary | ASCC1 | −0.23 | rs7073342 | Whole Blood | SLC19A2 | −0.3 | rs1894692 |
Ovary | LINC02950 | −0.13 | rs7837587 | Whole Blood | C7orf50 | −0.29 | rs10256972 |
Ovary | USP4 | −0.11 | rs6778080 | Whole Blood | SLC9A2 | 0.29 | rs72828033 |
Hallmark Gene Set | Colon Sigmoid | Ileum | Ovary | Uterus | Vagina | Whole Blood |
---|---|---|---|---|---|---|
Allograft Rejection | C2 | C2 | C2 | C2 | C2 | |
Coagulation | C2 | C2 | C2 | C2 | C2 | |
Complement | C2 | C2 | C2 | C2 | F5, C2 | |
DNA Repair | POLR2A | POLR2A | ||||
Estrogen Response Early | MICB | MICB | MICB | SLC19A2, MICB | ||
Estrogen Response Late | MICB | MICB | MICB | MICB | ||
Heme Metabolism | MFHAS1 | MFHAS1 | MFHAS1 | MFHAS1 | MFHAS1 | |
Il2 Stat5 Signaling | RABGAP1L | BMPR2 | ||||
Kras Signaling Up | RABGAP1L | |||||
Mitotic Spindle | SEPTIN9 | |||||
Spermatogenesis | IP6K1 | IP6K1 | IP6K1 | IP6K1 | IP6K1 | |
Tgf Beta Signaling | BMPR2 | |||||
P53 Pathway | SLC19A2 | |||||
Not Linked to Hallmark | LINC00208, XKR6, C7ORF50, USP4, SNX16, PPP1R3B-DT, RPL35P2, CLDN23, SMIM29, ARL14EP-DT, GATA4, HCP5, MICB-DT | LINC00208, XKR6, C7ORF50, CDK2AP1, USP4, MRPS14, ENTR1P2, HCP5, GATA4, MICB-DT | LINC02950, RN7SL178P, NGF-AS1, C7ORF50, LINC02949, USP4, FAM86B3P, LINC02523, ASCC1, WDR27, CLDN23, HEY2-AS1, HCP5, MICB-DT | LINC00208, RN7SL178P, XKR6, NGF-AS1, USP4, FAM167A, FAM167A-AS1, CLDN23, FAM117B, GATA4, HCP5, MICB-DT | LINC02950, RN7SL178P, XKR6, LINC02949, C7ORF50, USP4, FAM86B3P, ABO, CLDN23, ARL14EP-DT, PRAG1, HCP5, MICB-DT | LINC00208, XKR6, WNT4, C7ORF50, Y_RNA, ABO, MTCO1P17, SBF2, CLDN23, FAM117B, GATA4, SLC9A2, HCP5, MICB-DT |
Cancer Hallmark | Colon Sigmoid | Ileum | Ovary | Uterus | Vagina | Whole Blood |
---|---|---|---|---|---|---|
Sustained Angiogenesis | GATA4 | GATA4 | GATA4 | BMPR2, GATA4, WNT4 | ||
Tumor-Promoting Inflammation | CLDN23 | CLDN23 | CLDN23 | CLDN23 | CLDN23 | |
Genome Instability | ASCC1 | |||||
Sustaining Proliferative Signaling | GATA4 | GATA4 | GATA4 | BMPR2, GATA4, WNT4 | ||
Evading Immune Destruction | C2, CLDN23 | MICB, C2 | C2, CLDN23 | MICB, CLDN23 | MICB, C2, CLDN23 | F5, MICB, C2, CLDN23 |
Replicative Immortality | BMPR2, WNT4 | |||||
Resisting Cell Death | BMPR2 | |||||
Evading Growth Suppressors | MFHAS1 | MFHAS1 | MFHAS1 | MFHAS1 | BMPR2, MFHAS1, WNT4 | |
Reprogramming Energy Metabolism | ||||||
Tissue Invasion and Metastasis | GATA4, CLDN23 | GATA4 | CLDN23 | GATA4, CLDN23 | PRAG1, CLDN23 | BMPR2, GATA4, WNT4, CLDN23 |
