An Analysis of Primary Hyperparathyroidism in Association with Depression or Anxiety
Abstract
:1. Introduction
2. Methods
3. Results
3.1. Analysis of Depression in Patients Diagnosed with Primary Hyperparathyroidism
3.1.1. Depression: Prevalence, Severity, and Influencing Factors
3.1.2. The Use of Antidepressant Medication in Subjects with Primary Hyperparathyroidism
3.1.3. The Relationship Between Depression and the Endocrine Assays Amid Primary Hyperparathyroidism
3.1.4. The Impact of the Parathyroidectomy on Depression
3.1.5. The Administration of Cinacalcet and Its Impact on Depression
3.1.6. Depression in Relationship with the Conservative Versus Surgical Management of Parathyroid Tumours
3.2. Analysis of Anxiety in Subjects Confirmed with Primary Hyperparathyroidism
3.2.1. The Prevalence and Severity of Anxiety
3.2.2. Analysis of the Anxiolytic Medication
3.2.3. Endocrine Assays and Anxiety
3.2.4. The Potential Parathyroidectomy Impact on Anxiety
3.2.5. Cinacalcet Use Before Parathyroidectomy and Anxiety Impact
3.2.6. Conservative Management Versus Parathyroidectomy in Patients with PHPT and the Consequences on Anxiety
4. Discussion
4.1. Tools and Methods Used for the Assessment of Depression and Anxiety
4.2. Common Pathogenic Mechanisms Underlying PHPT and Depression/Anxiety
4.3. Confounding Factors in Assessing Anxiety/Depression in Patients with Parathyroid Tumours
4.3.1. Age and Gender
4.3.2. Comorbidities
4.3.3. Different PHPT Disease Forms: From Normocalcemic to Hypercalcemic Type
4.4. Current Limits and Further Perspectives
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
BDI | Beck Depression Inventory |
DASS | Depression Anxiety Stress Scales |
EuroQOL-5D-3L | European Quality of Life 5 Dimensions 3 Level Version |
GAD | Generalized Anxiety Disorder |
HADS | Hospital Anxiety and Depression Scales |
HAM-D | Hamilton Depression Rating Scale |
HR | hazard ratio |
ICD-10 | The International Classification of Diseases-Tenth Revision Clinical Modification |
MAO | monoamine oxidases |
n | number of studies |
N | number of patients |
PHPT | primary hyperparathyroidism |
PTH | parathyroid hormone |
PHQ-9 | Patient Health Questionnaire-9 |
PTHR | parathyroid hormone receptor |
RR | relative risk |
ROR | reporting odds ratio |
OR | odds ratio |
SSRI | selective serotonin reuptake inhibitors |
SNRI | selective serotonin and norepinephrine inhibitors |
SCL90R | Symptom Check List 90-revised |
SE | standard error |
Appendix A
Reference | Prevalence/Severity of Depression |
---|---|
[27] | N1 vs. N2—depression: 9% vs. 10.3%, p < 0.0001 odds of having PTH checked in those with depression: 0.84 (0.74, 0.96), p = 0.0081 |
[28] | Mean (SE) depression score: preoperatively: 6.89 (0.95) |
[29] | N1 at diagnosis: 42.9% with minimal affectation, 24.5% with mild depression, 20.4% with moderate depression, 12.2% with severe depression Depression score: N1 vs. N2 at diagnosis: 16.80 ± 9.98 vs. 6.10 ± 5.45, p < 0.001 |
[30] | Pre-existing depression overall vs. N1 vs. N2: 10.5% vs. 11.4% vs. 9.7%, p = 0.265 Newly-onset depression overall vs. N1 vs. N2: 10.7% vs. 12.2% vs. 9.3%, p = 0.046 Pre-existing suicidal ideation overall vs. N1 vs. N2: 0.2% vs. 0.2% vs. 0.2%, p = 1 Newly-onset suicidal ideation overall vs. N1 vs. N2: 0.4% vs. 0.6% vs. 0.1%, p = 0.13 |
[31] | N1: 49%, minimal affectation, 23% mild depression, 17% moderate depression, 11% severe depression median (IQR) depression score N1 vs. N2: 14 (15) vs. 5 (7), p < 0.001 Mean ± SD depression scores and socio-personal variables in N1: age (<40 y vs. 40–60 y vs. >60 y): 4.18 ± 7.36 vs. 18.24 ± 10.28 vs. 15.38 ± 9.57, p < 0.001 gender: p = 0.218 education (no education vs. primary education vs. secondary education vs. higher education): 19.75 ± 6.88 vs. 17.43 ± 9.93 vs. 14.92 ± 14 vs. 9.29 ± 8.18, p = 0.014 work: p = 0.359 marital status (single vs. married vs. living with a partner vs. separated vs. widowed): 7.15 ± 9.15 vs. 14.71 ± 8.92 vs. 19.2 ± 15.15 vs. 21.5 ± 15.28 vs. 18.75 ± 10.02, p = 0.034 children (yes vs. no): 16.59 ± 9.78 vs. 11.23 ± 11.39, p = 0.019 Mean ± SD depression scores and clinical variables in N1: clinical symptoms (p = 0.438); hypertension (p = 0.323); fatigue (p = 0.067); gastrointestinal symptoms (p = 0.863); psychological symptoms (22.85 ± 9.73 vs. 12.52 ± 9.84, p = 0.001); renal crisis (p = 0.713); nephrolithiasis (p = 0.215); BMD (p = 0.644); bone pain (p = 0.54) |
[32] | Prevalence of depression (preoperatively): BDI: normal = 34.3%, mild depression = 34.3%, mild to moderate = 8.1%, moderate to severe = 21.2%, severe = 2% DASS depression: normal = 80.2%, mild = 7.9%, moderate = 3%, severe = 7.9%, extreme severe = 1% |
[33] | N1: time-to-diagnosis >1 y vs. ≤1 y after hypercalcemia: during 1 y from hypercalcemia: Prevalence of major depressive disorder: 11.9% vs. 16.1% OR (95% CI) = 0.7 (0.62–0.8); p < 0.001 during 1–3 y: Prevalence of major depressive disorder:17.3% vs. 15.1% OR (95% CI) = 1.18 (1.05–1.34); p = 0.008 time-to-surgery >1 y vs. ≤1 y after diagnosis: during 1 y from hypercalcemia: Prevalence of major depressive disorder:13.8% vs. 20.6% OR (95% CI) = 0.62 (0.47–0.81); p < 0.001 during 1–3 y: Prevalence of major depressive disorder: 19.9% vs. 18.2% OR (95% CI) = 1.12 (0.87–1.45); p = 0.39 N2 vs. matched controls: Prevalence of major depressive disorder: 16% vs. 11.2% OR (95% CI) = 1.51 (1.43–1.6); p < 0.001 N3 vs. matched controls: Prevalence of major depressive disorder:15.4% vs. 10% OR (95% CI) = 1.63 (1.55–1.72); p < 0.001 |
[34] | Median (IQR) depression score in N (baseline): 4 (1–6) Median (IQR) depression score in N1 (baseline): 4 (1–8) Median (IQR) depression and anxiety score in N (baseline): 8 (6–16) Median (IQR) depression and anxiety score in N1 (baseline): 8 (5–15) |
[38] | N1 vs. N2 preoperative: 6.7 ± 6.6 vs. 4.4 ± 4.9, p < 0.01 |
[40] | Depression score (median): 5 (0.46) |
[41] | N1 vs. N2 HAM-D: Overall (median): 9 vs. 2, p < 0.001; (prevalence): 60.4% vs. 12%, p < 0.001 Women (median): 9 vs. 2, p < 0.001; (prevalence): 62.35% vs. 9.5%, p < 0.001 Men (median): 2.5 vs. 4, p > 0.05; (prevalence): 31.25% vs. 25%, p > 0.05 BDI-II: Overall (median): 10 vs. 5.5, p < 0.01; (prevalence): 36.36% vs. 18%, p < 0.05 Women (median): 10 vs. 5, p < 0.01; (prevalence): 38.8% vs. 16.6%, p < 0.05 Men (median): 2.5 vs. 4, p > 0.05; (prevalence): 18.75% vs. 25%, p > 0.05 HADS depression: Overall (median): 5 vs. 2, p < 0.01; (prevalence): 20.79% vs. 12%, p > 0.05 Women (median): 5 vs. 2.5, p < 0.01; (prevalence): 22.35% vs. 11.9%, p > 0.05 Men (median): 4 vs. 2, p > 0.05; (prevalence): 12.5% vs. 12.5%, p > 0.05 |
[42] | Prevalence of depression: overall = 27.2%, females = 32.6%, males = 3%, p = 0.016 |
