Mortality Risk Analysis of Combination Antiplatelet Therapy in Patients with Ischemic Stroke and Acute Kidney Injury: A Retrospective Cohort Analysis of the MIMIC-IV Database
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Source
2.2. Inclusion and Exclusion Criteria
2.2.1. Inclusion Criteria
2.2.2. Exclusion Criteria
- Individuals admitted who are below the age of 18;
- Individuals with an ICU duration of under 3 h;
- Only the data from the first ICU admission were included for subjects with multiple admissions;
- Patients who did not receive antiplatelet therapy during hospitalization;
- Individuals diagnosed with severe liver disease, malignant tumors, or other serious illnesses.
2.3. Data Collection
- Demographic Data: Age, sex, racial background, and body mass index (BMI).
- Physiological Parameters within 24 h of ICU Admission: Mean arterial pressure (MAP), heart rate (HR), respiratory rate (RR), body temperature, and oxygen saturation (SpO2) measured by pulse oximetry.
- Laboratory Parameters within 24 h of ICU Admission: Red blood cell count (RBC), platelet count (PLT), white blood cell count (WBC), blood glucose (BG), sodium and potassium levels, serum creatinine (Scr), blood urea nitrogen (BUN), and urine output.
- Severity of Illness Scores and Comorbidities at Admission: Glasgow Coma Scale (GCS), Sequential Organ Failure Assessment (SOFA), Logistic Organ Dysfunction System (LODS), Oxford Acute Severity of Illness Score (OASIS), Acute Physiology and Chronic Health Evaluation III (APACHE III), Simplified Acute Physiology Score II (SAPS II), Systemic Inflammatory Response Syndrome (SIRS), bleeding, heart failure (HF), chronic lung disease (CLD), diabetes, hypertension, dementia, smoking, alcohol consumption, atrial fibrillation (AF), coronary atherosclerotic heart disease (CHD; carotid atherosclerosis (CAS) myocardial infarction (MI), chronic kidney disease (CKD), and history of antiplatelet drug use.
- 5.
- Prescription Information during ICU Stay: Medication usage and therapeutic interventions, including antiplatelet drugs (aspirin, clopidogrel, ticagrelor), warfarin, new oral anticoagulants (NOAC), vasoactive drugs, mechanical ventilation (MV), thrombolysis, and continuous renal replacement therapy (CRRT).
2.4. Primary Outcome and Secondary Outcomes
2.5. Statistical Analysis
2.6. Subgroup Analysis
3. Results
3.1. Clinical Characteristics
3.2. Primary and Secondary Outcomes
3.3. Subgroup Analysis and Interaction Analysis
3.4. Outcomes in Mild and Severe AKI Subgroups
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
IS | Ischemic stroke |
AKI | Acute kidney injury |
SMD | Standardized Mean Difference |
LOS | Length of Stay |
VIF | variance inflation factor |
BG | Blood glucose |
UV | Urine volume |
GCS | Glasgow Coma Scale |
SOFA | Sequential Organ Failure Assessment |
LODS | Logistic Organ Dysfunction System |
OASIS | Oxford Acute Severity of Illness Score |
APS III | Acute Physiology and Chronic Health Evaluation III |
SAPS II | Simplified Acute Physiology Score II |
