The Genetic and Biological Basis of Pseudoarthrosis in Fractures: Current Understanding and Future Directions
Abstract
:1. Introduction
2. Biological and Molecular Factors in Non-Union Fractures
3. The Vascularization in Non-Union Fracture Formation
Blood Flow Angiogenesis and Angiogenetic Factors
4. Genetic Factors in Non-Union Fractures
Genes Investigated | Study Group | Results | Polymorphisms of Interest | Authors |
---|---|---|---|---|
ADAM8, CALY, ECHS1, FUOM, MIR202, MIR202HG, PRAP1, TUBGCP2, ZNF511, AMPD3, TRACR1, ACHE, MIR6875, MUC3A, MUC12, MUC17, SERPINE1, SLC12A9, SRRT, TRIM56, TRIP6, USFP1, ACAT1, ATM, C11orf65, EXPH5, KDELC2, NPAT, ASTN2, RBMS3 | (cohort study) 1760 Northern Europeans with upper or lower fractures—131 non-union | CALY gene SNP was one of the most strongly associated with non-union risk TACR1 gene may influence pain reception and healing process | CALY (rs2298122) | [118] |
NOS2 | 1229 Han Chinese patients with long bone fractures—346 patients with non-union vs. 883 union group | An NOS2 SNP was associated with increased risk of non-union (only in tibial diaphysis fracture subgroup) | T allele of NOS2 (rs2297514) | [112] |
CYR61 | 250 patients with non-union vs. 250 healthy individuals | CYR61 heterozygous genotype affects mRNA expression and may be a risk factor that increases chances for non-union | Heterozygous TG genotype and G allele | [117] |
CSF1, IL1B, IL6, IL11, TNFSF11, TNFRSF11B, IFN1α, TNF, COL2A1, COL1A1, TGFB1, TGFB2, TGFB3, BMP2, BMP4, BMP5, BMP6, BMP7, BMP8A, MSTN, GDF10, MMP9, MMP13, VEGFA, VEGFC, ANGPT1, PTN, NOS2, ADRB2, PTGS2 | 62 patients with long bone fractures—33 non-union vs. 29 union group | Variations in IL1B and NOS2 genes may contribute to non-union risk SNPs of MMP13 and BMP6 could be protective against non-union | IL1B (rs2853550) NOS2 (rs2297514) and (rs2248814) MMP13 (rs3819089) BMP6 (rs270393) | [113] |
FAM5C, BMP4, FGF3, FGF1O, FGFR1 | 167 patients with long bone fractures—66 non-union vs. 101 union group | BMP4 haplotype and an FGFR1 SNP associated with non-union risk FAM5C SNP associated with uneventful healing | BMP4 GTAA haplotype FGFR1 (rs13317) FAM5C (rs1342913) | [111] |
TLR2, TLR4, CCR2, CD14, CRP, IL-6, IL-1ra, TGF-β | 108 patients with non-union (34 with viable bacterial strains) vs. 122 union group (20 with viable bacterial strains) | Some polymorphisms in TLR 4 and TGF-β may lead to impaired pathogen recognition, prolonged pathogen existence in the fracture site, and higher risk of delayed healing | TLR 4 gene 1/W (Asp299Gly) TGF-β gene codon 10 mutant T and T/C allele | [116] |
IGF-1, BMP-2, BMP-4, BMP-7, IL1b, IL-2, IL-3, IL-8, MMP-9, MMP-13, PDGF-A, TNF-α | 50 patients with non-union (21 femoral and 29 tibial) vs. 44 union group | PDGF polymorphisms seem to be a risk factor for non-union MMP-13 is highly associated with uneventful healing | PDGF-A CCG haplotype MMP-13 (rs2252070) | [114] |
BMP-2, BMP-7, NOGGIN, SMAD6 | 109 patients with long bone fractures—62 patients with non-union vs. 47 union group | Two genotypes (of NOGGIN and SMAD6) were found to be associated with non-union risk | G/G genotype of rs1472857 of NOGGIN T/T genotype of rs2053423 of SMAD6 | [110] |
5. Diagnostic and Predictive Biomarkers
6. Therapeutic Implications
6.1. Current Treatment Strategies
6.2. Gene Therapy
6.3. Stem Cell Therapy and Tissue Engineering
6.4. BMPs and Other Growth Factors
7. Discussion
Future Direction | Description | Bibliography |
---|---|---|
Personalized medicine | Tailoring medical treatment based on an individual’s genetic profile to optimize bone healing outcomes. | [121] |
Genetic testing | Identifying patients at risk of delayed healing or non-unions due to genetic variants (e.g., BMP2, VEGF polymorphisms). | [113] |
Genome-Wide Association Studies (GWAS) | Identifying genetic variants linked to bone healing and pseudoarthrosis through large-scale analyses. | [185] |
Next-Generation Sequencing (NGS) | Providing detailed genetic profiles to guide personalized treatment plans. | [186] |
CRISPR/Cas9 and gene editing | Potentially correcting genetic defects that impair bone repair, enhancing endogenous growth factors. | [186] |
3D bioprinting | Creating patient-specific bone grafts using genetic and anatomical data for improved implant integration. | [187] |
Nanotechnology and smart biomaterials | Delivering growth factors and improving implant integration through advanced, targeted therapies. | [190] |
Stem cell therapies (e.g., MSCs, iPSCs) | Utilizing patient-derived cells to promote osteogenesis and angiogenesis in non-union fractures. | [200] |
AI-driven medicine | Optimizing treatment plans and real-time monitoring of fracture healing using artificial intelligence. | [189] |
Epigenetics and miRNA studies | Exploring environmental impacts (e.g., nutrition, smoking) on gene expression and their effect on healing. | [194] |
Combination therapies | Integrating mechanical stimulation (e.g., electromagnetic fields) with biological therapies for enhanced healing. | [195] |
8. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
MSC | Mesenchymal stromal cell |
BMP | Bone morphogenetic protein |
MMP | Matrix metalloproteinase |
MiRNAs | MicroRNAs |
SOST | Sclerostin |
DDK1 | Dickkopf-1 |
PDGFs | Platelet-derived growth factors |
HIFs | Hypoxia-inducible factors |
TGF-β | Transforming growth factor-beta |
PlGF-1 | Placental growth factor-1 |
ECM | Extracellular matrix |
NF1 | Neurofibromatosis type 1 |
IL-1 | Interleukin 1 |
CXCR4 | Chemokine receptor type 4 |
RUNX2 | Runt-related transcription factor 2 |
OCN | Osteocalcin |
OPG | Osteoprotegerin |
SNPs | Single-nucleotide polymorphisms |
ABGs | Autologous bone grafts |
PEMF | Pulsed electromagnetic field |
ESCs | Embryonic stem cells |
iPSCs | Induced pluripotent stem cells |
TNF-α | Tumor necrosis factor-alpha |
GWAS | Genome-Wide Association Studies |
NGS | Next-Generation Sequencing |
References
- Abbas, S.; Chokotho, L.; Nyamulani, N.; Oliver, V.L. The Burden of Long Bone Fracture and Health System Response in Malawi: A Scoping Review. Injury 2024, 55, 111243. [Google Scholar] [CrossRef]
- Nicholson, J.; Makaram, N.; Simpson, A.; Keating, J. Fracture Nonunion in Long Bones: A Literature Review of Risk Factors and Surgical Management. Injury 2021, 52, S3–S11. [Google Scholar] [CrossRef] [PubMed]
- Stewart, S. Fracture Non-Union: A Review of Clinical Challenges and Future Research Needs. Malays. Orthop. J. 2019, 13, 1–10. [Google Scholar] [CrossRef]
- Bowers, K.M.; Anderson, D.E. Delayed Union and Nonunion: Current Concepts, Prevention, and Correction: A Review. Bioengineering 2024, 11, 525. [Google Scholar] [CrossRef]
- Takahara, S.; Niikura, T.; Lee, S.Y.; Iwakura, T.; Okumachi, E.; Kuroda, R.; Kurosaka, M. Human Pseudoarthrosis Tissue Contains Cells with Osteogenic Potential. Injury 2016, 47, 1184–1190. [Google Scholar] [CrossRef] [PubMed]