Reference | Main Findings |
---|---|
[29] | 20%: antidepressant use |
[34] | N1 vs. N2 OR (95% CI) for SSRI use: 15.9% vs. 12.1%, 1.38 (1.3–1.47) SNRI use: 8.6% vs. 6.5% 1.36 (1.26–1.48) Tricyclic antidepressants use: 4.5% vs. 3.3%, 1.4 (1.26–1.57) |
Reference | Main Findings |
---|---|
[30] | Hazard ratio of depression: at Ca > 11.5 mg/dL: 1.32 (0.97–1.81) Hazard ratio of suicidal ideation: at Ca > 11.5 mg/dL: 6.69 (1.2–37.35) |
[31] | mean ± SD depression scores and clinical variables in N1: pre-surgery blood calcium level <11 mg/dL vs. ≥11 mg/dL: 15.5 ± 11.38 vs. 14.5 ± 19, p = 0.399 |
[34] | N1 vs. N2, OR (95% CI) SSRI: Ionized calcium (mmol/L): <1.38: 18.3% vs. 12.2%, 1.61 (1.39–1.99) 1.38–1.43: 17.2% vs. 12.2%, 1.52 (1.33–1.87) 1.44–1.49: 16.1% vs. 12.5%, 1.36 (1.19–1.69) ≥1.5: 12.6% vs. 11.4%, 1.11 (1.02–1.51) p = 0.002 SNRI: Ionized calcium (mmol/L): <1.38: 11.1% vs. 6.6%, 1.81 (1.53–2.14) 1.38–1.43: 9.1% vs. 1.45%, (1.22–1.72) 1.44–1.49: 7.9% vs. 6.8%, 1.18 (0.98–1.41) ≥1.5: 7.1 vs. 6.1% (0.98–1.43) p = 0.0013 Tricyclic antidepressants: Ionized calcium (mmol/L): <1.38: 5.4% vs. 3.2%, 1.71 (1.35–2.16) 1.38–1.43: 4.7% vs. 3.4%, 1.46 (1.15–1.84) 1.44–1.49: 4.1% vs. 3.5%, 1.19 (0.93–1.52) ≥1.5: 3.7% vs. 3%, 1.29 (0.99–1.67) p = 0.1771 |
[38] | No statistically significant correlation between calcium and PTH preoperative and postoperative levels and depression |
[40] | Correlations: Unadjusted: PTH: r = −0.166, p = 0.327 Ca: r = 0.027, p = 0.874 Cortisol at 8:00: r = 0.123, p = 0.467 Osteocalcin: r = −0.345, p = 0.037 Adjusted for multiple variables: Cortisol at 8:00: r = 0.084, p = 0.636 Osteocalcin: r = −0.337, p = 0.086 |
[41] | No statistically significant correlation between severity of depression and Ca, PTH |
Reference | Main Findings Regard Depression Outcome Following Parathyroid Surgery |
---|---|
[28] | Mean (SE) depression score: preoperatively: 6.89 (0.95) 1 week postoperatively: 2.46 (0.94) 3 mo postoperatively: 2.72 (0.96) p < 0.001 p for trend = 0.13 |
[29] | N1 at diagnosis: 24.5% with mild depression, 20.4% with moderate depression, 12.2% with severe depression N1 at 3 mo after surgery: 22.4% with mild depression, 16.3% with moderate depression, 8.2% with severe depression N1 at 1 y after surgery: 12.5% with mild depression, 8.3% with moderate depression, 6.3% with severe depression Depression score: N1 vs. N2: at diagnosis: 16.80 ± 9.98 vs. 6.10 ± 5.45, p < 0.001 3 months after surgery: 13.08 ± 10.76 vs. 6.10 ± 5.45, p < 0.001 1 y after surgery: 10.50 ± 10.79 vs. 6.10 ± 5.45, p < 0.001 N1 at diagnosis vs. 3 mo after surgery: 16.80 ± 9.98 vs. 13.08 ± 10.76, p = 0.001 N1 at diagnosis vs. 1 y after surgery: 16.65 ± 10.03 vs. 10.50 ± 10.79, p < 0.001 |
[31] | 1 mo postoperatively: BDI: normal = 69.1%, mild depression = 18.8%, mild to moderate = 9.3%, moderate to severe = 2.1%, severe = 0% DASS depression: normal = 89.7%, mild = 5.2%, moderate = 4.1%, severe = 1%, extreme severe = 0% 6 mo postoperatively: BDI: normal = 87.2%, mild depression = 11.7%, mild to moderate = 1.1%, moderate to severe = 0%, severe = 0% DASS depression: normal = 95.7%, mild = 3.2%, moderate = 1.1%, severe = 0%, extreme severe = 0% Changes in depression scores: BDI: preoperatively: 13.5 1 mo postoperatively: 7.8 6 mo postoperatively: 5.4 difference: −60% preoperatively vs. 1 mo postoperatively p = 0.001 preoperatively vs. 6 mo postoperatively p = 0.001 1 mo postoperatively vs. 6 mo postoperatively p = 0.001 DASS depression: preoperatively: 6.3 1 mo postoperatively: 3.7 6 mo postoperatively: 2.7 difference: −56.2% preoperatively vs. 1 mo postoperatively p = 0.001 preoperatively vs. 6 mo postoperatively p = 0.001 1 mo postoperatively vs. 6 mo postoperatively p = 0.002 SCL90R: preoperatively: 17 1 mo postoperatively: 8.9 6 mo postoperatively: 6.3 difference: −62.7% preoperatively vs. 1 mo postoperatively p = 0.001 preoperatively vs. 6 mo postoperatively p = 0.001 1 mo postoperatively vs. 6 mo postoperatively p = 0.001 |
[34] | RR (CI) of SSRI use following PTX: Overall: 0–6 mo: 1.25 (1.16–1.34) 7–12 mo: 1.28 (1.2–1.37) 13–18 mo: 1.27 (1.19–1.36) 19–24 mo: 1.25 (1.17–1.34) 25–30 mo: 1.28 (1.19–1.37) 31–36 mo:1.27 (1.18–1.36) p trend = 0.78 In prevalent users: 0–6 mo: 0.92 (0.87–0.97) 7–12 mo: 0.94 (0.89–0.99) 13–18 mo: 0.94 (0.89–0.99) 19–24 mo: 0.9 (0.85–0.96) 25–30 mo: 0.91 (0.86–0.97) 31–36 mo: 0.88 (0.83–0.94) p trend = 0.11 Incident users: 0–6 mo: 1.8 (1.48–2.2) 7–12 mo: 1.75 (1.49–2.06) 13–18 mo: 1.62 (1.4–1.88) 19–24 mo: 1.62 1.42–1.85) 25–30 mo: 1.68 (1.47–1.91) 31–36 mo: 1.69 (1.5–1.91) p trend = 0.69 |
[35] | HAM-D score N1 vs. N3 baseline: 6 vs. 2, p < 0.05 6 mo postoperatively: 2 vs. 1, p = 0.006 1 y postoperatively: 2 vs. 1, p = 0.0007 |
[36] | Depression scores before surgery vs. 1 mo after surgery vs. 6 mo after surgery: 5.9 ± 4 vs. 5.5 ± 5.3 vs. 5.2 ± 4.7, p = 0.697 |
[38] | Depression scores: N1 preoperative vs. postoperative: 6.7 ± 6.6 vs. 3.1 ± 3.9, mean difference = 3.7 (2.9–4.4), p < 0.01 N1 vs. N2 preoperative: 6.7 ± 6.6 vs. 4.4 ± 4.9, p < 0.01 N1 vs. N2 following PTX: 3.1 ± 3.9 vs. 3.3 ± 4.1, p = 0.52 Depression severity in N1 preoperative vs. following PTX: moderate to severe: 27.5% vs. 8.2%, p < 0.01 no symptoms: 47.9% vs. 72.5%, p < 0.01 |
[39] | N: 41% decrease in anxiety/depression in N, p = 0.07 Anxiety/depression levels before surgery vs. 6 weeks after surgery: N1: no anxiety/depression: 75% vs. 75% moderate anxiety/depression: 25% vs. 25% extreme anxiety/depression: 0% vs. 0% p = 1.00 N2: no anxiety/depression: 43% vs. 71% moderate anxiety/depression: 53% vs. 25% extreme anxiety/depression: 4% vs. 4% p < 0.01 |
Reference | Study Design/Studied Population | Main Findings |
---|---|---|
[37] | Prospective observational N = 35, with age ≥ 50 y (out of which N1 = 19 with age ≥ 70 y) with PHPT and mild cognitive impairment who underwent cinacalcet treatment 4 weeks before PTX F:M = 31:4 (88.6% females) Median (IQR) age = 71 (62–79) y N1: F:M = 17:2 (89.5% females) Median (IQR) age = 77 (72–82) y | Median (IQR) depression score in N: baseline: 4 (1–6) change between baseline and 4 weeks of cinacalcet: –1 (0 to –2), p = 0.019 change between baseline and 6 mo following PTX: –3 (0 to –6), p = 0.040 Median (IQR) depression score in N1: baseline: 4 (1–8) change between baseline and 4 weeks of cinacalcet: –1 (0 to –3), p = 0.053 change between baseline and 6 mo following PTX: –1 (0 to –3), p = 0.189 Median (IQR) depression and anxiety score in N: baseline: 8 (6–16) change between baseline and 4 weeks of cinacalcet: –2 (0 to –3), p = 0.020 change between baseline and 6 mo following PTX: –3 (0 to –6), p = 0.005 Median (IQR) depression and anxiety score in N1: baseline: 8 (5–15) change between baseline and 4 weeks of cinacalcet: –2 (0 to –3), p = 0.095 change between baseline and 6 mo following PTX: –3 (0 to –6), p = 0.073 |