SIRS | Systemic Inflammatory Response Syndrome |
CLD | Chronic Lung Disease |
MI | Myocardial Infarction |
MV | Mechanical Ventilation |
CRRT | Continuous Renal Replacement Therapy |
References
- Feigin, V.L.; Forouzanfar, M.H.; Krishnamurthi, R.; Mensah, G.A.; Connor, M.; Bennett, D.A.; Moran, A.E.; Sacco, R.L.; Anderson, L.; Truelsen, T.; et al. Global and regional burden of stroke during 1990–2010: Findings from the Global Burden of Disease Study 2010. Lancet 2014, 383, 245–254. [Google Scholar] [CrossRef]
- Arnold, J.; Ng, K.P.; Sims, D.; Gill, P.; Cockwell, P.; Ferro, C. Incidence and impact on outcomes of acute kidney injury after a stroke: A systematic review and meta-analysis. BMC Nephrol. 2018, 19, 283. [Google Scholar] [CrossRef]
- Katan, M.; Luft, A. Global Burden of Stroke. Semin. Neurol. 2018, 38, 208–211. [Google Scholar] [CrossRef] [PubMed]
- Khatri, M.; Himmelfarb, J.; Adams, D.; Becker, K.; Longstreth, W.T.; Tirschwell, D.L. Acute kidney injury is associated with increased hospital mortality after stroke. J. Stroke Cerebrovasc. Dis. Off. J. Natl. Stroke Assoc. 2014, 23, 25–30. [Google Scholar] [CrossRef] [PubMed]
- Qureshi, A.I.; Aslam, H.; Zafar, W.; Huang, W.M.; Lobanova, I.; Naqvi, S.H.; Malhotra, K.; Arora, N.; Chandrasekaran, P.N.; Siddiq, F.; et al. Acute Kidney Injury in Acute Ischemic Stroke Patients in Clinical Trials. Crit. Care Med. 2020, 48, 1334–1339. [Google Scholar] [CrossRef]
- Husted, S.; Emanuelsson, H.; Heptinstall, S.; Sandset, P.M.; Wickens, M.; Peters, G. Pharmacodynamics, pharmacokinetics, and safety of the oral reversible P2Y12 antagonist AZD6140 with aspirin in patients with atherosclerosis: A double-blind comparison to clopidogrel with aspirin. Eur. Heart J. 2006, 27, 1038–1047. [Google Scholar] [CrossRef]
- Wang, Y.; Pan, Y.; Zhao, X.; Li, H.; Wang, D.; Johnston, S.C.; Liu, L.; Meng, X.; Wang, A.; Wang, C.; et al. Clopidogrel with aspirin in acute minor stroke or transient ischemic attack. N. Engl. J. Med. 2013, 369, 11–19. [Google Scholar] [CrossRef]
- Kakkos, S.K.; Tsolakis, I.A. Clopidogrel with Aspirin in Minor Stroke or Transient Ischemic Attack. N. Engl. J. Med. 2013, 369, 1375. [Google Scholar] [PubMed]
- Johnston, S.C.; Amarenco, P.; Denison, H.; Evans, S.R.; Himmelmann, A.; James, S.; Knutsson, M.; Ladenvall, P.; Molina, C.A.; Wang, Y. Ticagrelor and Aspirin or Aspirin Alone in Acute Ischemic Stroke or TIA. N. Engl. J. Med. 2020, 383, 207–217. [Google Scholar] [CrossRef]
- Barker, C.M.; Murray, S.S.; Teirstein, P.S.; Kandzari, D.E.; Topol, E.J.; Price, M.J. Pilot Study of the Antiplatelet Effect of Increased Clopidogrel Maintenance Dosing and Its Relationship to CYP2C19 Genotype in Patients With High On-Treatment Reactivity. JACC-Cardiovasc. Interv. 2010, 3, 1001–1007. [Google Scholar] [CrossRef]
- Tong, D.; Xu, E.; Ge, R.; Hu, M.; Jin, S.; Mu, J.; Liu, Y. Aspirin alleviates cisplatin-induced acute kidney injury through the AMPK-PGC-1α signaling pathway. Chem.-Biol. Interact. 2023, 380, 110536. [Google Scholar] [CrossRef]