- Perut, F.; Roncuzzi, L.; Gómez-Barrena, E.; Baldini, N. Association between Bone Turnover Markers and Fracture Healing in Long Bone Non-Union: A Systematic Review. J. Clin. Med. 2024, 13, 2333. [Google Scholar] [CrossRef]
- Chitwood, J.R.; Chakraborty, N.; Hammamieh, R.; Moe, S.M.; Chen, N.X.; Kacena, M.A.; Natoli, R.M. Predicting Fracture Healing with Blood Biomarkers: The Potential to Assess Patient Risk of Fracture Nonunion. Biomarkers 2021, 26, 703–717. [Google Scholar] [CrossRef] [PubMed]
- Agrawal, U.; Tiwari, V. Congenital Tibial Pseudarthrosis. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2025. [Google Scholar]
- Sheen, J.R.; Mabrouk, A.; Garla, V.V. Fracture Healing Overview. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2025. [Google Scholar]
- Dudley, A.C.; Griffioen, A.W. Pathological Angiogenesis: Mechanisms and Therapeutic Strategies. Angiogenesis 2023, 26, 313–347. [Google Scholar] [CrossRef]
- Johnson, K.E.; Wilgus, T.A. Vascular Endothelial Growth Factor and Angiogenesis in the Regulation of Cutaneous Wound Repair. Adv. Wound Care 2014, 3, 647–661. [Google Scholar] [CrossRef]
- Basile, G.; Fozzato, S.; Petrucci, Q.A.; Gallina, M.; Bianco Prevot, L.; Accetta, R.; Zaami, S. Treatment of Femoral Shaft Pseudarthrosis, Case Series and Medico-Legal Implications. J. Clin. Med. 2022, 11, 7407. [Google Scholar] [CrossRef]
- Vanderkarr, M.F.; Ruppenkamp, J.W.; Vanderkarr, M.; Holy, C.E.; Blauth, M. Risk Factors and Healthcare Costs Associated with Long Bone Fracture Non-Union: A Retrospective US Claims Database Analysis. J. Orthop. Surg. Res. 2023, 18, 745. [Google Scholar] [CrossRef] [PubMed]
- Everts, P.A.; Lana, J.F.; Onishi, K.; Buford, D.; Peng, J.; Mahmood, A.; Fonseca, L.F.; van Zundert, A.; Podesta, L. Angiogenesis and Tissue Repair Depend on Platelet Dosing and Bioformulation Strategies Following Orthobiological Platelet-Rich Plasma Procedures: A Narrative Review. Biomedicines 2023, 11, 1922. [Google Scholar] [CrossRef] [PubMed]
- Menger, M.M.; Laschke, M.W.; Nussler, A.K.; Menger, M.D.; Histing, T. The Vascularization Paradox of Non-Union Formation. Angiogenesis 2022, 25, 279–290. [Google Scholar] [CrossRef] [PubMed]
- Panteli, M.; Vun, J.S.H.; Pountos, I.; Howard, A.J.; Jones, E.; Giannoudis, P.V. Biological and Molecular Profile of Fracture Non-Union Tissue: A Systematic Review and an Update on Current Insights. J. Cell. Mol. Med. 2022, 26, 601–623. [Google Scholar] [CrossRef]
- Aluganti Narasimhulu, C.; Singla, D.K. The Role of Bone Morphogenetic Protein 7 (BMP-7) in Inflammation in Heart Diseases. Cells 2020, 9, 280. [Google Scholar] [CrossRef]
- Proia, P.; Rossi, C.; Alioto, A.; Amato, A.; Polizzotto, C.; Pagliaro, A.; Kuliś, S.; Baldassano, S. MiRNAs Expression Modulates Osteogenesis in Response to Exercise and Nutrition. Genes 2023, 14, 1667. [Google Scholar] [CrossRef]
- Bravo Vázquez, L.A.; Moreno Becerril, M.Y.; Mora Hernández, E.O.; de León Carmona, G.G.; Aguirre Padilla, M.E.; Chakraborty, S.; Bandyopadhyay, A.; Paul, S. The Emerging Role of MicroRNAs in Bone Diseases and Their Therapeutic Potential. Molecules 2021, 27, 211. [Google Scholar] [CrossRef]
- Zhang, M.; Appelboom, G.; Ratliff, J.K.; Soltys, S.G.; Adler, J.R.; Park, J.; Chang, S.D. Radiographic Rate and Clinical Impact of Pseudarthrosis in Spine Radiosurgery for Metastatic Spinal Disease. Cureus 2018, 10, e3631. [Google Scholar] [CrossRef] [PubMed]
- Dincel, A.S.; Jørgensen, N.R.; IOF-IFCC Joint Committee on Bone Metabolism (C-BM). New Emerging Biomarkers for Bone Disease: Sclerostin and Dickkopf-1 (DKK1). Calcif. Tissue Int. 2023, 112, 243–257. [Google Scholar] [CrossRef]
- Panteli, M.; Pountos, I.; Jones, E.; Giannoudis, P.V. Biological and Molecular Profile of Fracture Non-Union Tissue: Current Insights. J. Cell. Mol. Med. 2015, 19, 685–713. [Google Scholar] [CrossRef]
- Verboket, R.; Leiblein, M.; Seebach, C.; Nau, C.; Janko, M.; Bellen, M.; Bönig, H.; Henrich, D.; Marzi, I. Autologous Cell-Based Therapy for Treatment of Large Bone Defects: From Bench to Bedside. Eur. J. Trauma Emerg. Surg. 2018, 44, 649–665. [Google Scholar] [CrossRef] [PubMed]
- Nasadiuk, K.; Kolanowski, T.; Kowalewski, C.; Wozniak, K.; Oldak, T.; Rozwadowska, N. Harnessing Mesenchymal Stromal Cells for Advanced Wound Healing: A Comprehensive Review of Mechanisms and Applications. Int. J. Mol. Sci. 2025, 26, 199. [Google Scholar] [CrossRef]
- Hu, K.; Olsen, B.R. The Roles of Vascular Endothelial Growth Factor in Bone Repair and Regeneration. Bone 2016, 91, 30–38. [Google Scholar] [CrossRef] [PubMed]
- Maciejewska, M.; Sikora, M.; Stec, A.; Zaremba, M.; Maciejewski, C.; Pawlik, K.; Rudnicka, L. Hypoxia-Inducible Factor-1α (HIF-1α) as a Biomarker for Changes in Microcirculation in Individuals with Systemic Sclerosis. Dermatol. Ther. 2023, 13, 1549–1560. [Google Scholar] [CrossRef]
- Pountos, I.; Georgouli, T.; Pneumaticos, S.; Giannoudis, P.V. Fracture Non-Union: Can Biomarkers Predict Outcome? Injury 2013, 44, 1725–1732. [Google Scholar] [CrossRef]
- Jensen, S.S.; Jensen, N.M.; Gundtoft, P.H.; Kold, S.; Zura, R.; Viberg, B. Risk Factors for Nonunion Following Surgically Managed, Traumatic, Diaphyseal Fractures: A Systematic Review and Meta-Analysis. EFORT Open Rev. 2022, 7, 516–525. [Google Scholar] [CrossRef] [PubMed]
- Filipowska, J.; Tomaszewski, K.A.; Niedźwiedzki, Ł.; Walocha, J.A.; Niedźwiedzki, T. The Role of Vasculature in Bone Development, Regeneration and Proper Systemic Functioning. Angiogenesis 2017, 20, 291–302. [Google Scholar] [CrossRef]
- Shineh, G.; Patel, K.; Mobaraki, M.; Tayebi, L. Functional Approaches in Promoting Vascularization and Angiogenesis in Bone Critical-Sized Defects via Delivery of Cells, Growth Factors, Drugs, and Particles. J. Funct. Biomater. 2023, 14, 99. [Google Scholar] [CrossRef]
- Rajabi, M.; Mousa, S.A. The Role of Angiogenesis in Cancer Treatment. Biomedicines 2017, 5, 34. [Google Scholar] [CrossRef]
- Goncharov, E.N.; Koval, O.A.; Nikolaevich Bezuglov, E.; Engelgard, M.; Igorevich, E.I.; Velentinovich Kotenko, K.; Encarnacion Ramirez, M.D.J.; Montemurro, N. Comparative Analysis of Stromal Vascular Fraction and Alternative Mechanisms in Bone Fracture Stimulation to Bridge the Gap between Nature and Technological Advancement: A Systematic Review. Biomedicines 2024, 12, 342. [Google Scholar] [CrossRef]
- Knight, M.N.; Hankenson, K.D. Mesenchymal Stem Cells in Bone Regeneration. Adv. Wound Care 2013, 2, 306–316. [Google Scholar] [CrossRef]
- Arellano, M.Y.G.; VanHeest, M.; Emmadi, S.; Abdul-Hafez, A.; Ibrahim, S.A.; Thiruvenkataramani, R.P.; Teleb, R.S.; Omar, H.; Kesaraju, T.; Mohamed, T.; et al. Role of Mesenchymal Stem/Stromal Cells (MSCs) and MSC-Derived Extracellular Vesicles (EVs) in Prevention of Telomere Length Shortening, Cellular Senescence, and Accelerated Biological Aging. Bioengineering 2024, 11, 524. [Google Scholar] [CrossRef] [PubMed]