Reference | Study Design/Studied Population | Main Findings |
---|---|---|
[30] | Retrospective cohort study N = 3728 with PHPT After propensity score match: N1 = 959 non-operative patients F:M = 766:193 (79.9% females) Mean age = 62 ± 14 y N2 = 959 operative patients F:M = 763:196 (79.6% females) Mean age = 62 ± 13 y | Pre-existing depression overall vs. N1 vs. N2: 10.5% vs. 11.4% vs. 9.7%, p = 0.265 Newly-onset depression overall vs. N1 vs. N2: 10.7% vs. 12.2% vs. 9.3%, p = 0.046 Pre-existing suicidal ideation overall vs. N1 vs. N2: 0.2% vs. 0.2% vs. 0.2%, p = 1 New-onset suicidal ideation overall vs. N1 vs. N2: 0.4% vs. 0.6% vs. 0.1%, p = 0.13 Hazard ratio of depression: in N2 compared to N1: 1.02 (0.77–1.36) in normohormonal PHPT compared to classic PHPT: 0.82 (0.61–1.11) Hazard ratio of suicidal ideation: in N2 compared to N1: 0.31 (0.04–2.71) in normohormonal PHPT compared to classic PHPT: 3.42 (0.47–24.8) likelihood of newly-onset depression in patients without pre-existing neuropsychiatric disorders: within 5 y: N1: 6.2%, N2: 6.8% within 10 y: N1:23.7%, N2:22.9% likelihood of newly-onset suicidal ideation in patients without pre-existing neuropsychiatric disorders: within 5 y: N1:0.6%, N2:0.2% within 10 y: N1:1.6%, N2:0.2% |
Reference | Study Design/Studied Population | Prevalence/Severity of Anxiety | Anxiety Evaluation Method |
---|---|---|---|
[28] | Longitudinal prospective study N = 36 with PHPT who underwent PTX F:M = 33:3 (92% females) Mean age = 59 ± 12.8 y | Mean (SE) anxiety score: preoperatively: 5.17 (1.01) | Depression Anxiety Stress Scales |
[30] | Retrospective cohort study N = 3728 with PHPT After propensity score match: N1 = 959 non-operative patients F:M = 766:193 (79.9% females) Mean age = 62 ± 14 y N2 = 959 operative patients F:M = 763:196 (79.6% females) Mean age = 62 ± 13 y | Pre-existing anxiety overall vs. N1 vs. N2: 10.4% vs. 10.8% vs. 10%, p = 0.601 New onset anxiety overall vs. N1 vs. N2: 12.9% vs. 14.3% vs. 11.6%, p = 0.089 | ICD-10 codes |
[32] | Prospective study N = 101 with asymptomatic PHPT who underwent PTX F:M = 88:13 (87.1% females) Average age = 60.7 (range 27–80) y | Prevalence of anxiety: preoperatively: DASS anxiety: normal = 77.2%, mild = 9.9%, moderate = 7.9%, severe = 4%, extreme severe = 1% 1 mo postoperatively: DASS anxiety: normal = 97.9%, mild = 0%, moderate = 2.1%, severe = 0%, extreme severe = 0% 6 mo postoperatively: DASS anxiety: normal = 97.8%, mild = 1.1%, moderate = 1.1%, severe = 0%, extreme severe = 0% | Depression Anxiety Stress Scales |
[33] | Retrospective cohort study N = 135,034 with hypercalcemia F:M = 96,554:38,466 (72% females) Mean age = 63 ± 10 y N1 = 13,136 with PHPT diagnosis N2 = 20,176 with high risk of PHPT diagnosis with PTH data N3 = 24,905 with high risk of PHPT diagnosis without PTH data | N1: time-to-diagnosis >1 y vs. ≤1 y after hypercalcemia: during 1 y from hypercalcemia: Prevalence of anxiety: 10.4% vs. 13.4% OR (95% CI) = 0.75 (0.65–0.86) p < 0.001 during 1–3 y: Prevalence of anxiety: 15.7% vs. 13.4% OR (95% CI) = 1.2 (1.05–1.36) p = 0.007 during 1 y from hypercalcemia: Prevalence of anxiety: 10.7% vs. 15.1% OR (95% CI) = 0.67 (0.5–0.91) p < 0.01 during 1–3 y: Prevalence of anxiety: 17.4% vs. 15.1% OR (95% CI) = 1.18 (0.9–1.56) p = 0.23 N2 vs. matched controls: Prevalence of anxiety: 15.4% vs. 10.8% OR (95% CI) = 1.5 (1.41–1.59) p < 0.001 N3 vs. matched controls: Prevalence of anxiety:15.6% vs. 11.1% OR (95% CI) = 1.48 (1.40–1.56) p < 0.001 | Patient records |
[34] | Prospective observational N = 35, with age ≥50 y (out of which N1 = 19 with age ≥70 y) with PHPT and mild cognitive impairment who underwent cinacalcet treatment 4 weeks before PTX F:M = 31:4 (88.6% females) Median (IQR) age = 71 (62–79) y N1: F:M = 17:2 (89.5% females) Median (IQR) age = 77 (72–82) y | Median (IQR) anxiety score in N: baseline: 6 (4–10) Median (IQR) anxiety score in N1: baseline: 4 (2–10) | Hospital Depression and Anxiety Scale |
[38] | Prospective multicentre observational study N = 405 F:M= (76.6% females) Mean age = 59 ± 13.9 y N1 = 244 who underwent PTX F:M = 192:52 (78.7% females) Mean age = 63 ± 12.2 y N2 = 161 who underwent thyroidectomy F:M = 120:41 (74.5% females) Mean age = 52.4 ± 14.2 y | N1 vs. N2 preoperative: 4.5 ± 5.6 vs. 3.2 ± 4.1, p < 0.01 N1 vs. N2 following PTX: 2.0 ± 3.6 vs. 2.1 ± 3.9, p = 0.75 | Generalized Anxiety Disorder-7 |
[40] | Retrospective study N = 192 with PHPT F:M = 147:45 (76.6% females) Mean age = 52.7 ± 13.8 y | Anxiety proneness (trait anxiety): Mean score = 37.39 ± 10.34 Current anxiety (state anxiety): Mean score = 35.43 ± 11.56 | State-Trait Anxiety Inventory |
[41] | Observational retrospective cohort study N1 = 101 with PHPT who underwent PTX, out of whom: F:M = 85:16 (84.15% females) Median (range) age: 60 (20–86) N2 = 50 controls (with non-toxic goitre) F:M = 42:8 (84% females) Median (range) age: 58 (25–75) | HADS anxiety: Overall: Median: 6 vs. 6, p > 0.05 Prevalence: 38.6% vs. 34%, p > 0.05 Women: Median: 7 vs. 6, p > 0.05 Prevalence: 42.35% vs. 35.71%, p > 0.05 Men: Median: 5 vs. 6, p > 0.05 Prevalence: 18.75% vs. 25%, p > 0.05 | Hospital Anxiety and Depression Scale |
Main Findings | |
---|---|
[30] | Hazard ratio of anxiety: at Ca > 11.5 mg/dL: 0.98 (0.72–1.33) |
[34] | Anxiolytic, benzodiazepine use: N1 vs. N2, OR (95% CI) Ionized calcium (mmol/L): <1.38: 15.5% vs. 9.9%, 1.72 (1.48–1.99) 1.38–1.43: 12.6% vs. 10%, 1.34 (1.15–1.55) 1.44–1.49: 13.1% vs. 9.8, 1.42 (1.22–1.64) ≥1.5: 11.5% vs. 10%, 1.17 (1.00–1.36) p = 0.004 |
[38] | No statistically significant correlation between calcium and PTH preoperative and postoperative levels and anxiety |
[40] | Anxiety proneness (trait anxiety): Correlations: Unadjusted PTH: r = −0.168, p = 0.328 Ca: r = 0.049, p = 0.782 Cortisol at 8:00: r = 0.172, p = 0.316 Osteocalcin: r = −0.250, p = 0.141 Adjusted for multiple variables: Cortisol at 8:00: r = 0.127, p = 0.538 Osteocalcin: r = −0.363, p = 0.069 Current anxiety (state anxiety): Correlations: Unadjusted PTH: r = −0.148, p = 0.383 Ca: r = −0.060, p = 0.726 Cortisol at 8:00: r = 0.092, p = 0.587 Osteocalcin: r = −0.323, p = 0.051 Adjusted for multiple variables: Cortisol at 8:00: r = 0.044, p = 0.827 Osteocalcin: r = −0.426, p = 0.027 |
[41] | HADS anxiety and iCa: overall: r = −0.1863, p < 0.05, in women: r = −0.2404, p < 0.05 HADS anxiety and PTH: in women: r = 0.1797, p < 0.05 |
Reference | Main Findings |
---|---|