- Cao, Y.H.; Xu, Q.C.; Wang, Y.W.; Ling, Y.; Fu, C. Ticagrelor Protects against Sepsis-Induced Acute Kidney Injury through an Adenosine Receptor-Dependent Pathway. Curr. Med. Sci. 2022, 42, 505–512. [Google Scholar] [CrossRef] [PubMed]
- Hu, H.; Batteux, F.; Chéreau, C.; Kavian, N.; Marut, W.; Gobeaux, C.; Borderie, D.; Dinh-Xuan, A.T.; Weill, B.; Nicco, C. Clopidogrel protects from cell apoptosis and oxidative damage in a mouse model of renal ischaemia-reperfusion injury. J. Pathol. 2011, 225, 265–275. [Google Scholar] [CrossRef]
- Jansen, M.P.; Emal, D.; Teske, G.J.; Dessing, M.C.; Florquin, S.; Roelofs, J.J. Release of extracellular DNA influences renal ischemia reperfusion injury by platelet activation and formation of neutrophil extracellular traps. Kidney Int. 2017, 91, 352–364. [Google Scholar] [CrossRef]
- Garg, A.X.; Kurz, A.; Sessler, D.I.; Cuerden, M.; Robinson, A.; Mrkobrada, M.; Parikh, C.R.; Mizera, R.; Jones, P.M.; Tiboni, M.; et al. Perioperative aspirin and clonidine and risk of acute kidney injury: A randomized clinical trial. Jama 2014, 312, 2254–2264. [Google Scholar] [CrossRef]
- Karrowni, W.; Vora, A.N.; Dai, D.; Wojdyla, D.; Dakik, H.; Rao, S.V. Blood Transfusion and the Risk of Acute Kidney Injury Among Patients With Acute Coronary Syndrome Undergoing Percutaneous Coronary Intervention. Circ. Cardiovasc. Interv. 2016, 9, e003279. [Google Scholar] [CrossRef] [PubMed]
- Karkouti, K. Transfusion and risk of acute kidney injury in cardiac surgery. Br. J. Anaesth. 2012, 109 (Suppl. 1), i29–i38. [Google Scholar] [CrossRef] [PubMed]
- Knezevic, I.I.; Predescu, S.A.; Neamu, R.F.; Gorovoy, M.S.; Knezevic, N.M.; Easington, C.; Malik, A.B.; Predescu, D.N. Tiam1 and Rac1 are required for platelet-activating factor-induced endothelial junctional disassembly and increase in vascular permeability. J. Biol. Chem. 2009, 284, 5381–5394. [Google Scholar] [CrossRef]
- Cloutier, N.; Paré, A.; Farndale, R.W.; Schumacher, H.R.; Nigrovic, P.A.; Lacroix, S.; Boilard, E. Platelets can enhance vascular permeability. Blood 2012, 120, 1334–1343. [Google Scholar] [CrossRef]
- Löwenberg, E.C.; Meijers, J.C.; Levi, M. Platelet-vessel wall interaction in health and disease. Neth. J. Med. 2010, 68, 242–251. [Google Scholar]
- Bonventre, J.V.; Yang, L. Cellular pathophysiology of ischemic acute kidney injury. J. Clin. Investig. 2011, 121, 4210–4221. [Google Scholar] [CrossRef] [PubMed]
- Collet, J.P.; Drouet, L. The individual variability of response to antiplatelet therapy must be taken into account. Sang. Thromb. Vaisseaux. 2009, 21, 361–372. [Google Scholar]
- Würtz, M.; Grove, E.L. Interindividual Variability in the Efficacy of Oral Antiplatelet Drugs: Definitions, Mechanisms and Clinical Importance. Curr. Pharm. Des. 2012, 18, 5344–5361. [Google Scholar] [CrossRef]
- Bonello, L.; Tantry, U.S.; Marcucci, R.; Blindt, R.; Angiolillo, D.J.; Becker, R.; Bhatt, D.L.; Cattaneo, M.; Collet, J.P.; Cuisset, T.; et al. Consensus and future directions on the definition of high on-treatment platelet reactivity to adenosine diphosphate. J. Am. Coll. Cardiol. 2010, 56, 919–933. [Google Scholar] [CrossRef] [PubMed]