- Zhao, S.; Qiao, Z.; Pfeifer, R.; Pape, H.-C.; Mao, K.; Tang, H.; Meng, B.; Chen, S.; Liu, H. Modulation of Fracture Healing by Senescence-Associated Secretory Phenotype (SASP): A Narrative Review of the Current Literature. Eur. J. Med. Res. 2024, 29, 38. [Google Scholar] [CrossRef]
- Shen, F.; Xiao, H.; Shi, Q. Mesenchymal Stem Cells Derived from the Fibrotic Tissue of Atrophic Nonunion or the Bone Marrow of Iliac Crest: A Donor-Matched Comparison. Regen. Ther. 2023, 24, 398–406. [Google Scholar] [CrossRef] [PubMed]
- Halloran, D.; Durbano, H.W.; Nohe, A. Bone Morphogenetic Protein-2 in Development and Bone Homeostasis. J. Dev. Biol. 2020, 8, 19. [Google Scholar] [CrossRef] [PubMed]
- May, R.D.; Frauchiger, D.A.; Albers, C.E.; Tekari, A.; Benneker, L.M.; Klenke, F.M.; Hofstetter, W.; Gantenbein, B. Application of Cytokines of the Bone Morphogenetic Protein (BMP) Family in Spinal Fusion—Effects on the Bone, Intervertebral Disc and Mesenchymal Stromal Cells. Curr. Stem Cell Res. Ther. 2019, 14, 618–643. [Google Scholar] [CrossRef]
- Lewis, C.J.; Mardaryev, A.N.; Poterlowicz, K.; Sharova, T.Y.; Aziz, A.; Sharpe, D.T.; Botchkareva, N.V.; Sharov, A.A. Bone Morphogenetic Protein Signalling Suppresses Wound-Induced Skin Repair by Inhibiting Keratinocyte Proliferation and Migration. J. Investig. Dermatol. 2014, 134, 827–837. [Google Scholar] [CrossRef]
- Nair, V.; Patil, V.S.; Todkar, A.; Shah, M.; Devarmani, S. Bone Morphogenetic Proteins: A Promising Approach for Enhancing Fracture Healing. Cureus 2024, 16, e66619. [Google Scholar] [CrossRef]
- Wu, M.; Wu, S.; Chen, W.; Li, Y.-P. The Roles and Regulatory Mechanisms of TGF-β and BMP Signaling in Bone and Cartilage Development, Homeostasis and Disease. Cell Res. 2024, 34, 101–123. [Google Scholar] [CrossRef]
- Morikawa, M.; Derynck, R.; Miyazono, K. TGF-β and the TGF-β Family: Context-Dependent Roles in Cell and Tissue Physiology. Cold Spring Harb. Perspect. Biol. 2016, 8, a021873. [Google Scholar] [CrossRef]
- MacFarlane, E.G.; Haupt, J.; Dietz, H.C.; Shore, E.M. TGF-β Family Signaling in Connective Tissue and Skeletal Diseases. Cold Spring Harb. Perspect. Biol. 2017, 9, a022269. [Google Scholar] [CrossRef] [PubMed]
- Baba, A.B.; Rah, B.; Bhat, G.R.; Mushtaq, I.; Parveen, S.; Hassan, R.; Hameed Zargar, M.; Afroze, D. Transforming Growth Factor-Beta (TGF-β) Signaling in Cancer-A Betrayal Within. Front. Pharmacol. 2022, 13, 791272. [Google Scholar] [CrossRef] [PubMed]
- Hu, L.; Chen, W.; Qian, A.; Li, Y.-P. Wnt/β-Catenin Signaling Components and Mechanisms in Bone Formation, Homeostasis, and Disease. Bone Res. 2024, 12, 39. [Google Scholar] [CrossRef]
- Wu, M.; Chen, G.; Li, Y.-P. TGF-β and BMP Signaling in Osteoblast, Skeletal Development, and Bone Formation, Homeostasis and Disease. Bone Res. 2016, 4, 16009. [Google Scholar] [CrossRef]
- Wei, E.; Hu, M.; Wu, L.; Pan, X.; Zhu, Q.; Liu, H.; Liu, Y. TGF-β Signaling Regulates Differentiation of MSCs in Bone Metabolism: Disputes among Viewpoints. Stem Cell Res. Ther. 2024, 15, 156. [Google Scholar] [CrossRef]
- Kišonaitė, M.; Wang, X.; Hyvönen, M. Structure of Gremlin-1 and Analysis of Its Interaction with BMP-2. Biochem. J. 2016, 473, 1593–1604. [Google Scholar] [CrossRef]
- Mörsdorf, D.; Knabl, P.; Genikhovich, G. Highly Conserved and Extremely Evolvable: BMP Signalling in Secondary Axis Patterning of Cnidaria and Bilateria. Dev. Genes. Evol. 2024, 234, 1–19. [Google Scholar] [CrossRef] [PubMed]
- Glister, C.; Regan, S.L.; Samir, M.; Knight, P. Gremlin, Noggin, Chordin and Follistatin Differentially Modulate BMP Induced Suppression of Androgen Secretion by Bovine Ovarian Theca Cells. J. Mol. Endocrinol. 2019, 62, 15–25. [Google Scholar] [CrossRef]
- Liu, J.; Xiao, Q.; Xiao, J.; Niu, C.; Li, Y.; Zhang, X.; Zhou, Z.; Shu, G.; Yin, G. Wnt/β-Catenin Signalling: Function, Biological Mechanisms, and Therapeutic Opportunities. Sig Transduct. Target. Ther. 2022, 7, 3. [Google Scholar] [CrossRef]
- Florio, M.; Kostenuik, P.J.; Stolina, M.; Asuncion, F.J.; Grisanti, M.; Ke, H.Z.; Ominsky, M.S. Dual Inhibition of the Wnt Inhibitors DKK1 and Sclerostin Promotes Fracture Healing and Increases the Density and Strength of Uninjured Bone: An Experimental Study in Nonhuman Primates. J. Bone Jt. Surg. Am. 2023, 105, 1145–1155. [Google Scholar] [CrossRef]
- Starlinger, J.; Santol, J.; Kaiser, G.; Sarahrudi, K. Close Negative Correlation of Local and Circulating Dickkopf-1 and Sclerostin Levels during Human Fracture Healing. Sci. Rep. 2024, 14, 6524. [Google Scholar] [CrossRef] [PubMed]
- Ke, H.Z.; Richards, W.G.; Li, X.; Ominsky, M.S. Sclerostin and Dickkopf-1 as Therapeutic Targets in Bone Diseases. Endocr. Rev. 2012, 33, 747–783. [Google Scholar] [CrossRef]
- Ko, J.-Y.; Wang, F.-S.; Lian, W.-S.; Yang, F.-S.; Chen, J.-W.; Huang, P.-H.; Liao, C.-Y.; Kuo, S.-J. Dickkopf-1 (DKK1) Blockade Mitigates Osteogenesis Imperfecta (OI) Related Bone Disease. Mol. Med. 2024, 30, 66. [Google Scholar] [CrossRef] [PubMed]
- Breinbauer, R.; Mäling, M.; Ehnert, S.; Blumenstock, G.; Schwarz, T.; Jazewitsch, J.; Erne, F.; Reumann, M.K.; Rollmann, M.F.; Braun, B.J.; et al. B7-1 and PlGF-1 Are Two Possible New Biomarkers to Identify Fracture-Associated Trauma Patients at Higher Risk of Developing Complications: A Cohort Study. BMC Musculoskelet. Disord. 2024, 25, 677. [Google Scholar] [CrossRef] [PubMed]
- Cabral-Pacheco, G.A.; Garza-Veloz, I.; Castruita-De la Rosa, C.; Ramirez-Acuña, J.M.; Perez-Romero, B.A.; Guerrero-Rodriguez, J.F.; Martinez-Avila, N.; Martinez-Fierro, M.L. The Roles of Matrix Metalloproteinases and Their Inhibitors in Human Diseases. Int. J. Mol. Sci. 2020, 21, 9739. [Google Scholar] [CrossRef]
- Almalki, S.G.; Agrawal, D.K. Effects of Matrix Metalloproteinases on the Fate of Mesenchymal Stem Cells. Stem Cell Res. Ther. 2016, 7, 129. [Google Scholar] [CrossRef]
- Zhou, W.; Yan, K.; Xi, Q. BMP Signaling in Cancer Stemness and Differentiation. Cell Regen. 2023, 12, 37. [Google Scholar] [CrossRef]
- Hassan, M.Q.; Tye, C.E.; Stein, G.S.; Lian, J.B. Non-Coding RNAs: Epigenetic Regulators of Bone Development and Homeostasis. Bone 2015, 81, 746–756. [Google Scholar] [CrossRef]
- Sikora, M.; Marycz, K.; Smieszek, A. Small and Long Non-Coding RNAs as Functional Regulators of Bone Homeostasis, Acting Alone or Cooperatively. Mol. Ther.—Nucleic Acids 2020, 21, 792–803. [Google Scholar] [CrossRef]
- Groven, R.V.M.; Peniche Silva, C.J.; Balmayor, E.R.; van der Horst, B.N.J.; Poeze, M.; Blokhuis, T.J.; van Griensven, M. Specific microRNAs Are Associated with Fracture Healing Phases, Patient Age and Multi-Trauma. J. Orthop. Translat 2022, 37, 1–11. [Google Scholar] [CrossRef]
- Yao, J.; Xin, R.; Zhao, C.; Yu, C. MicroRNAs in Osteoblast Differentiation and Fracture Healing: From Pathogenesis to Therapeutic Implication. Injury 2024, 55, 111410. [Google Scholar] [CrossRef]
- Goodman, R.S.; Jung, S.; Balko, J.M.; Johnson, D.B. Biomarkers of Immune Checkpoint Inhibitor Response and Toxicity: Challenges and Opportunities. Immunol. Rev. 2023, 318, 157–166. [Google Scholar] [CrossRef] [PubMed]