[28] | Mean (SE) anxiety score: preoperatively: 5.17 (1.01) 1 week postoperatively: 3 (1.01) 3 mo postoperatively: 2.46 (1.03) p = 0.01 p for trend = 0.20 |
[30] | Preexisting anxiety overall vs. N1 vs. N2: 10.4% vs. 10.8% vs. 10%, p = 0.601 Newly-onset anxiety overall vs. N1 vs. N2: 12.9% vs. 14.3% vs. 11.6%, p = 0.089 Hazard ratio of anxiety: in N2 compared to N1: 1.07 (0.83–1.37) in normohormonal PHPT compared to classic PHPT: 1.01 (0.77–1.32) likelihood of newly-onset anxiety in patients without pre-existing neuropsychiatric disorders: within 5 y: N1:6.7%, N2:9.1% within 10 y: N1:27%, N2:28.2% |
[32] | Changes in anxiety scores: DASS anxiety: preoperatively: 4.9 1 mo postoperatively: 2.3 6 mo postoperatively: 1.8 difference: −62.4% preoperatively vs. 1 mo postoperatively p = 0.001 preoperatively vs. 6 mo postoperatively p = 0.001 1 mo postoperatively vs. 6 mo postoperatively p = 0.033 SCL90R: preoperatively: 7.6 1 mo postoperatively: 3.8 6 mo postoperatively: 2.9 difference: −62.4% preoperatively vs. 1 mo postoperatively p = 0.001 preoperatively vs. 6 mo postoperatively p = 0.001 1 mo postoperatively vs. 6 mo postoperatively p = 0.001 |
[34] | RR (CI) of anxiolytic use following PTX: Overall: 0–6 mo: 1.31 (1.2–1.43) 7–12 mo: 1.28 (1.17–1.39) 13–18 mo: 1.17 (1.07–1.28) 19–24 mo: 1.18 (1.08–1.28) 25–30 mo: 1.21 (1.11–1.32) 31–36 mo: 1.14 (1.04–1.24) p trend = 0.003 In prevalent users: 0–6 mo: 0.97 (0.9–1.05) 7–12 mo: 0.99 (0.91–1.07) 13–18 mo: 0.95 (0.88–1.03) 19–24 mo: 0.95 (0.88–1.03) 25–30 mo: 0.95 (0.87–1.03) 31–36 mo: 0.93 (0.85–1.01) p trend = 0.23 Incident users: 0–6 mo: 1.72 (1.41–2.09) 7–12 mo: 1.37 (1.13–1.65) 13–18 mo: 1.05 (0.86–1.27) 19–24 mo: 1.1 (0.92–1.32) 25–30 mo: 1.25 (1.06–1.47) 31–36 mo: 1.07 (0.9–1.27) p trend = 0.004 |
[35] | Anxiety prevalence N1 vs. N3: baseline: 72% vs. 93%, p = 0.7321 6 mo postoperatively: 76.7% vs. 97.6%, p = 0.3823 1 y postoperatively: 83.72% vs. 97.6%, p = 0.4329 |
[38] | Anxiety scores: N1 preoperative vs. postoperative: 4.5 ± 5.6 vs. 2.0 ± 3.6, mean difference = 2.5 (1.9–3.1), p < 0.01 N1 vs. N2 preoperative: 4.5 ± 5.6 vs. 3.2 ± 4.1, p < 0.01 N1 vs. N2 following PTX: 2.0 ± 3.6 vs. 2.1 ± 3.9, p = 0.75 Anxiety severity in N1 preoperative vs. following PTX: moderate to severe: 18% vs. 5.3%, p < 0.01 no symptoms: 63.1% vs. 83.2%, p < 0.01 |
[37] | Median (IQR) anxiety score in N: baseline: 6 (4–10) change between baseline and 4 weeks of cinacalcet: –1 (0 to –2), p = 0.140 change between baseline and 6 mo following PTX: –2 (0 to –3), p = 0.040 Median (IQR) anxiety score in N1: baseline: 4 (2–10) change between baseline and 4 weeks of cinacalcet: –1 (0 to –3), p = 0.505 change between baseline and 6 mo following PTX: –1 (0 to –3), p = 0.189 |
References
- Silverberg, S.J.; Clarke, B.L.; Peacock, M.; Bandeira, F.; Boutroy, S.; Cusano, N.E.; Dempster, D.; Lewiecki, E.M.; Liu, J.M.; Minisola, S.; et al. Current issues in the presentation of asymptomatic primary hyperparathyroidism: Proceedings of the Fourth International Workshop. J. Clin. Endocrinol. Metab. 2014, 99, 3580–3594. [Google Scholar] [CrossRef]
- Walker, M.D.; Rubin, M.; Silverberg, S.J. Nontraditional manifestations of primary hyperparathyroidism. J. Clin. Densitom. 2013, 16, 40–47. [Google Scholar] [CrossRef] [PubMed]
- Borer, M.S.; Bhanot, V.K. Hyperparathyroidism: Neuropsychiatric manifestations. Psychosomatics 1985, 26, 597–601. [Google Scholar] [CrossRef] [PubMed]
- Dandurand, K.; Ali, D.S.; Khan, A.A. Primary Hyperparathyroidism: A Narrative Review of Diagnosis and Medical Management. J. Clin. Med. 2021, 10, 1604. [Google Scholar] [CrossRef] [PubMed]
- Desai, A.; Bajgain, A.; Ali, A.; Dutta, C.; Pasha, K.; Paul, S.; Abbas, M.S.; Nassar, S.T.; Tasha, T.; Khan, S. Association of Major Depressive Disorder in Hyperparathyroidism: A Systematic Review. Cureus 2023, 15, e40150. [Google Scholar] [CrossRef] [PubMed]
- Espiritu, R.P.; Kearns, A.E.; Vickers, K.S.; Grant, C.; Ryu, E.; Wermers, R.A. Depression in primary hyperparathyroidism: Prevalence and benefit of surgery. J. Clin. Endocrinol. Metab. 2011, 96, E1737–E1745. [Google Scholar] [CrossRef]
- Weber, T.; Eberle, J.; Messelhäuser, U.; Schiffmann, L.; Nies, C.; Schabram, J.; Zielke, A.; Holzer, K.; Rottler, E.; Henne-Bruns, D.; et al. Parathyroidectomy, elevated depression scores, and suicidal ideation in patients with primary hyperparathyroidism: Results of a prospective multicenter study. JAMA Surg. 2013, 148, 109–115. [Google Scholar] [CrossRef] [PubMed]
- Kowalski, G.J.; Buła, G.; Żądło, D.; Gawrychowska, A.; Gawrychowski, J. Primary hyperparathyroidism. Endokrynol. Pol. 2020, 71, 260–270. [Google Scholar] [CrossRef]
- Alarcón, R.D.; Franceschini, J.A. Hyperparathyroidism and paranoid psychosis. Case report and review of the literature. Br. J. Psychiatry 1984, 145, 477–486. [Google Scholar] [CrossRef] [PubMed]
- DeMartini, J.; Patel, G.; Fancher, T.L. Generalized Anxiety Disorder. Ann. Intern. Med. 2019, 170, ITC49–ITC64. [Google Scholar] [CrossRef] [PubMed]
- Malhi, G.S.; Mann, J.J. Depression. Lancet 2018, 392, 2299–2312. [Google Scholar] [CrossRef] [PubMed]
- Cipriani, C.; Cianferotti, L. Quality of Life in Primary Hyperparathyroidism. Endocrinol. Metab. Clin. N. Am. 2022, 51, 837–852. [Google Scholar] [CrossRef] [PubMed]
- Walter, E.; Traunfellner, M.; Gleitsmann, M.; Zalesak, M.; Helmenstein, C. The cost-of-illness and burden-of-disease of treatment-resistant depression in Austria. J. Med. Econ. 2023, 26, 1432–1444. [Google Scholar] [CrossRef] [PubMed]
- Richards, D.A.; Ekers, D.; McMillan, D.; Taylor, R.S.; Byford, S.; Warren, F.C.; Barrett, B.; Farrand, P.A.; Gilbody, S.; Kuyken, W.; et al. Cost and Outcome of Behavioural Activation versus Cognitive Behavioural Therapy for Depression (COBRA): A randomised, controlled, non-inferiority trial. Lancet 2016, 388, 871–880. [Google Scholar] [CrossRef] [PubMed]
- Dumitru, N.; Carsote MCocolos, A.; Petrova, E.; Olaru, M.; Dumitrache, C.; Ghemigian, A. The Link Between Bone Osteocalcin and Energy Metabolism in a Group of Postmenopausal Women. Curr. Health Sci. J. 2019, 45, 47–51. [Google Scholar] [CrossRef]
- Touloumis, C. The burden and the challenge of treatment-resistant depression. Psychiatriki 2021, 32 (Suppl. S1), 11–14. [Google Scholar] [CrossRef] [PubMed]
- Carsote, M.; Valea, A.; Dumitru, N.; Terzea, D.; Petrova, E.; Albu, S.; Buruiana, A.; Ghemigian, A. Metastases in daily endocrine practice. Arch. Balk. Med. Union 2016, 51, 476–480. [Google Scholar]
- Nica, S.; Sionel, R.; Maciuca, R.; Csutak, O.; Ciobica, M.L.; Nica, M.I.; Chelu, I.; Radu, I.; Toma, M. Gender-Dependent Associations Between Digit Ratio and Genetic Polymorphisms, BMI, and Reproductive Factors. Rom. J. Mil. Med. 2025, 128, 78–86. [Google Scholar] [CrossRef]