- Vasudeva, K.; Chaurasia, P.; Singh, S.; Munshi, A. Genetic Signatures in Ischemic Stroke: Focus on Aspirin Resistance. CNS Neurol. Disord. Drug Targets 2017, 16, 974–982. [Google Scholar] [CrossRef]
- Savi, P.; Labouret, C.; Delesque, N.; Guette, F.; Lupker, J.; Herbert, J.M. P2Y12, a new platelet ADP receptor, target of clopidogrel. Biochem. Biophys. Res. Commun. 2001, 283, 379–383. [Google Scholar] [CrossRef]
- Husted, S.; van Giezen, J.J.J. Ticagrelor: The First Reversibly Binding Oral P2Y12 Receptor Antagonist. Cardiovasc. Ther. 2009, 27, 259–274. [Google Scholar] [CrossRef]
- Paz, L.O.; Giordano, S.; Franchi, F.; Rollini, F.; Been, L.; Al Saleh, T.; Uzunoglu, E.C.; Maldonado, A.M.P.; Suryadevara, S.; Soffer, D.; et al. Impact of race on platelet reactivity profiles in patients on clopidogrel treatment. J. Am. Coll. Cardiol. 2024, 83, 849. [Google Scholar] [CrossRef]
- Vos, G.J.A.; Janssen, P.W.; Bergmeijer, T.O.; Jhagroe, D.; Godschalk, T.C.; Gimbel, M.E.; Willemsen, L.M.; Hackeng, C.M.; Ten Berg, J.M. Platelet reactivity is gender and age related. Eur. Heart J. 2016, 37, 1159. [Google Scholar]
- Pelliccia, F.; Rollini, F.; Marazzi, G.; Greco, C.; Gaudio, C.; Angiolillo, D.J. Drug-drug interactions between clopidogrel and novel cardiovascular drugs. Eur. J. Pharmacol. 2015, 765, 332–336. [Google Scholar] [CrossRef]
- Jakobs, K.; Reinshagen, L.; Puccini, M.; Friebel, J.; Wilde, A.-C.B.; Alsheik, A.; Rroku, A.; Landmesser, U.; Haghikia, A.; Kränkel, N.; et al. Disease Severity in Moderate-to-Severe COVID-19 Is Associated With Platelet Hyperreactivity and Innate Immune Activation. Front. Immunol. 2022, 13, 844701. [Google Scholar] [CrossRef] [PubMed]
- Setiadi, B.M.; Hartono, B.; Prakoso, A.B.; Lubis, A.C.; Munandar, R.M.; Munawar, M. Antiplatelet for Coronary Artery Disease in Specific Condition “No Size Fits All”. Curr. Pharm. Des. 2018, 24, 478–495. [Google Scholar] [CrossRef]
- Daly, P.L.; Becker, R.C. Pharmacogenetics of Antiplatelet Therapy. Curr. Atheroscler. Rep. 2014, 16, 411. [Google Scholar] [CrossRef] [PubMed]
- Veninga, A.; Handtke, S.; Aurich, K.; Tullemans, B.M.E.; Brouns, S.L.N.; Schwarz, S.L.; Heubel-Moenen, F.C.J.I.; Greinacher, A.; Heemskerk, J.W.M.; van der Meijden, P.E.J.; et al. GPVI expression is linked to platelet size, age, and reactivity. Blood Adv. 2022, 6, 4162–4173. [Google Scholar] [CrossRef]
- Schrör, K. Aspirin and platelets: The antiplatelet action of aspirin and its role in thrombosis treatment and prophylaxis. Semin. Thromb. Hemost. 1997, 23, 349–356. [Google Scholar] [CrossRef] [PubMed]
- Halushka, M.K.; Walker, L.P.; Halushka, P.V. Genetic variation in cyclooxygenase 1: Effects on response to aspirin. Clin. Pharmacol. Ther. 2003, 73, 122–130. [Google Scholar] [CrossRef]
- Park, S.H.; Kim, W.; Park, C.S.; Kang, W.Y.; Hwang, S.H.; Kim, W. A comparison of clopidogrel responsiveness in patients with versus without chronic renal failure. Am. J. Cardiol. 2009, 104, 1292–1295. [Google Scholar] [CrossRef]