- Rios, J.J.; Juan, C.; Shelton, J.M.; Paria, N.; Oxendine, I.; Wassell, M.; Kidane, Y.H.; Cornelia, R.; Jeffery, E.C.; Podeszwa, D.A.; et al. Spatial Transcriptomics Implicates Impaired BMP Signaling in NF1 Fracture Pseudarthrosis in Murine and Patient Tissues. JCI Insight 2024, 9, e176802. [Google Scholar] [CrossRef] [PubMed]
- Kaspiris, A.; Savvidou, O.D.; Vasiliadis, E.S.; Hadjimichael, A.C.; Melissaridou, D.; Iliopoulou-Kosmadaki, S.; Iliopoulos, I.D.; Papadimitriou, E.; Chronopoulos, E. Current Aspects on the Pathophysiology of Bone Metabolic Defects during Progression of Scoliosis in Neurofibromatosis Type 1. J. Clin. Med. 2022, 11, 444. [Google Scholar] [CrossRef] [PubMed]
- Zhu, G.; Zheng, Y.; Liu, Y.; Yan, A.; Hu, Z.; Yang, Y.; Xiang, S.; Li, L.; Chen, W.; Peng, Y.; et al. Identification and Characterization of NF1 and Non-NF1 Congenital Pseudarthrosis of the Tibia Based on Germline NF1 Variants: Genetic and Clinical Analysis of 75 Patients. Orphanet J. Rare Dis. 2019, 14, 221. [Google Scholar] [CrossRef]
- Saul, D.; Menger, M.M.; Ehnert, S.; Nüssler, A.K.; Histing, T.; Laschke, M.W. Bone Healing Gone Wrong: Pathological Fracture Healing and Non-Unions—Overview of Basic and Clinical Aspects and Systematic Review of Risk Factors. Bioengineering 2023, 10, 85. [Google Scholar] [CrossRef]
- Frade, B.B.; Dias, R.B.; Gemini Piperni, S.; Bonfim, D.C. The Role of Macrophages in Fracture Healing: A Narrative Review of the Recent Updates and Therapeutic Perspectives. Stem Cell Investig. 2023, 10, 4. [Google Scholar] [CrossRef]
- Sun, Y.; Li, J.; Xie, X.; Gu, F.; Sui, Z.; Zhang, K.; Yu, T. Macrophage-Osteoclast Associations: Origin, Polarization, and Subgroups. Front. Immunol. 2021, 12, 778078. [Google Scholar] [CrossRef]
- Ren, Y.; Zhang, S.; Weeks, J.; Moreno, J.R.; He, B.; Xue, T.; Rainbolt, J.; Morita, Y.; Shu, Y.; Liu, Y.; et al. Reduced Angiogenesis and Delayed Endochondral Ossification in CD163−/− Mice Highlights a Role of M2 Macrophages during Bone Fracture Repair. J. Orthop. Res. 2023, 41, 2384–2393. [Google Scholar] [CrossRef]
- Yellowley, C. CXCL12/CXCR4 Signaling and Other Recruitment and Homing Pathways in Fracture Repair. Bonekey Rep. 2013, 2, 300. [Google Scholar] [CrossRef]
- Schulze, F.; Lang, A.; Schoon, J.; Wassilew, G.I.; Reichert, J. Scaffold Guided Bone Regeneration for the Treatment of Large Segmental Defects in Long Bones. Biomedicines 2023, 11, 325. [Google Scholar] [CrossRef] [PubMed]
- Zeineddin, A.; Wu, F.; Dong, J.-F.; Huang, H.; Zou, L.; Chao, W.; Dorman, B.; Kozar, R.A. Trauma-Derived Extracellular Vesicles Are Sufficient to Induce Endothelial Dysfunction and Coagulopathy. Shock 2022, 58, 38–44. [Google Scholar] [CrossRef]
- Zieba, J.T.; Chen, Y.-T.; Lee, B.H.; Bae, Y. Notch Signaling in Skeletal Development, Homeostasis and Pathogenesis. Biomolecules 2020, 10, 332. [Google Scholar] [CrossRef] [PubMed]
- Zhu, S.; Chen, W.; Masson, A.; Li, Y.-P. Cell Signaling and Transcriptional Regulation of Osteoblast Lineage Commitment, Differentiation, Bone Formation, and Homeostasis. Cell Discov. 2024, 10, 1–39. [Google Scholar] [CrossRef]
- Mollentze, J.; Durandt, C.; Pepper, M.S. An In Vitro and In Vivo Comparison of Osteogenic Differentiation of Human Mesenchymal Stromal/Stem Cells. Stem Cells Int. 2021, 2021, 9919361. [Google Scholar] [CrossRef]
- Huang, W.; Yang, S.; Shao, J.; Li, Y.-P. Signaling and Transcriptional Regulation in Osteoblast Commitment and Differentiation. Front. Biosci. 2007, 12, 3068–3092. [Google Scholar] [CrossRef]
- ElHawary, H.; Baradaran, A.; Abi-Rafeh, J.; Vorstenbosch, J.; Xu, L.; Efanov, J.I. Bone Healing and Inflammation: Principles of Fracture and Repair. Semin. Plast. Surg. 2021, 35, 198–203. [Google Scholar] [CrossRef] [PubMed]
- Diban, F.; Lodovico, S.D.; Fermo, P.D.; D’Ercole, S.; D’Arcangelo, S.; Giulio, M.D.; Cellini, L. Biofilms in Chronic Wound Infections: Innovative Antimicrobial Approaches Using the In Vitro Lubbock Chronic Wound Biofilm Model. Int. J. Mol. Sci. 2023, 24, 1004. [Google Scholar] [CrossRef]
- Vestby, L.K.; Grønseth, T.; Simm, R.; Nesse, L.L. Bacterial Biofilm and Its Role in the Pathogenesis of Disease. Antibiotics 2020, 9, 59. [Google Scholar] [CrossRef]
- Tjempakasari, A.; Suroto, H.; Santoso, D. Mesenchymal Stem Cell Senescence and Osteogenesis. Medicina 2021, 58, 61. [Google Scholar] [CrossRef]
- Reible, B.; Schmidmaier, G.; Moghaddam, A.; Westhauser, F. Insulin-Like Growth Factor-1 as a Possible Alternative to Bone Morphogenetic Protein-7 to Induce Osteogenic Differentiation of Human Mesenchymal Stem Cells in Vitro. Int. J. Mol. Sci. 2018, 19, 1674. [Google Scholar] [CrossRef]
- Prahasanti, C.; Perdana, S. The Roles of Insulin Growth Factors-1 (IGF-1) in Bone Graft to Increase Osteogenesis. Res. J. Pharm. Technol. 2022, 15, 1737–1742. [Google Scholar] [CrossRef]
- Chaverri, D.; Vivas, D.; Gallardo-Villares, S.; Granell-Escobar, F.; Pinto, J.A.; Vives, J. A Pilot Study of Circulating Levels of TGF-Β1 and TGF-Β2 as Biomarkers of Bone Healing in Patients with Non-Hypertrophic Pseudoarthrosis of Long Bones. Bone Rep. 2021, 16, 101157. [Google Scholar] [CrossRef]
- Jiménez-Ortega, R.F.; Ortega-Meléndez, A.I.; Patiño, N.; Rivera-Paredez, B.; Hidalgo-Bravo, A.; Velázquez-Cruz, R. The Involvement of microRNAs in Bone Remodeling Signaling Pathways and Their Role in the Development of Osteoporosis. Biology 2024, 13, 505. [Google Scholar] [CrossRef] [PubMed]
- Krzyszczyk, P.; Schloss, R.; Palmer, A.; Berthiaume, F. The Role of Macrophages in Acute and Chronic Wound Healing and Interventions to Promote Pro-Wound Healing Phenotypes. Front. Physiol. 2018, 9, 419. [Google Scholar] [CrossRef]
- El-Jawhari, J.J.; Kleftouris, G.; El-Sherbiny, Y.; Saleeb, H.; West, R.M.; Jones, E.; Giannoudis, P.V. Defective Proliferation and Osteogenic Potential with Altered Immunoregulatory Phenotype of Native Bone Marrow-Multipotential Stromal Cells in Atrophic Fracture Non-Union. Sci. Rep. 2019, 9, 17340. [Google Scholar] [CrossRef]
- Santolini, E.; Goumenos, S.D.; Giannoudi, M.; Sanguineti, F.; Stella, M.; Giannoudis, P.V. Femoral and Tibial Blood Supply: A Trigger for Non-Union? Injury 2014, 45, 1665–1673. [Google Scholar] [CrossRef]
- Hankenson, K.D.; Dishowitz, M.; Gray, C.; Schenker, M. Angiogenesis in Bone Regeneration. Injury 2011, 42, 556–561. [Google Scholar] [CrossRef] [PubMed]
- Stegen, S.; Van Gastel, N.; Carmeliet, G. Bringing New Life to Damaged Bone: The Importance of Angiogenesis in Bone Repair and Regeneration. Bone 2015, 70, 19–27. [Google Scholar] [CrossRef]
- Elliott, D.S.; Newman, K.J.H.; Forward, D.P.; Hahn, D.M.; Ollivere, B.; Kojima, K.; Handley, R.; Rossiter, N.D.; Wixted, J.J.; Smith, R.M.; et al. A Unified Theory of Bone Healing and Nonunion: BHN Theory. Bone Jt. J. 2016, 98-B, 884–891. [Google Scholar] [CrossRef]
- Kanakaris, N.K.; Tosounidis, T.H.; Giannoudis, P.V. Surgical Management of Infected Non-Unions: An Update. Injury 2015, 46, S25–S32. [Google Scholar] [CrossRef] [PubMed]