- Vasiliu, O. Impact of SGLT2 inhibitors on metabolic status in patients with psychiatric disorders undergoing treatment with second-generation antipsychotics (Review). Exp. Ther. Med. 2023, 25, 125. [Google Scholar] [CrossRef]
- US Preventive Services Task Force; Barry, M.J.; Nicholson, W.K.; Silverstein, M.; Chelmow, D.; Coker, T.R.; Davidson, K.W.; Davis, E.M.; Donahue, K.E.; Jaén, C.R.; et al. Screening for Depression and Suicide Risk in Adults: US Preventive Services Task Force Recommendation Statement. JAMA 2023, 329, 2057–2067. [Google Scholar] [CrossRef]
- Siu, A.L.; US Preventive Services Task Force (USPSTF); Bibbins-Domingo, K.; Grossman, D.C.; Baumann, L.C.; Davidson, K.W.; Ebell, M.; García, F.A.; Gillman, M.; Herzstein, J.; et al. Screening for Depression in Adults: US Preventive Services Task Force Recommendation Statement. JAMA 2016, 315, 380–387. [Google Scholar] [CrossRef] [PubMed]
- El-Den, S.; Chen, T.F.; Gan, Y.L.; Wong, E.; O’Reilly, C.L. The psychometric properties of depression screening tools in primary healthcare settings: A systematic review. J. Affect. Disord. 2018, 225, 503–522. [Google Scholar] [CrossRef] [PubMed]
- Costantini, L.; Pasquarella, C.; Odone, A.; Colucci, M.E.; Costanza, A.; Serafini, G.; Aguglia, A.; Belvederi Murri, M.; Brakoulias, V.; Amore, M.; et al. Screening for depression in primary care with Patient Health Questionnaire-9 (PHQ-9): A systematic review. J. Affect. Disord. 2021, 279, 473–483. [Google Scholar] [CrossRef] [PubMed]
- Caraway, J.; Ryan, M.; Yang, A.; Watson, N.; Allard, R.; Orestes, M. PHQ-9 and GAD-7 Score Response After Parathyroidectomy for Primary Hyperparathyroidism: A Systematic Review and Meta-analysis. Otolaryngol. Neck Surg. 2024, 171, 11–22. [Google Scholar] [CrossRef] [PubMed]
- Wilhelm, S.M.; Wang, T.S.; Ruan, D.T.; Lee, J.A.; Asa, S.L.; Duh, Q.Y.; Doherty, G.M.; Herrera, M.F.; Pasieka, J.L.; Perrier, N.D.; et al. The American Association of Endocrine Surgeons Guidelines for Definitive Management of Primary Hyperparathyroidism. JAMA Surg. 2016, 151, 959–968. [Google Scholar] [CrossRef] [PubMed]
- Bilezikian, J.P.; Khan, A.A.; Silverberg, S.J.; Fuleihan, G.E.; Marcocci, C.; Minisola, S.; Perrier, N.; Sitges-Serra, A.; Thakker, R.V.; Guyatt, G.; et al. Evaluation and Management of Primary Hyperparathyroidism: Summary Statement and Guidelines from the Fifth International Workshop. J. Bone Miner. Res. 2022, 37, 2293–2314. [Google Scholar] [CrossRef] [PubMed]
- Bunch, P.M.; Rigdon, J.; Lenchik, L.; Gorris, M.A.; Randle, R.W. Testing for Primary Hyperparathyroidism in 17,491 Patients With Hypercalcemia. J. Surg. Res. 2024, 296, 456–464. [Google Scholar] [CrossRef]
- Chan, K.; Tseng, C.C.; Milarachi, E.; Goldrich, D.Y.; King, T.S.; Fernandez-Mendoza, J.; Saadi, R.A.; Saunders, B.; Boltz, M.; Goldenberg, D. Actigraphy measures show sleep improvement after parathyroidectomy for primary hyperparathyroidism. Am. J. Otolaryngol. 2024, 45, 104297. [Google Scholar] [CrossRef]
- Febrero, B.; Ruiz-Manzanera, J.J.; Ros-Madrid, I.; Vergara, A.; Rodríguez, J.M. Improvement of mood and sleep quality in patients with primary hyperparathyroidism after parathyroidectomy: A prospective case-control study. Surgery 2024, 175, 1291–1298. [Google Scholar] [CrossRef] [PubMed]
- Song, Z.; Balachandra, S.; Wu, C.; Wang, R.; Zmijewski, P.; Gillis, A.; Fazendin, J.; Lindeman, B.; Chen, H. Risk of neuropsychiatric disorders in primary hyperparathyroidism: Parathyroidectomy versus nonoperative management. World J. Surg. 2024, 49, 106–114. [Google Scholar] [CrossRef] [PubMed]
- Febrero, B.; Ruiz-Manzanera, J.J.; Ros-Madrid, I.; Teruel, E.; Rodríguez, J.M. Quality of life, mood and sleep quality in patients with primary hyperparathyroidism. Impact of socio-personal and clinical profile. Ann. d’Endocrinol. 2023, 84, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Jovanovic, M.; Zivaljevic, V.; Sipetic Grujicic, S.; Tausanovic, K.; Slijepcevic, N.; Rovcanin, B.; Jovanovic, K.; Odalovic, B.; Buzejic, M.; Bukumiric, Z.; et al. Effects of successful parathyroidectomy on neuropsychological and cognitive status in patients with asymptomatic primary hyperparathyroidism. Endocrine 2023, 81, 592–601. [Google Scholar] [CrossRef] [PubMed]
- Lorenz, F.J.; Beauchamp-Perez, F.; Manni, A.; Chung, T.; Goldenberg, D.; Goyal, N. Analysis of Time to Diagnosis and Outcomes Among Adults With Primary Hyperparathyroidism. JAMA Netw. Open 2022, 5, e2248332. [Google Scholar] [CrossRef]
- Koman, A.; Bränström, R.; Pernow, Y.; Bränström, R.; Nilsson, I.L.; Granath, F. Neuropsychiatric Comorbidity in Primary Hyperparathyroidism Before and After Parathyroidectomy: A Population Study. World J. Surg. 2022, 46, 1420–1430. [Google Scholar] [CrossRef] [PubMed]
- Scerrino, G.; Melfa, G.; Lo Brutto, D.; Mazzola, S.; Corigliano, A.; Vitale, I.; Tutino, R.; Rotolo, G.; Orlando, G.; Cocorullo, G. Chronic asthenia in patients who have undergone endocrine neck surgery. Endocrine 2022, 75, 159–168. [Google Scholar] [CrossRef]
- Szalat, A.; Tamir, N.; Mazeh, H.; Newman, J.P. Successful parathyroidectomy improves cognition in patients with primary hyperparathyroidism: A prospective study in a tertiary medical center and comprehensive review of the literature. Front. Endocrinol. 2022, 13, 1095189. [Google Scholar] [CrossRef] [PubMed]
- Koman, A.; Bränström, R.; Pernow, Y.; Bränström, R.; Nilsson, I.L. Prediction of cognitive response to surgery in elderly patients with primary hyperparathyroidism. BJS Open 2021, 5, zraa029. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.Y.; Peine, B.S.; Mlaver, E.; Patel, S.G.; Weber, C.J.; Saunders, N.D.; Pofahl, W.E.; Sharma, J. Neuropsychologic changes in primary hyperparathyroidism after parathyroidectomy from a dual-institution prospective study. Surgery 2021, 169, 114–119. [Google Scholar] [CrossRef]
- Vadhwana, B.; Currow, C.; Bowers, D.; Groot-Wassink, T. Impact on Quality of Life After Parathyroidectomy for Asymptomatic Primary Hyperparathyroidism. J. Surg. Res. 2021, 261, 139–145. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.M.; He, Y.; Zhu, M.T.; Tao, B.; Zhao, H.Y.; Sun, L.H.; Liu, J.M. The Associations of Serum Osteocalcin and Cortisol Levels With the Psychological Performance in Primary Hyperparathyroidism Patients. Front. Endocrinol. 2021, 12, 692722. [Google Scholar] [CrossRef]
- Kunert, Ł.; Gawrychowski, J.; Sobiś, J.; Buła, G.; Pudlo, R. Depressive and anxiety disorders in patients with primary hyperparathyroidism. Psychiatr. Pol. 2020, 54, 1091–1107. [Google Scholar] [CrossRef] [PubMed]