- Mohammad, N.S.N.R.; Zafar, H.; Fatima, S. Effects of lipid based Multiple Micronutrients Supplement on the birth outcome of underweight pre-eclamptic women: A randomized clinical trial. Pak. J. Med. Sci. 2022, 38, 219–226. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Yeung, C.K.; Shen, D.D.; Thummel, K.E.; Himmelfarb, J. Effects of chronic kidney disease and uremia on hepatic drug metabolism and transport. Kidney Int. 2014, 85, 522–528. [Google Scholar] [CrossRef]
- Ando, M.; Iwata, A.; Ozeki, Y.; Tsuchiya, K.; Akiba, T.; Nihei, H. Circulating platelet-derived microparticles with procoagulant activity may be a potential cause of thrombosis in uremic patients. Kidney Int. 2002, 62, 1757–1763. [Google Scholar] [CrossRef]
- Capodanno, D.; Angiolillo, D.J. Antithrombotic therapy in patients with chronic kidney disease. Circulation 2012, 125, 2649–2661. [Google Scholar] [CrossRef] [PubMed]
- Morel, O.; Muller, C.; Jesel, L.; Moulin, B.; Hannedouche, T. Impaired platelet P2Y12 inhibition by thienopyridines in chronic kidney disease: Mechanisms, clinical relevance and pharmacological options. Nephrol. Dial. Transplant. Off. Publ. Eur. Dial. Transpl. Assoc.—Eur. Ren. Assoc. 2013, 28, 1994–2002. [Google Scholar] [CrossRef]
- Faraday, N.; Yanek, L.R.; Mathias, R.; Herrera-Galeano, J.E.; Vaidya, D.; Moy, T.F.; Fallin, M.D.; Wilson, A.F.; Bray, P.F.; Becker, L.C.; et al. Heritability of platelet responsiveness to aspirin in activation pathways directly and indirectly related to cyclooxygenase-1. Circulation 2007, 115, 2490–2496. [Google Scholar] [CrossRef] [PubMed]
- Polzin, A.; Dannenberg, L.; Sansone, R.; Levkau, B.; Kelm, M.; Hohlfeld, T.; Zeus, T. Antiplatelet effects of aspirin in chronic kidney disease patients. J. Thromb. Haemost. 2016, 14, 375–380. [Google Scholar] [CrossRef] [PubMed]
- Huang, J. Drug-Induced Nephrotoxicity and Drug Metabolism in Renal Failure. Curr. Drug Metab. 2018, 19, 558. [Google Scholar] [CrossRef]
- Elshamaa, M.F.; Elghoroury, E.A.; Helmy, A. Intradialytic and postdialytic platelet activation, increased platelet phosphatidylserine exposure and ultrastructural changes in platelets in children with chronic uremia. Blood Coagul. Fibrinolysis An. Int. J. Haemost. Thromb. 2009, 20, 230–239. [Google Scholar] [CrossRef]
- Rollini, F.; Franchi, F. Standard- and Low-Dose Ticagrelor After Percutaneous Coronary Intervention: Finding the Balance for Patients With Stable Coronary Artery Disease. Circulation 2018, 138, 1301–1303. [Google Scholar] [CrossRef]
- Wang, Y.; Jiang, Y.; Zhi, W.; Fu, Y.; Wang, Q.; Zhou, J.; Zheng, S.; Hao, G. Safety and feasibility of low-dose ticagrelor in patients with ST-segment elevation myocardial infarction. Clin. Cardiol. 2021, 44, 123–128. [Google Scholar] [CrossRef]
- Kim, J.S.; Woo, J.S.; Kim, J.B.; Kim, W.S.; Lee, T.W.; Kim, K.S.; Ihm, C.G.; Kim, W.; Jeong, K.H. The pharmacodynamics of low and standard doses of ticagrelor in patients with end stage renal disease on hemodialysis. Int. J. Cardiol. 2017, 238, 110–116. [Google Scholar] [CrossRef]