- Miclau, K.R.; Brazina, S.A.; Bahney, C.S.; Hankenson, K.D.; Hunt, T.K.; Marcucio, R.S.; Miclau, T. Stimulating Fracture Healing in Ischemic Environments: Does Oxygen Direct Stem Cell Fate during Fracture Healing? Front. Cell Dev. Biol. 2017, 5, 45. [Google Scholar] [CrossRef] [PubMed]
- Hopf, H.W.; Gibson, J.J.; Angeles, A.P.; Constant, J.S.; Feng, J.J.; Rollins, M.D.; Zamirul Hussain, M.; Hunt, T.K. Hyperoxia and Angiogenesis. Wound Repair Regen. 2005, 13, 558–564. [Google Scholar] [CrossRef] [PubMed]
- Tomlinson, R.E.; Silva, M.J. Skeletal Blood Flow in Bone Repair and Maintenance. Bone Res. 2013, 1, 311–322. [Google Scholar] [CrossRef]
- Glowacki, J. Angiogenesis in Fracture Repair. Clin. Orthop. Relat. Res. 1998, 355S, S82–S89. [Google Scholar] [CrossRef]
- Ramasamy, S.K.; Kusumbe, A.P.; Schiller, M.; Zeuschner, D.; Bixel, M.G.; Milia, C.; Gamrekelashvili, J.; Limbourg, A.; Medvinsky, A.; Santoro, M.M.; et al. Blood Flow Controls Bone Vascular Function and Osteogenesis. Nat. Commun. 2016, 7, 13601. [Google Scholar] [CrossRef] [PubMed]
- Johnson, E.O.; Soultanis, K.; Soucacos, P.N. Vascular Anatomy and Microcirculation of Skeletal Zones Vulnerable to Osteonecrosis: Vascularization of the Femoral Head. Orthop. Clin. N. Am. 2004, 35, 285–291. [Google Scholar] [CrossRef]
- Soucacos, P. Osteonecrosis of the Human Skeleton. Orthop. Clin. N. Am. 2004, 35, xiii–xv. [Google Scholar] [CrossRef]
- Schlundt, C.; Bucher, C.H.; Tsitsilonis, S.; Schell, H.; Duda, G.N.; Schmidt-Bleek, K. Clinical and Research Approaches to Treat Non-Union Fracture. Curr. Osteoporos. Rep. 2018, 16, 155–168. [Google Scholar] [CrossRef]
- Carlier, A.; Geris, L.; Bentley, K.; Carmeliet, G.; Carmeliet, P.; Van Oosterwyck, H. MOSAIC: A Multiscale Model of Osteogenesis and Sprouting Angiogenesis with Lateral Inhibition of Endothelial Cells. PLoS Comput. Biol. 2012, 8, e1002724. [Google Scholar] [CrossRef]
- Jakobsson, L.; Franco, C.A.; Bentley, K.; Collins, R.T.; Ponsioen, B.; Aspalter, I.M.; Rosewell, I.; Busse, M.; Thurston, G.; Medvinsky, A.; et al. Endothelial Cells Dynamically Compete for the Tip Cell Position during Angiogenic Sprouting. Nat. Cell Biol. 2010, 12, 943–953. [Google Scholar] [CrossRef] [PubMed]
- Potente, M.; Gerhardt, H.; Carmeliet, P. Basic and Therapeutic Aspects of Angiogenesis. Cell 2011, 146, 873–887. [Google Scholar] [CrossRef]
- Deckers, M.M.L.; Van Bezooijen, R.L.; Van Der Horst, G.; Hoogendam, J.; Van Der Bent, C.; Papapoulos, S.E.; Löwik, C.W.G.M. Bone Morphogenetic Proteins Stimulate Angiogenesis through Osteoblast-Derived Vascular Endothelial Growth Factor A. Endocrinology 2002, 143, 1545–1553. [Google Scholar] [CrossRef] [PubMed]
- Rodan, S.B.; Wesolowski, G.; Thomas, K.A.; Yoon, K.; Rodan, G.A. Effects of Acidic and Basic Fibroblast Growth Factors on Osteoblastic Cells. Connect. Tissue Res. 1989, 20, 283–288. [Google Scholar] [CrossRef] [PubMed]
- Eckardt, H.; Bundgaard, K.G.; Christensen, K.S.; Lind, M.; Hansen, E.S.; Hvid, I. Effects of Locally Applied Vascular Endothelial Growth Factor (VEGF) and VEGF-inhibitor to the Rabbit Tibia during Distraction Osteogenesis. J. Orthop. Res. 2003, 21, 335–340. [Google Scholar] [CrossRef]
- Haubruck, P.; Kammerer, A.; Korff, S.; Apitz, P.; Xiao, K.; Büchler, A.; Biglari, B.; Zimmermann, G.; Daniel, V.; Schmidmaier, G.; et al. The Treatment of Nonunions with Application of BMP-7 Increases the Expression Pattern for Angiogenic and Inflammable Cytokines: A Matched Pair Analysis. J. Inflamm. Res. 2016, 9, 155–165. [Google Scholar] [CrossRef]
- Dimitriou, R.; Kanakaris, N.; Soucacos, P.N.; Giannoudis, P.V. Genetic Predisposition to Non-Union: Evidence Today. Injury 2013, 44, S50–S53. [Google Scholar] [CrossRef]
- Dimitriou, R.; Carr, I.M.; West, R.M.; Markham, A.F.; Giannoudis, P.V. Genetic Predisposition to Fracture Non-Union: A Case Control Study of a Preliminary Single Nucleotide Polymorphisms Analysis of the BMP Pathway. BMC Musculoskelet. Disord. 2011, 12, 44. [Google Scholar] [CrossRef]
- Guimarães, J.M.; Guimarães, I.C.d.V.; Duarte, M.E.L.; Vieira, T.; Vianna, V.F.; Fernandes, M.B.C.; Vieira, A.R.; Casado, P.L. Polymorphisms in BMP4 and FGFR1 Genes Are Associated with Fracture Non-Union. J. Orthop. Res. 2013, 31, 1971–1979. [Google Scholar] [CrossRef]
- Huang, W.; Zhang, K.; Zhu, Y.; Wang, Z.; Li, Z.; Zhang, J. Genetic Polymorphisms of NOS2 and Predisposition to Fracture Non-Union: A Case Control Study Based on Han Chinese Population. PLoS ONE 2018, 13, e0193673. [Google Scholar] [CrossRef]
- Sathyendra, V.; Donahue, H.J.; Vrana, K.E.; Berg, A.; Fryzel, D.; Gandhi, J.; Reid, J.S. Single Nucleotide Polymorphisms in Osteogenic Genes in Atrophic Delayed Fracture-Healing: A Preliminary Investigation. J. Bone Jt. Surg. Am. 2014, 96, 1242–1248. [Google Scholar] [CrossRef] [PubMed]
- Zeckey, C.; Hildebrand, F.; Glaubitz, L.-M.; Jürgens, S.; Ludwig, T.; Andruszkow, H.; Hüfner, T.; Krettek, C.; Stuhrmann, M. Are Polymorphisms of Molecules Involved in Bone Healing Correlated to Aseptic Femoral and Tibial Shaft Non-Unions? J. Orthop. Res. 2011, 29, 1724–1731. [Google Scholar] [CrossRef]
- Yan, T.; Li, J.; Zhou, X.; Yang, Z.; Zhang, Y.; Zhang, J.; Xu, N.; Huang, Y.; Yang, H. Genetic Determinants of Fracture Non-Union: A Systematic Review from the Literature. Gene 2020, 751, 144766. [Google Scholar] [CrossRef]
- Szczęsny, G.; Olszewski, W.L.; Zagozda, M.; Rutkowska, J.; Czapnik, Z.; Swoboda-Kopeć, E.; Górecki, A. Genetic Factors Responsible for Long Bone Fractures Non-Union. Arch. Orthop. Trauma Surg. 2011, 131, 275–281. [Google Scholar] [CrossRef]
- Ali, S.; Hussain, S.R.; Singh, A.; Kumar, V.; Walliullah, S.; Rizvi, N.; Yadav, M.; Ahmad, M.K.; Mahdi, A.A. Study of Cysteine-Rich Protein 61 Genetic Polymorphism in Predisposition to Fracture Nonunion: A Case Control. Genet. Res. Int. 2015, 2015, 754872. [Google Scholar] [CrossRef]
- McCoy, T.H.; Fragomen, A.T.; Hart, K.L.; Pellegrini, A.M.; Raskin, K.A.; Perlis, R.H. Genomewide Association Study of Fracture Nonunion Using Electronic Health Records. JBMR Plus 2019, 3, 23–28. [Google Scholar] [CrossRef] [PubMed]
- Sadat-Ali, M.; Al-Omar, H.K.; AlTabash, K.W.; AlOmran, A.K.; AlDakheel, D.A.; AlSayed, H.N. Genetic Influence of Fracture Nonunion (FNU): A Systematic Review. Pharmacogenom. Pers. Med. 2023, 16, 569–575. [Google Scholar] [CrossRef]
- Zimmermann, G.; Schmeckenbecher, K.H.K.; Boeuf, S.; Weiss, S.; Bock, R.; Moghaddam, A.; Richter, W. Differential Gene Expression Analysis in Fracture Callus of Patients with Regular and Failed Bone Healing. Injury 2012, 43, 347–356. [Google Scholar] [CrossRef] [PubMed]
- Tran, B.N.H.; Nguyen, N.D.; Nguyen, V.X.; Center, J.R.; Eisman, J.A.; Nguyen, T.V. Genetic Profiling and Individualized Prognosis of Fracture. J. Bone Miner. Res. 2011, 26, 414–419. [Google Scholar] [CrossRef]