- Weber, T.; Hillenbrand, A.; Peth, S.; Hummel, R. Symptoms of Primary Hyperparathyroidism in Men and Women: The Same but Different? Visc. Med. 2020, 36, 41–47. [Google Scholar] [CrossRef] [PubMed]
- Sorensen, J.R.; Watt, T.; Cramon, P.; Døssing, H.; Hegedüs, L.; Bonnema, S.J.; Godballe, C. Quality of life after thyroidectomy in patients with nontoxic nodular goiter: A prospective cohort study. Head Neck 2017, 39, 2232–2240. [Google Scholar] [CrossRef]
- Beck, A.T.; Ward, C.H.; Mendelson, M.; Mock, J.; Erbaugh, J. An inventory for measuring depression. Arch. Gen. Psychiatry 1961, 4, 561–571. [Google Scholar] [CrossRef] [PubMed]
- Smarr, K.L.; Keefer, A.L. Measures of depression and depressive symptoms: Beck Depression Inventory-II (BDI-II), Center for Epidemiologic Studies Depression Scale (CES-D), Geriatric Depression Scale (GDS), Hospital Anxiety and Depression Scale (HADS), and Patient Health Questionnaire-9 (PHQ-9). Arthritis Rheum. 2011, 63 (Suppl. S11), S454–S466. [Google Scholar] [CrossRef]
- Vasiliu, O. Therapeutic management of atypical antipsychotic-related metabolic dysfunctions using GLP-1 receptor agonists: A systematic review. Exp. Ther. Med. 2023, 26, 355. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.P.; Gorenstein, C. Psychometric properties of the Beck Depression Inventory-II: A comprehensive review. Braz. J. Psychiatry 2013, 35, 416–431. [Google Scholar] [CrossRef] [PubMed]
- Bucurica, S.; Lupanciuc, M.; Ionita-Radu, F.; Stefan, I.; Munteanu, A.E.; Anghel, D.; Jinga, M.; Gaman, E.L. Estrobolome and Hepatocellular Adenomas-Connecting the Dots of the Gut Microbial β-Glucuronidase Pathway as a Metabolic Link. Int. J. Mol. Sci. 2023, 24, 16034. [Google Scholar] [CrossRef] [PubMed]
- Adam, R.; Munteanu, A.; Mititelu, R.; Onciul, S.; Deleanu, D.; Iliescu, V.A.; Popescu, B.A.; Jurcut, R. Severe Aortic Stenosis and ATTRwt Amyloidosis—Beware in the Aging: A Case Report and Review of the Literature. Clin. Interv. Aging 2020, 15, 1863–1872. [Google Scholar] [CrossRef] [PubMed]
- García-Batista, Z.E.; Guerra-Peña, K.; Cano-Vindel, A.; Herrera-Martínez, S.X.; Medrano, L.A. Validity and reliability of the Beck Depression Inventory (BDI-II) in general and hospital population of Dominican Republic. PLoS ONE 2018, 13, e0199750. [Google Scholar] [CrossRef] [PubMed]
- Stanciu, S.; Enciu, C.; Raduta, I.; Stoicescu, D.; Anghel, A.; Anghel, D.; Olan, B.; Ciobica, L. The role of contrast-enhanced ultrasound in risk assessment of carotid atheroma. Rom. J. Mil. Med. 2016, 119, 9–11. [Google Scholar] [CrossRef]
- Lovibond, P.F.; Lovibond, S.H. The structure of negative emotional states: Comparison of the Depression Anxiety Stress Scales (DASS) with the Beck Depression and Anxiety Inventories. Behav. Res. Ther. 1995, 33, 335–343. [Google Scholar] [CrossRef] [PubMed]
- Anghel, D.; Ciobica, L.M.; Negru, M.M.; Jurcut, C.; Otlocan, L.; Coca, A. Bone mineral density and vitamin D levels in patients with rheumatoid arthritis. Osteoporos. Int. 2017, 28, S435–S436. [Google Scholar]
- Kochman, M. Primary hyperparathyroidism: Clinical manifestations, diagnosis and evaluation according to the Fifth International Workshop guidelines. Reumatologia 2023, 61, 256–263. [Google Scholar] [CrossRef] [PubMed]
- Zelano, L.; Locantore, P.; Rota, C.A.; Policola, C.; Corsello, A.; Rossi, E.D.; Rufini, V.; Zagaria, L.; Raffaelli, M.; Pontecorvi, A. Parathyroid Carcinoma All-In-One, a Rare Life-Threatening Case With Multiple Systemic Manifestations: Case Report and Review of the Literature. Front. Endocrinol. 2022, 13, 881225. [Google Scholar] [CrossRef] [PubMed]
- Kroenke, K.; Spitzer, R.L.; Williams, J.B. The PHQ-9: Validity of a brief depression severity measure. J. Gen. Intern. Med. 2001, 16, 606–613. [Google Scholar] [CrossRef]
- Martin, A.; Rief, W.; Klaiberg, A.; Braehler, E. Validity of the Brief Patient Health Questionnaire Mood Scale (PHQ-9) in the general population. Gen. Hosp. Psychiatry 2006, 28, 71–77. [Google Scholar] [CrossRef] [PubMed]
- Al-Dassean, K.A.; Murad, O.S. Factor structure and psychometric properties of the Jordanian version of the depression anxiety stress scale (DASS-21). Neuropsychopharmacol. Rep. 2024, 44, 447–456. [Google Scholar] [CrossRef]
- Hekimoglu, L.; Altun, Z.O.; Kaya, E.Z.; Bayram, N.; Bilgel, N. Psychometric properties of the Turkish version of the 42 item Depression Anxiety Stress Scale (DASS-42) in a clinical sample. Int. J. Psychiatry Med. 2012, 44, 183–198. [Google Scholar] [CrossRef]
- Vignola, R.C.; Tucci, A.M. Adaptation and validation of the depression, anxiety and stress scale (DASS) to Brazilian Portuguese. J. Affect. Disord. 2014, 155, 104–109. [Google Scholar] [CrossRef] [PubMed]
- Zigmond, A.S.; Snaith, R.P. The hospital anxiety and depression scale. Acta Psychiatr. Scand. 1983, 67, 361–370. [Google Scholar] [CrossRef] [PubMed]
- Snaith, R.P. The Hospital Anxiety And Depression Scale. Health Qual. Life Outcomes 2003, 1, 29. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Levis, B.; Sun, Y.; He, C.; Krishnan, A.; Neupane, D.; Bhandari, P.M.; Negeri, Z.; Benedetti, A.; Thombs, B.D.; et al. Accuracy of the Hospital Anxiety and Depression Scale Depression subscale (HADS-D) to screen for major depression: Systematic review and individual participant data meta-analysis. BMJ 2021, 373, n972. [Google Scholar] [CrossRef] [PubMed]
- Julian, L.J. Measures of anxiety: State-Trait Anxiety Inventory (STAI), Beck Anxiety Inventory (BAI), and Hospital Anxiety and Depression Scale-Anxiety (HADS-A). Arthritis Care Res. 2011, 63 (Suppl. S11), S467–S672. [Google Scholar] [CrossRef]
- Lee, E.J.; Kim, J.B.; Shin, I.H.; Lim, K.H.; Lee, S.H.; Cho, G.A.; Sung, H.M.; Jung, S.W.; Zmimmerman, M.; Lee, Y. Current use of depression rating scales in mental health setting. Psychiatry Investig. 2010, 7, 170–176. [Google Scholar] [CrossRef] [PubMed]
- Bunevicius, A.; Peceliuniene, J.; Mickuviene, N.; Valius, L.; Bunevicius, R. Screening for depression and anxiety disorders in primary care patients. Depress. Anxiety 2007, 24, 455–460. [Google Scholar] [CrossRef] [PubMed]
- Stepankova Georgi, H.; Horakova Vlckova, K.; Lukavsky, J.; Kopecek, M.; Bares, M. Beck Depression Inventory-II: Self-report or interview-based administrations show different results in older persons. Int. Psychogeriatr. 2019, 31, 735–742. [Google Scholar] [CrossRef] [PubMed]
- Sjöberg, L.; Karlsson, B.; Atti, A.R.; Skoog, I.; Fratiglioni, L.; Wang, H.X. Prevalence of depression: Comparisons of different depression definitions in population-based samples of older adults. J. Affect. Disord. 2017, 221, 123–131. [Google Scholar] [CrossRef]
- Dettori, C.; Ronca, F.; Scalese, M.; Saponaro, F. Parathyroid Hormone (PTH)-Related Peptides Family: An Intriguing Role in the Central Nervous System. J. Pers. Med. 2023, 13, 714. [Google Scholar] [CrossRef] [PubMed]