- Djordjevic, N. Genotyping genetic variants of CYP2C19 for precision antiplatelet dosing: State of the art and future perspectives. Expert Opin. Drug Metab. Toxicol. 2022, 18, 817–830. [Google Scholar] [CrossRef]
- El Rouby, N.; Lima, J.J.; Johnson, J.A. Proton pump inhibitors: From CYP2C19 pharmacogenetics to precision medicine. Expert Opin. Drug Metab. Toxicol. 2018, 14, 447–460. [Google Scholar] [CrossRef] [PubMed]
- Tantry, U.S.; Singh, S.; Raghavakurup, L.N.; Bliden, K.P.; Gurbel, P.A. Can CYP2C19 genotyping improve antiplatelet therapy efficacy in real-life practice? Recent advances. Pol. Heart J. 2024, 82, 840–845. [Google Scholar] [CrossRef] [PubMed]
28-Day Mortality | |||
---|---|---|---|
HR | 95% CI | p | |
Model 1 | |||
Non-combination | 1.00 | Reference | |
Combination | 0.56 | 0.44–0.70 | <0.001 |
Model 2 | |||
Non-combination | 1.00 | Reference | |
Combination | 0.55 | 0.44–0.71 | <0.001 |
Model 3 | |||
Non-combination | 1.00 | Reference | |
Combination | 0.58 | 0.45–0.75 | <0.001 |
Model 4 | |||
Non-combination | 1.00 | Reference | |
Combination | 0.58 | 0.45–0.75 | <0.001 |
28-Day Mortality | 90-Day Mortality | 1-Year Mortality | In-Hospital Mortality | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
HR | 95% CI | p | HR | 95% CI | p | HR | 95% CI | p | OR | 95% CI | p | |
MAKI | ||||||||||||
Non-combination | 1.00 | Reference | 1.00 | Reference | 1.00 | Reference | 0.51 | 0.39–0.68 | ||||
Combination | 0.59 | 0.46–0.76 | <0.001 | 0.66 | 0.52–0.83 | <0.001 | 0.69 | 0.56–0.86 | <0.001 | 0.47 | 0.32–0.67 | <0.001 |
SAKI | ||||||||||||
Non-combination | 1.00 | Reference | 1.00 | Reference | 1.00 | Reference | 1.00 | Reference | ||||
Combination | 1.87 | 0.49–7.09 | 0.139 | 1.05 | 0.31–3.59 | 0.531 | 0.86 | 0.31–2.31 | 0.917 | 0.72 | 0.04–11.50 | 0.611 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, Q.; Xu, H.; Long, S.; Wei, W.; Li, X. Mortality Risk Analysis of Combination Antiplatelet Therapy in Patients with Ischemic Stroke and Acute Kidney Injury: A Retrospective Cohort Analysis of the MIMIC-IV Database. Diseases 2025, 13, 141. https://doi.org/10.3390/diseases13050141
Zhou Q, Xu H, Long S, Wei W, Li X. Mortality Risk Analysis of Combination Antiplatelet Therapy in Patients with Ischemic Stroke and Acute Kidney Injury: A Retrospective Cohort Analysis of the MIMIC-IV Database. Diseases. 2025; 13(5):141. https://doi.org/10.3390/diseases13050141
Chicago/Turabian StyleZhou, Qiangqiang, Hongyu Xu, Shengrong Long, Wei Wei, and Xiang Li. 2025. "Mortality Risk Analysis of Combination Antiplatelet Therapy in Patients with Ischemic Stroke and Acute Kidney Injury: A Retrospective Cohort Analysis of the MIMIC-IV Database" Diseases 13, no. 5: 141. https://doi.org/10.3390/diseases13050141
APA StyleZhou, Q., Xu, H., Long, S., Wei, W., & Li, X. (2025). Mortality Risk Analysis of Combination Antiplatelet Therapy in Patients with Ischemic Stroke and Acute Kidney Injury: A Retrospective Cohort Analysis of the MIMIC-IV Database. Diseases, 13(5), 141. https://doi.org/10.3390/diseases13050141