- Xiao, D.; Fang, L.; Liu, Z.; He, Y.; Ying, J.; Qin, H.; Lu, A.; Shi, M.; Li, T.; Zhang, B.; et al. DNA Methylation–Mediated Rbpjk Suppression Protects against Fracture Nonunion Caused by Systemic Inflammation. J. Clin. Investig. 2024, 134. [Google Scholar] [CrossRef]
- Mills, L.A.; Aitken, S.A.; Simpson, A.H.R.W. The Risk of Non-Union per Fracture: Current Myths and Revised Figures from a Population of over 4 Million Adults. Acta Orthop. 2017, 88, 434–439. [Google Scholar] [CrossRef] [PubMed]
- Copuroglu, C.; Calori, G.M.; Giannoudis, P.V. Fracture Non-Union: Who Is at Risk? Injury 2013, 44, 1379–1382. [Google Scholar] [CrossRef] [PubMed]
- Andersen, T.; Christensen, F.B.; Laursen, M.; Høy, K.; Hansen, E.S.; Bünger, C. Smoking as a Predictor of Negative Outcome in Lumbar Spinal Fusion. Spine 2001, 26, 2623–2628. [Google Scholar] [CrossRef]
- Hernigou, J.; Schuind, F. Smoking as a Predictor of Negative Outcome in Diaphyseal Fracture Healing. Int. Orthop. 2013, 37, 883–887. [Google Scholar] [CrossRef]
- Elmali, N.; Ertem, K.; Ozen, S.; Inan, M.; Baysal, T.; Güner, G.; Bora, A. Fracture Healing and Bone Mass in Rats Fed on Liquid Diet Containing Ethanol. Alcohol. Clin. Exp. Res. 2002, 26, 509–513. [Google Scholar] [CrossRef] [PubMed]
- Zura, R.; Xiong, Z.; Einhorn, T.; Watson, J.T.; Ostrum, R.F.; Prayson, M.J.; Della Rocca, G.J.; Mehta, S.; McKinley, T.; Wang, Z.; et al. Epidemiology of Fracture Nonunion in 18 Human Bones. JAMA Surg. 2016, 151, e162775. [Google Scholar] [CrossRef]
- Schmal, H.; Brix, M.; Bue, M.; Ekman, A.; Ferreira, N.; Gottlieb, H.; Kold, S.; Taylor, A.; Tengberg, P.T.; Ban, I.; et al. Nonunion—Consensus from the 4th Annual Meeting of the Danish Orthopaedic Trauma Society. EFORT Open Rev. 2020, 5, 46. [Google Scholar] [CrossRef]
- Chaverri, D.; Vives, J. Toward the Clinical Use of Circulating Biomarkers Predictive of Bone Union. Biomark. Med. 2017, 11, 1125–1133. [Google Scholar] [CrossRef]
- Kempf, I.; Grosse, A.; Rigaut, P. The Treatment of Noninfected Pseudarthrosis of the Femur and Tibia with Locked Intramedullary Nailing. Clin. Orthop. Relat. Res. 1986, 212, 142. [Google Scholar] [CrossRef]
- Granchi, D.; Gómez-Barrena, E.; Rojewski, M.; Rosset, P.; Layrolle, P.; Spazzoli, B.; Donati, D.M.; Ciapetti, G. Changes of Bone Turnover Markers in Long Bone Nonunions Treated with a Regenerative Approach. Stem Cells Int. 2017, 2017, 3674045. [Google Scholar] [CrossRef]
- Kumar, M.; Shelke, D.; Shah, S. Prognostic Potential of Markers of Bone Turnover in Delayed-Healing Tibial Diaphyseal Fractures. Eur. J. Trauma Emerg. Surg. 2019, 45, 31–38. [Google Scholar] [CrossRef] [PubMed]
- Herrmann, M.; Klitscher, D.; Georg, T.; Frank, J.; Marzi, I.; Herrmann, W. Different Kinetics of Bone Markers in Normal and Delayed Fracture Healing of Long Bones. Clin. Chem. 2002, 48, 2263–2266. [Google Scholar]
- Marchelli, D.; Piodi, L.P.; Corradini, C.; Parravicini, L.; Verdoia, C.; Ulivieri, F.M. Increased Serum OPG in Atrophic Nonunion Shaft Fractures. J. Orthop. Traumatol. 2009, 10, 55–58. [Google Scholar] [CrossRef]
- Granchi, D.; Ciapetti, G.; Gómez-Barrena, E.; Rojewski, M.; Rosset, P.; Layrolle, P.; Spazzoli, B.; Donati, D.M.; Baldini, N. Biomarkers of Bone Healing Induced by a Regenerative Approach Based on Expanded Bone Marrow–Derived Mesenchymal Stromal Cells. Cytotherapy 2019, 21, 870–885. [Google Scholar] [CrossRef] [PubMed]
- Moghaddam, A.; Müller, U.; Roth, H.J.; Wentzensen, A.; Grützner, P.A.; Zimmermann, G. TRACP 5b and CTX as Osteological Markers of Delayed Fracture Healing. Injury 2011, 42, 758–764. [Google Scholar] [CrossRef]
- Burska, A.N.; Giannoudis, P.V.; Tan, B.H.; Ilas, D.; Jones, E.; Ponchel, F. Dynamics of Early Signalling Events during Fracture Healing and Potential Serum Biomarkers of Fracture Non-Union in Humans. J. Clin. Med. 2020, 9, 492. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Liu, Y.; Yu, Y.; Zhao, Y.; Zhang, D.; Yu, A. Identification of Up-Regulated ANXA3 Resulting in Fracture Non-Union in Patients With T2DM. Front. Endocrinol. 2022, 13, 890941. [Google Scholar] [CrossRef]
- Hankenson, K.D.; Zimmerman, G.; Marcucio, R. Biological Perspectives of Delayed Fracture Healing. Injury 2014, 45, S8–S15. [Google Scholar] [CrossRef]
- Zimmermann, G.; Henle, P.; Küsswetter, M.; Moghaddam, A.; Wentzensen, A.; Richter, W.; Weiss, S. TGF-Beta1 as a Marker of Delayed Fracture Healing. Bone 2005, 36, 779–785. [Google Scholar] [CrossRef]
- Xu, J.; Liu, J.; Gan, Y.; Dai, K.; Zhao, J.; Huang, M.; Huang, Y.; Zhuang, Y.; Zhang, X. High-Dose TGF-Β1 Impairs Mesenchymal Stem Cell-Mediated Bone Regeneration via Bmp2 Inhibition. J. Bone Miner. Res. 2020, 35, 167–180. [Google Scholar] [CrossRef]
- Granchi, D.; Devescovi, V.; Pratelli, L.; Verri, E.; Magnani, M.; Donzelli, O.; Baldini, N. Serum Levels of Fibroblast Growth Factor 2 in Children with Orthopedic Diseases: Potential Role in Predicting Bone Healing. J. Orthop. Res. 2013, 31, 249–256. [Google Scholar] [CrossRef]
- Goebel, S.; Lienau, J.; Rammoser, U.; Seefried, L.; Wintgens, K.F.; Seufert, J.; Duda, G.; Jakob, F.; Ebert, R. FGF23 Is a Putative Marker for Bone Healing and Regeneration. J. Orthop. Res. 2009, 27, 1141–1146. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.-J.; Yang, K.D.; Ko, J.-Y.; Huang, C.-C.; Huang, H.-Y.; Wang, F.-S. The Effects of Shockwave on Bone Healing and Systemic Concentrations of Nitric Oxide (NO), TGF-Beta1, VEGF and BMP-2 in Long Bone Non-Unions. Nitric Oxide 2009, 20, 298–303. [Google Scholar] [CrossRef]
- Peng, H.; Lu, S.-L.; Bai, Y.; Fang, X.; Huang, H.; Zhuang, X.-Q. MiR-133a Inhibits Fracture Healing via Targeting RUNX2/BMP2. Eur. Rev. Med. Pharmacol. Sci. 2018, 22, 2519–2526. [Google Scholar] [CrossRef] [PubMed]
- Jian, G.; Xie, D.; Kuang, X.; Zheng, P.; Liu, H.; Dong, X. Identification and Validation of miR-29b-3p and LIN7A as Important Diagnostic Markers for Bone Non-Union by WGCNA. J. Cell. Mol. Med. 2024, 28, e18522. [Google Scholar] [CrossRef]
- Wei, J.; Chen, H.; Fu, Y.; Zhang, B.; Zhang, L.; Tao, S.; Lin, F. Experimental Study of Expression Profile and Specific Role of Human microRNAs in Regulating Atrophic Bone Nonunion. Medicine 2020, 99, e21653. [Google Scholar] [CrossRef]
- Breulmann, F.L.; Hatt, L.P.; Schmitz, B.; Wehrle, E.; Richards, R.G.; Della Bella, E.; Stoddart, M.J. Prognostic and Therapeutic Potential of microRNAs for Fracture Healing Processes and Non-Union Fractures: A Systematic Review. Clin. Transl. Med. 2023, 13, e1161. [Google Scholar] [CrossRef] [PubMed]
- Waki, T.; Lee, S.Y.; Niikura, T.; Iwakura, T.; Dogaki, Y.; Okumachi, E.; Kuroda, R.; Kurosaka, M. Profiling microRNA Expression in Fracture Nonunions: Potential Role of microRNAs in Nonunion Formation Studied in a Rat Model. Bone Jt. J. 2015, 97-B, 1144–1151. [Google Scholar] [CrossRef]
- Gautschi, O.P.; Frey, S.P.; Zellweger, R. Bone Morphogenetic Proteins in Clinical Applications. ANZ J. Surg. 2007, 77, 626–631. [Google Scholar] [CrossRef]