Not Linked to Cancer Hallmark | LINC00208, SEPTIN9, XKR6, C7ORF50, USP4, POLR2A, IP6K1, SNX16, PPP1R3B-DT, RPL35P2, HCP5, SMIM29, ARL14EP-DT, MICB-DT | LINC00208, XKR6, C7ORF50, CDK2AP1, USP4, MRPS14, RABGAP1L, POLR2A, IP6K1, ENTR1P2, HCP5, MICB-DT | LINC02950, RN7SL178P, NGF-AS1, C7ORF50, LINC02949, USP4, FAM86B3P, IP6K1, LINC02523, WDR27, HCP5, HEY2-AS1, MICB-DT | LINC00208, RN7SL178P, XKR6, NGF-AS1, USP4, FAM167A, IP6K1, FAM167A-AS1, HCP5, FAM117B, MICB-DT | LINC02950, RN7SL178P, XKR6, LINC02949, C7ORF50, USP4, FAM86B3P, IP6K1, ABO, HCP5, ARL14EP-DT, MICB-DT | LINC00208, XKR6, C7ORF50, SLC19A2, ABO, MTCO1P17, SBF2, HCP5, FAM117B, Y_RNA, SLC9A2, MICB-DT |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Garibaldi-Ríos, A.F.; Rodríguez-Gutiérrez, P.G.; García-Díaz, J.M.; Zúñiga-González, G.M.; Figuera, L.E.; Gómez-Meda, B.C.; Puebla-Pérez, A.M.; Dávalos-Rodríguez, I.P.; Torres-Mendoza, B.M.; Gutiérrez-Hurtado, I.A.; et al. Regulatory Effects of Endometriosis-Associated Genetic Variants: A Multi-Tissue eQTL Analysis. Diseases 2025, 13, 248. https://doi.org/10.3390/diseases13080248
Garibaldi-Ríos AF, Rodríguez-Gutiérrez PG, García-Díaz JM, Zúñiga-González GM, Figuera LE, Gómez-Meda BC, Puebla-Pérez AM, Dávalos-Rodríguez IP, Torres-Mendoza BM, Gutiérrez-Hurtado IA, et al. Regulatory Effects of Endometriosis-Associated Genetic Variants: A Multi-Tissue eQTL Analysis. Diseases. 2025; 13(8):248. https://doi.org/10.3390/diseases13080248
Chicago/Turabian StyleGaribaldi-Ríos, Asbiel Felipe, Perla Graciela Rodríguez-Gutiérrez, Jesús Magdiel García-Díaz, Guillermo Moisés Zúñiga-González, Luis E. Figuera, Belinda Claudia Gómez-Meda, Ana María Puebla-Pérez, Ingrid Patricia Dávalos-Rodríguez, Blanca Miriam Torres-Mendoza, Itzae Adonai Gutiérrez-Hurtado, and et al. 2025. "Regulatory Effects of Endometriosis-Associated Genetic Variants: A Multi-Tissue eQTL Analysis" Diseases 13, no. 8: 248. https://doi.org/10.3390/diseases13080248
APA StyleGaribaldi-Ríos, A. F., Rodríguez-Gutiérrez, P. G., García-Díaz, J. M., Zúñiga-González, G. M., Figuera, L. E., Gómez-Meda, B. C., Puebla-Pérez, A. M., Dávalos-Rodríguez, I. P., Torres-Mendoza, B. M., Gutiérrez-Hurtado, I. A., & Gallegos-Arreola, M. P. (2025). Regulatory Effects of Endometriosis-Associated Genetic Variants: A Multi-Tissue eQTL Analysis. Diseases, 13(8), 248. https://doi.org/10.3390/diseases13080248