- Joborn, C.; Hetta, J.; Niklasson, F.; Rastad, J.; Wide, L.; Agren, H.; Akerström, G.; Ljunghall, S. Cerebrospinal fluid calcium, parathyroid hormone, and monoamine and purine metabolites and the blood-brain barrier function in primary hyperparathyroidism. Psychoneuroendocrinology 1991, 16, 311–322. [Google Scholar] [CrossRef]
- Hironaka, T.; Morimoto, S.; Fukuo, K.; Koh, E.; Imanaka, S.; Sumida, T.; Onishi, T.; Kumahara, Y. Immunoreactive parathyroid hormones in the circulation and cerebrospinal fluid from patients with renal failure: Possible restriction of parathyroid hormone by the blood-brain barrier. Bone Miner. 1987, 2, 487–494. [Google Scholar] [CrossRef] [PubMed]
- Weaver, D.R.; Deeds, J.D.; Lee, K.; Segre, G.V. Localization of parathyroid hormone-related peptide (PTHrP) and PTH/PTHrP receptor mRNAs in rat brain. Mol. Brain Res. 1995, 28, 296–310. [Google Scholar] [CrossRef]
- Chen, L.; Xiong, L.; Yao, L.; Pan, J.; Arzola, E.; Zhu, X.; Mei, L.; Xiong, W.C. Attenuation of Alzheimer’s brain pathology in 5XFAD mice by PTH1-34, a peptide of parathyroid hormone. Alzheimer’s Res. Ther. 2023, 15, 53. [Google Scholar] [CrossRef] [PubMed]
- Usdin, T.B.; Gruber, C.; Bonner, T.I. Identification and functional expression of a receptor selectively recognizing parathyroid hormone, the PTH2 receptor. J. Biol. Chem. 1995, 270, 15455–15458. [Google Scholar] [CrossRef]
- Hoare, S.R.; Bonner, T.I.; Usdin, T.B. Comparison of rat and human parathyroid hormone 2 (PTH2) receptor activation: PTH is a low potency partial agonist at the rat PTH2 receptor. Endocrinology 1999, 140, 4419–4425. [Google Scholar] [CrossRef]
- Keller, D.; Tsuda, M.C.; Usdin, T.B.; Dobolyi, A. Behavioural actions of tuberoinfundibular peptide 39 (parathyroid hormone 2). J. Neuroendocr. 2022, 34, e13130. [Google Scholar] [CrossRef] [PubMed]
- Dobolyi, A.; Dimitrov, E.; Palkovits, M.; Usdin, T.B. The neuroendocrine functions of the parathyroid hormone 2 receptor. Front. Endocrinol. 2012, 3, 121. [Google Scholar] [CrossRef]
- Gellén, B.; Zelena, D.; Usdin, T.B.; Dobolyi, Á. The parathyroid hormone 2 receptor participates in physiological and behavioral alterations of mother mice. Physiol. Behav. 2017, 181, 51–58. [Google Scholar] [CrossRef] [PubMed]
- Serdenes, R.; Lewis, M.; Chandrasekhara, S. A Clinical Review of the Psychiatric Sequelae of Primary Hyperparathyroidism. Cureus 2021, 13, e19078. [Google Scholar] [CrossRef] [PubMed]
- Cao, X.; Li, X.M.; Mousseau, D.D. Calcium alters monoamine oxidase-A parameters in human cerebellar and rat glial C6 cell extracts: Possible influence by distinct signalling pathways. Life Sci. 2009, 85, 262–268. [Google Scholar] [CrossRef]
- Minisola, S.; Arnold, A.; Belaya, Z.; Brandi, M.L.; Clarke, B.L.; Hannan, F.M.; Hofbauer, L.C.; Insogna, K.L.; Lacroix, A.; Liberman, U.; et al. Epidemiology, Pathophysiology, and Genetics of Primary Hyperparathyroidism. J. Bone Miner. Res. 2022, 37, 2315–2329. [Google Scholar] [CrossRef]
- Kuehner, C. Why is depression more common among women than among men? Lancet Psychiatry 2017, 4, 146–158. [Google Scholar] [CrossRef] [PubMed]
- Sassarini, D.J. Depression in midlife women. Maturitas 2016, 94, 149–154. [Google Scholar] [CrossRef]
- Li, J.; Liu, F.; Liu, Z.; Li, M.; Wang, Y.; Shang, Y.; Li, Y. Prevalence and associated factors of depression in postmenopausal women: A systematic review and meta-analysis. BMC Psychiatry 2024, 24, 431. [Google Scholar] [CrossRef]
- Jia, Y.; Zhou, Z.; Xiang, F.; Hu, W.; Cao, X. Global prevalence of depression in menopausal women: A systematic review and meta-analysis. J. Affect. Disord. 2024, 358, 474–482. [Google Scholar] [CrossRef] [PubMed]
- Farhane-Medina, N.Z.; Luque, B.; Tabernero, C.; Castillo-Mayén, R. Factors associated with gender and sex differences in anxiety prevalence and comorbidity: A systematic review. Sci. Prog. 2022, 105, 368504221135469. [Google Scholar] [CrossRef] [PubMed]
- Santoro, N. Perimenopause: From Research to Practice. J. Women’s Health 2016, 25, 332–339. [Google Scholar] [CrossRef]
- Arias de la Torre, J.; Vilagut, G.; Ronaldson, A.; Dregan, A.; Ricci-Cabello, I.; Hatch, S.L.; Serrano-Blanco, A.; Valderas, J.M.; Hotopf, M.; Alonso, J. Prevalence and age patterns of depression in the United Kingdom. A population-based study. J. Affect. Disord. 2021, 279, 164–172. [Google Scholar] [CrossRef] [PubMed]
- Abdoli, N.; Salari, N.; Darvishi, N.; Jafarpour, S.; Solaymani, M.; Mohammadi, M.; Shohaimi, S. The global prevalence of major depressive disorder (MDD) among the elderly: A systematic review and meta-analysis. Neurosci. Biobehav. Rev. 2022, 132, 1067–1073. [Google Scholar] [CrossRef]
- Wang, H.; Chen, M.; Xin, T.; Tang, K. Number of children and the prevalence of later-life major depression and insomnia in women and men: Findings from a cross-sectional study of 0.5 million Chinese adults. BMC Psychiatry 2020, 20, 267. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Wu, H.; Yang, A.; YH Ng, N.; Zhang, X.; Lau, E.S.H.; Chow, E.W.K.; Kong, A.P.S.; Chow, E.Y.K.; Chan, J.C.N.; et al. Higher risk of incident diabetes among patients with primary hyperparathyroidism. Clin. Endocrinol. 2024, 101, 605–613. [Google Scholar] [CrossRef]
- Basiri, R.; Seidu, B.; Rudich, M. Exploring the Interrelationships between Diabetes, Nutrition, Anxiety, and Depression: Implications for Treatment and Prevention Strategies. Nutrients 2023, 15, 4226. [Google Scholar] [CrossRef] [PubMed]
- Bergmans, R.S.; Rapp, A.; Kelly, K.M.; Weiss, D.; Mezuk, B. Understanding the relationship between type 2 diabetes and depression: Lessons from genetically informative study designs. Diabet. Med. 2021, 38, e14399. [Google Scholar] [CrossRef] [PubMed]
- Mitrică, M.; Lorusso, L.; Badea, A.A.; Sîrbu, C.A.; Pleșa, A.; Stănescu, A.A.; Pleșa, F.C.; Sîrbu, O.M.; Munteanu, A.E. The Hidden Heart: Exploring Cardiac Damage Post-Stroke: A Narrative Review. Medicina 2024, 60, 1699. [Google Scholar] [CrossRef]
- Ferriani, L.O.; Silva, D.A.; Molina, M.D.C.B.; Mill, J.G.; Brunoni, A.R.; da Fonseca, M.J.M.; Moreno, A.B.; Benseñor, I.M.; de Aguiar, O.B.; Barreto, S.M.; et al. Depression is a risk factor for metabolic syndrome: Results from the ELSA-Brasil cohort study. J. Psychiatr. Res. 2023, 158, 56–62. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; Chen, J.; Yin, Z.; Wang, L.; Peng, L. The association between depression and metabolic syndrome and its components: A bidirectional two-sample Mendelian randomization study. Transl. Psychiatry 2021, 11, 633. [Google Scholar] [CrossRef] [PubMed]