- Olson, S.; Hahn, D. Surgical Treatment of Non-Unions: A Case for Internal Fixation. Injury 2006, 37, 681–690. [Google Scholar] [CrossRef]
- Pederson, W.C.; Person, D.W. Long Bone Reconstruction with Vascularized Bone Grafts. Orthop. Clin. N. Am. 2007, 38, 23–35. [Google Scholar] [CrossRef] [PubMed]
- Sen, M.K.; Miclau, T. Autologous Iliac Crest Bone Graft: Should It Still Be the Gold Standard for Treating Nonunions? Injury 2007, 38, S75–S80. [Google Scholar] [CrossRef] [PubMed]
- Mayo, K.A.; Benirschke, S.K. Treatment of Tibial Malunions and Nonunions with Reamed Intramedullary Nails. Orthop. Clin. N. Am. 1990, 21, 715–724. [Google Scholar] [CrossRef]
- Jauregui, J.J.; Bor, N.; Thakral, R.; Standard, S.C.; Paley, D.; Herzenberg, J.E. Life- and Limb-Threatening Infections Following the Use of an External Fixator. Bone Jt. J. 2015, 97-B, 1296–1300. [Google Scholar] [CrossRef]
- Cox, G.; Jones, E.; McGonagle, D.; Giannoudis, P.V. Reamer-Irrigator-Aspirator Indications and Clinical Results: A Systematic Review. Int. Orthop. (SICOT) 2011, 35, 951–956. [Google Scholar] [CrossRef]
- Tsang, S.T.J.; Mills, L.A.; Frantzias, J.; Baren, J.P.; Keating, J.F.; Simpson, A.H.R.W. Exchange Nailing for Nonunion of Diaphyseal Fractures of the Tibia: Our Results and an Analysis of the Risk Factors for Failure. Bone Jt. J. 2016, 98-B, 534–541. [Google Scholar] [CrossRef] [PubMed]
- Busse, J.W.; Bhandari, M.; Kulkarni, A.V.; Tunks, E. The Effect of Low-Intensity Pulsed Ultrasound Therapy on Time to Fracture Healing: A Meta-Analysis. CMAJ 2002, 166, 437. [Google Scholar] [PubMed]
- Griffin, M.; Bayat, A. Electrical Stimulation in Bone Healing: Critical Analysis by Evaluating Levels of Evidence. Eplasty 2011, 11, e34. [Google Scholar]
- Schofer, M.D.; Block, J.E.; Aigner, J.; Schmelz, A. Improved Healing Response in Delayed Unions of the Tibia with Low-Intensity Pulsed Ultrasound: Results of a Randomized Sham-Controlled Trial. BMC Musculoskelet. Disord. 2010, 11, 229. [Google Scholar] [CrossRef]
- Evans, C.H. Gene Therapy for Bone Healing. Expert. Rev. Mol. Med. 2010, 12, e18. [Google Scholar] [CrossRef] [PubMed]
- Dimitriou, R.; Jones, E.; McGonagle, D.; Giannoudis, P.V. Bone Regeneration: Current Concepts and Future Directions. BMC Med. 2011, 9, 66. [Google Scholar] [CrossRef] [PubMed]
- Li, B.C.; Zhang, J.J.; Xu, C.; Zhang, L.C.; Kang, J.Y.; Zhao, H. Treatment of Rabbit Femoral Defect by Firearm With BMP-4 Gene Combined With TGF-Β1. J. Trauma Inj. Infect. Crit. Care 2009, 66, 450–456. [Google Scholar] [CrossRef]
- Chan, A.; Tsourkas, A. Intracellular Protein Delivery: Approaches, Challenges, and Clinical Applications. BME Front. 2024, 5, 0035. [Google Scholar] [CrossRef]
- Young, L.S.; Searle, P.F.; Onion, D.; Mautner, V. Viral Gene Therapy Strategies: From Basic Science to Clinical Application. J. Pathol. 2006, 208, 299–318. [Google Scholar] [CrossRef]
- Kurian, K.M. Retroviral Vectors. Mol. Pathol. 2000, 53, 173–176. [Google Scholar] [CrossRef] [PubMed]
- Sarkis, C.; Philippe, S.; Mallet, J.; Serguera, C. Non-Integrating Lentiviral Vectors. Curr. Gene Ther. 2008, 8, 430–437. [Google Scholar] [CrossRef]
- Douglas, J.T. Adenoviral Vectors for Gene Therapy. Mol. Biotechnol. 2007, 36, 71–80. [Google Scholar] [CrossRef] [PubMed]
- Glover, D.J.; Lipps, H.J.; Jans, D.A. Towards Safe, Non-Viral Therapeutic Gene Expression in Humans. Nat. Rev. Genet. 2005, 6, 299–310. [Google Scholar] [CrossRef]
- Evans, C.; Liu, F.-J.; Glatt, V.; Hoyland, J.; Kirker-Head, C.; Walsh, A.; Betz, O.; Wells, J.; Betz, V.; Porter, R.M.; et al. Use of Genetically Modified Muscle and Fat Grafts to Repair Defects in Bone and Cartilage. Eur. Cells Mater. 2009, 18, 96–111. [Google Scholar] [CrossRef]
- Pountos, I.; Georgouli, T.; Kontakis, G.; Giannoudis, P.V. Efficacy of Minimally Invasive Techniques for Enhancement of Fracture Healing: Evidence Today. Int. Orthop. (SICOT) 2010, 34, 3–12. [Google Scholar] [CrossRef]
- Dawson, J.I.; Oreffo, R.O.C. Bridging the Regeneration Gap: Stem Cells, Biomaterials and Clinical Translation in Bone Tissue Engineering. Arch. Biochem. Biophys. 2008, 473, 124–131. [Google Scholar] [CrossRef] [PubMed]
- Dittmer, J.; Leyh, B. Paracrine Effects of Stem Cells in Wound Healing and Cancer Progression. Int. J. Oncol. 2014, 44, 1789–1798. [Google Scholar] [CrossRef] [PubMed]
- Brown, M.G.; Brady, D.J.; Healy, K.M.; Henry, K.A.; Ogunsola, A.S.; Ma, X. Stem Cells and Acellular Preparations in Bone Regeneration/Fracture Healing: Current Therapies and Future Directions. Cells 2024, 13, 1045. [Google Scholar] [CrossRef]
- Jiang, W.; Xu, J. Immune Modulation by Mesenchymal Stem Cells. Cell Prolif. 2020, 53, e12712. [Google Scholar] [CrossRef]
- Ismail, H.D.; Phedy, P.; Kholinne, E.; Djaja, Y.P.; Kusnadi, Y.; Merlina, M.; Yulisa, N.D. Mesenchymal Stem Cell Implantation in Atrophic Nonunion of the Long Bones: A Translational Study. Bone Jt. Res. 2016, 5, 287–293. [Google Scholar] [CrossRef] [PubMed]
- Wu, Z.; Su, Y.; Li, J.; Liu, X.; Liu, Y.; Zhao, L.; Li, L.; Zhang, L. Induced Pluripotent Stem Cell-Derived Mesenchymal Stem Cells: Whether They Can Become New Stars of Cell Therapy. Stem Cell Res. Ther. 2024, 15, 367. [Google Scholar] [CrossRef]
- Zhao, Z.; Wang, Z.; Ge, C.; Krebsbach, P.; Franceschi, R.T. Healing Cranial Defects with AdRunx2-Transduced Marrow Stromal Cells. J. Dent. Res. 2007, 86, 1207–1211. [Google Scholar] [CrossRef]
- Dimitriou, R.; Tsiridis, E.; Giannoudis, P.V. Current Concepts of Molecular Aspects of Bone Healing. Injury 2005, 36, 1392–1404. [Google Scholar] [CrossRef]
- Al-Hamed, F.S.; Abu-Nada, L.; Rodan, R.; Sarrigiannidis, S.; Ramirez-Garcialuna, J.L.; Moussa, H.; Elkashty, O.; Gao, Q.; Basiri, T.; Baca, L.; et al. Differences in Platelet-rich Plasma Composition Influence Bone Healing. J. Clin. Periodontol. 2021, 48, 1613–1623. [Google Scholar] [CrossRef]
- Chen, F.; Ma, Z.; Dong, G.; Wu, Z. Composite Glycidyl Methacrylated Dextran (Dex-GMA)/Gelatin Nanoparticles for Localized Protein Delivery. Acta Pharmacol. Sin. 2009, 30, 485–493. [Google Scholar] [CrossRef]
- Dimitriou, R.; Giannoudis, P.V. The Genetic Profile of Bone Repair. Clin. Cases Miner. Bone Metab. 2013, 10, 19–21. [Google Scholar] [CrossRef] [PubMed]
- Reumann, M.K.; Nair, T.; Strachna, O.; Boskey, A.L.; Mayer-Kuckuk, P. Production of VEGF Receptor 1 and 2 mRNA and Protein during Endochondral Bone Repair Is Differential and Healing Phase Specific. J. Appl. Physiol. 2010, 109, 1930–1938. [Google Scholar] [CrossRef]
- Trenkmann, M. GWAS Cracks Fracture Risk. Nat. Rev. Rheumatol. 2019, 15, 126. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Du, Y.; Zhang, T.; Wang, H.; Hou, Z.; Zhang, Y.; Cui, W.; Chen, W. “Genetic Scissors” CRISPR/Cas9 Genome Editing Cutting-Edge Biocarrier Technology for Bone and Cartilage Repair. Bioact. Mater. 2023, 22, 254–273. [Google Scholar] [CrossRef] [PubMed]
- Papaioannou, T.G.; Manolesou, D.; Dimakakos, E.; Tsoucalas, G.; Vavuranakis, M.; Tousoulis, D. 3D Bioprinting Methods and Techniques: Applications on Artificial Blood Vessel Fabrication. Acta Cardiol. Sin. 2019, 35, 284. [Google Scholar] [CrossRef]
- Einhorn, T.A.; Gerstenfeld, L.C. Fracture Healing: Mechanisms and Interventions. Nat. Rev. Rheumatol. 2015, 11, 45–54. [Google Scholar] [CrossRef]
- Oryan, A.; Alidadi, S.; Moshiri, A.; Maffulli, N. Bone Regenerative Medicine: Classic Options, Novel Strategies, and Future Directions. J. Orthop. Surg. Res. 2014, 9, 18. [Google Scholar] [CrossRef]
- Qasim, M.; Chae, D.S.; Lee, N.Y. Advancements and Frontiers in Nano-Based 3D and 4D Scaffolds for Bone and Cartilage Tissue Engineering. Int. J. Nanomed. 2019, 14, 4333–4351. [Google Scholar] [CrossRef]
- Tafat, W.; Budka, M.; McDonald, D.; Wainwright, T.W. Artificial Intelligence in Orthopaedic Surgery: A Comprehensive Review of Current Innovations and Future Directions. Comput. Struct. Biotechnol. Rep. 2024, 1, 100006. [Google Scholar] [CrossRef]
- Liu, H.; Chen, H.; Han, Q.; Sun, B.; Liu, Y.; Zhang, A.; Fan, D.; Xia, P.; Wang, J. Recent Advancement in Vascularized Tissue-Engineered Bone Based on Materials Design and Modification. Mater. Today Bio 2023, 23, 100858. [Google Scholar] [CrossRef]
- Li, Y.; Liu, Y.; Li, R.; Bai, H.; Zhu, Z.; Zhu, L.; Zhu, C.; Che, Z.; Liu, H.; Wang, J.; et al. Collagen-Based Biomaterials for Bone Tissue Engineering. Mater. Des. 2021, 210, 110049. [Google Scholar] [CrossRef]
- Yu, H.; Wang, Y.; Wang, D.; Yi, Y.; Liu, Z.; Wu, M.; Wu, Y.; Zhang, Q. Landscape of the Epigenetic Regulation in Wound Healing. Front. Physiol. 2022, 13, 949498. [Google Scholar] [CrossRef]
- Ball, J.R.; Shelby, T.; Hernandez, F.; Mayfield, C.K.; Lieberman, J.R. Delivery of Growth Factors to Enhance Bone Repair. Bioengineering 2023, 10, 1252. [Google Scholar] [CrossRef] [PubMed]
- Wang, F.; Zheng, L.; Theopold, J.; Schleifenbaum, S.; Heyde, C.-E.; Osterhoff, G. Methods for Bone Quality Assessment in Human Bone Tissue: A Systematic Review. J. Orthop. Surg. Res. 2022, 17, 174. [Google Scholar] [CrossRef]
- Dzobo, K.; Thomford, N.E.; Senthebane, D.A.; Shipanga, H.; Rowe, A.; Dandara, C.; Pillay, M.; Motaung, K.S.C.M. Advances in Regenerative Medicine and Tissue Engineering: Innovation and Transformation of Medicine. Stem Cells Int. 2018, 2018, 2495848. [Google Scholar] [CrossRef]
- Mousaei Ghasroldasht, M.; Seok, J.; Park, H.-S.; Liakath Ali, F.B.; Al-Hendy, A. Stem Cell Therapy: From Idea to Clinical Practice. Int. J. Mol. Sci. 2022, 23, 2850. [Google Scholar] [CrossRef] [PubMed]
- Bowles-Welch, A.C.; Jimenez, A.C.; Stevens, H.Y.; Frey Rubio, D.A.; Kippner, L.E.; Yeago, C.; Roy, K. Mesenchymal Stromal Cells for Bone Trauma, Defects, and Disease: Considerations for Manufacturing, Clinical Translation, and Effective Treatments. Bone Rep. 2023, 18, 101656. [Google Scholar] [CrossRef]
- Smolinska, V.; Csobonyeiova, M.; Zamborsky, R.; Danisovic, L. Stem Cells and Their Derivatives: An Implication for the Regeneration of Nonunion Fractures. Cell Transplant. 2023, 32, 09636897231183530. [Google Scholar] [CrossRef]
- Veith, A.P.; Henderson, K.; Spencer, A.; Sligar, A.D.; Baker, A.B. Therapeutic Strategies for Enhancing Angiogenesis in Wound Healing. Adv. Drug Deliv. Rev. 2019, 146, 97–125. [Google Scholar] [CrossRef]
- Zhou, J.; Ning, E.; Lu, L.; Zhang, H.; Yang, X.; Hao, Y. Effectiveness of Low-Intensity Pulsed Ultrasound on Osteoarthritis: Molecular Mechanism and Tissue Engineering. Front. Med. 2024, 11, 1292473. [Google Scholar] [CrossRef]
Biological Factor | Role in Non-Union (Pseudoarthrosis) | References |
---|---|---|
Vascularization | Facilitates oxygen, nutrient, and signaling molecule delivery for osteogenesis. Impaired angiogenesis, often due to VEGF deficiency, results in poor vascular supply and delayed healing. | [25] |
Mesenchymal stem cells (MSCs) | Essential for osteoblast differentiation and bone repair. MSC dysfunction or senescence reduces regenerative capacity and creates an inflammatory environment, impairing healing. | [34,82] |
Bone morphogenetic proteins (BMPs) | Promote MSC differentiation into osteoblasts. Reduced BMP levels or increased inhibitors (e.g., Noggin, Gremlin) disrupt bone repair and contribute to non-union. | [17,46,50] |
Insulin-like growth factor-1 (IGF-1) | Enhances osteoblast proliferation, bone matrix synthesis, and MSC differentiation, promoting bone regeneration. Moreover, IGF-1 upregulates osteocalcin and osteopontin while reducing osteoclast activity, improving fracture healing and reducing non-union risk. | [83,84] |
Transforming growth factor-beta (TGF-β) | Regulates MSC recruitment and differentiation. Overactive TGF-β signaling might lead to fibrosis, impairing osteogenesis and contributing to fracture non-union. | [43,46,85] |
Blood-based biomarkers | Biomarkers such as DKK1, SOST, and PlGF-1 indicate imbalances in bone formation and resorption. Elevated levels are associated with increased non-union risk. | [21] |
Matrix metalloproteinases (MMPs) | Degrade extracellular matrix during healing. Overactive MMPs (e.g., MMP-7, MMP-12) disrupt BMP signaling and impair bone regeneration, leading to pseudoarthrosis. | [58] |
MicroRNAs (miRNAs) | Regulate gene expression, essential for osteogenesis. Aberrant miRNA activity (e.g., hsa-miR-149, hsa-miR-221) suppresses bone-forming genes, hindering fracture repair. | [86] |
Macrophages | M1 macrophages drive inflammation; M2 macrophages support repair and vascularization. Dysregulated macrophage activity delays healing and fosters non-union. | [87] |
Osteoprogenitor cells | Contribute to bone formation. Decreased numbers or impaired differentiation due to aging or trauma correlate with delayed healing and non-union development. | [88] |
Osteoblasts | Responsible for bone formation. Impaired osteoblast maturation, marked by decreased RUNX2 and OCN expression, delays fracture healing in pseudoarthrosis. | [76] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kotsifaki, A.; Kalouda, G.; Maroulaki, S.; Foukas, A.; Armakolas, A. The Genetic and Biological Basis of Pseudoarthrosis in Fractures: Current Understanding and Future Directions. Diseases 2025, 13, 75. https://doi.org/10.3390/diseases13030075
Kotsifaki A, Kalouda G, Maroulaki S, Foukas A, Armakolas A. The Genetic and Biological Basis of Pseudoarthrosis in Fractures: Current Understanding and Future Directions. Diseases. 2025; 13(3):75. https://doi.org/10.3390/diseases13030075
Chicago/Turabian StyleKotsifaki, Amalia, Georgia Kalouda, Sousanna Maroulaki, Athanasios Foukas, and Athanasios Armakolas. 2025. "The Genetic and Biological Basis of Pseudoarthrosis in Fractures: Current Understanding and Future Directions" Diseases 13, no. 3: 75. https://doi.org/10.3390/diseases13030075
APA StyleKotsifaki, A., Kalouda, G., Maroulaki, S., Foukas, A., & Armakolas, A. (2025). The Genetic and Biological Basis of Pseudoarthrosis in Fractures: Current Understanding and Future Directions. Diseases, 13(3), 75. https://doi.org/10.3390/diseases13030075