- Corbetta, S.; Mantovani, G.; Spada, A. Metabolic Syndrome in Parathyroid Diseases. Front. Horm. Res. 2018, 49, 67–84. [Google Scholar] [CrossRef] [PubMed]
- Cen, M.; Song, L.; Fu, X.; Gao, X.; Zuo, Q.; Wu, J. Associations between metabolic syndrome and anxiety, and the mediating role of inflammation: Findings from the UK Biobank. Brain Behav. Immun. 2024, 116, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Chen, K.; Wang, T.; Tong, X.; Song, Y.; Hong, J.; Sun, Y.; Zhuang, Y.; Shen, H.; Yao, X.I. Osteoporosis is associated with depression among older adults: A nationwide population-based study in the USA from 2005 to 2020. Public Health 2024, 226, 27–31. [Google Scholar] [CrossRef]
- Heidari, M.E.; Naghibi Irvani, S.S.; Dalvand, P.; Khadem, M.; Eskandari, F.; Torabi, F.; Shahsavari, H. Prevalence of depression in older people with hip fracture: A systematic review and meta-analysis. Int. J. Orthop. Trauma Nurs. 2021, 40, 100813. [Google Scholar] [CrossRef] [PubMed]
- Davison, R.; Daniel, J.A.; Idarraga, A.J.; Perticone, K.M.; Lin, J.; Holmes, G.B.; Lee, S.; Hamid, K.S.; Bohl, D.D. Depression Following Operative Treatments for Achilles Ruptures and Ankle Fractures. Foot Ankle Int. 2021, 42, 1579–1583. [Google Scholar] [CrossRef] [PubMed]
- Bistrović, I.L.; Roncević-Grzeta, I.; Crncević-Orlić, Z.; Francisković, T.; Ljubicić, R.; Orlić, A.; Kapović, M. Connection of depression and bone loss in perimenopausal and postmenopausal women. Coll. Antropol. 2012, 36, 1219–1223. [Google Scholar] [PubMed]
- Kashfi, S.S.; Abdollahi, G.; Hassanzadeh, J.; Mokarami, H.; Khani Jeihooni, A. The relationship between osteoporosis and depression. Sci. Rep. 2022, 12, 11177. [Google Scholar] [CrossRef] [PubMed]
- Keshishi, D.; Makunts, T.; Abagyan, R. Common osteoporosis drug associated with increased rates of depression and anxiety. Sci. Rep. 2021, 11, 23956. [Google Scholar] [CrossRef] [PubMed]
- Tournis, S.; Makris, K.; Cavalier, E.; Trovas, G. Cardiovascular Risk in Patients with Primary Hyperparathyroidism. Curr. Pharm. Des. 2020, 26, 5628–5636. [Google Scholar] [CrossRef] [PubMed]
- Pepe, J.; Cipriani, C.; Sonato, C.; Raimo, O.; Biamonte, F.; Minisola, S. Cardiovascular manifestations of primary hyperparathyroidism: A narrative review. Eur. J. Endocrinol. 2017, 177, R297–R308. [Google Scholar] [CrossRef] [PubMed]
- Hare, D.L.; Toukhsati, S.R.; Johansson, P.; Jaarsma, T. Depression and cardiovascular disease: A clinical review. Eur. Heart J. 2014, 35, 1365–1372. [Google Scholar] [CrossRef] [PubMed]
- Krittanawong, C.; Maitra, N.S.; Qadeer, Y.K.; Wang, Z.; Fogg, S.; Storch, E.A.; Celano, C.M.; Huffman, J.C.; Jha, M.; Charney, D.S.; et al. Association of Depression and Cardiovascular Disease. Am. J. Med. 2023, 136, 881–895. [Google Scholar] [CrossRef]
- Civieri, G.; Abohashem, S.; Grewal, S.S.; Aldosoky, W.; Qamar, I.; Hanlon, E.; Choi, K.W.; Shin, L.M.; Rosovsky, R.P.; Bollepalli, S.C.; et al. Anxiety and Depression Associated With Increased Cardiovascular Disease Risk Through Accelerated Development of Risk Factors. JACC Adv. 2024, 3, 101208. [Google Scholar] [CrossRef] [PubMed]
- Dregan, A.; Rayner, L.; Davis, K.A.S.; Bakolis, I.; Arias de la Torre, J.; Das-Munshi, J.; Hatch, S.L.; Stewart, R.; Hotopf, M. Associations Between Depression, Arterial Stiffness, and Metabolic Syndrome Among Adults in the UK Biobank Population Study: A Mediation Analysis. JAMA Psychiatry 2020, 77, 598–606. [Google Scholar] [CrossRef] [PubMed]
- Palermo, A.; Tabacco, G.; Makras, P.; Zavatta, G.; Trimboli, P.; Castellano, E.; Yavropoulou, M.P.; Naciu, A.M.; Anastasilakis, A.D. Primary hyperparathyroidism: From guidelines to outpatient clinic. Rev. Endocr. Metab. Disord. 2024, 25, 875–896. [Google Scholar] [CrossRef]
- Eberly, H.W.; Sciscent, B.Y.; Lorenz, F.J.; Goyal, N.; Goldenberg, D. Asymptomatic Primary Hyperparathyroidism: A Misnomer. OTO Open 2024, 8, e70039. [Google Scholar] [CrossRef]
- McDow, A.D.; Sippel, R.S. Should Symptoms Be Considered an Indication for Parathyroidectomy in Primary Hyperparathyroidism? Clin. Med. Insights: Endocrinol. Diabetes 2018, 11, 1179551418785135. [Google Scholar] [CrossRef]
- Bollerslev, J.; Jansson, S.; Mollerup, C.L.; Nordenström, J.; Lundgren, E.; Tørring, O.; Varhaug, J.E.; Baranowski, M.; Aanderud, S.; Franco, C.; et al. Medical observation, compared with parathyroidectomy, for asymptomatic primary hyperparathyroidism: A prospective, randomized trial. J. Clin. Endocrinol. Metab. 2007, 92, 1687–1692. [Google Scholar] [CrossRef] [PubMed]
- Bargren, A.E.; Repplinger, D.; Chen, H.; Sippel, R.S. Can biochemical abnormalities predict symptomatology in patients with primary hyperparathyroidism? J. Am. Coll. Surg. 2011, 213, 410–414. [Google Scholar] [CrossRef]
- Liu, Y.; Sinha Gregory, N.; Andreopoulou, P.; Kashyap, S.; Cusano, N. Approach to the Patient: Normocalcemic Primary Hyperparathyroidism. J. Clin. Endocrinol. Metab. 2024, 00, 1–10. [Google Scholar] [CrossRef]
- Díaz-Soto, G.; Julián, M.T.; Puig-Domingo, M. Normocalcemic primary hyperparathyroidism: A newly emerging disease needing therapeutic intervention. Hormones 2012, 11, 390–396. [Google Scholar] [CrossRef] [PubMed]
- Grønli, O.; Wynn, R. Normocalcemic hyperparathyroidism and treatment resistant depression. Psychosomatics 2013, 54, 493–497. [Google Scholar] [CrossRef]
- Parks, K.A.; Parks, C.G.; Onwuameze, O.E.; Shrestha, S. Psychiatric Complications of Primary Hyperparathyroidism and Mild Hypercalcemia. Am. J. Psychiatry 2017, 174, 620–622. [Google Scholar] [CrossRef]
- El-Husari, A.; Phrathep, D.D.; Ibrahim, M.; Chism, D.; Narvel, R. Acute Psychosis in the Setting of Undiagnosed Normocalcemic Hyperparathyroidism: A Case Report. Cureus 2023, 15, e35840. [Google Scholar] [CrossRef]
- Strother, R.K.; Meunier, M. Hypercalcemia in the Presence of an Ectopic Mediastinal Mass. J. Prim. Care Community Health 2020, 11, 2150132720932411. [Google Scholar] [CrossRef] [PubMed]
- Vultaggio, F.; Martino, B.; Nitro, L.; Fuccillo, E.; Felisati, G.; De Pasquale, L. A parathyroid cancer with soporous state, depression, and severe cognitive decline in acute renal failure. Clin. Case Rep. 2023, 11, e7627. [Google Scholar] [CrossRef]
- Meng, A.Z.; Tan, Y.; Ong, S.J.; Wee, B.B.; Teo, L. Primary Hyperparathyroidism Causing Psychosis: A Case Report. Cureus 2022, 14, e31935. [Google Scholar] [CrossRef] [PubMed]
- Khan, Z.; Mlawa, G.; Mahdi, H.; Abumedian, M. Acute Psychosis Related to Primary Hyperparathyroidism in a Patient With Bipolar Disorder. Cureus 2023, 15, e42567. [Google Scholar] [CrossRef] [PubMed]
- Murphy, R.J.; Paul, S.; Primelo, R. Parathyroid Paranoia: Unveiling Psychosis in Hyperparathyroidism. Case Rep. Psychiatry 2024, 2024, 8126125. [Google Scholar] [CrossRef] [PubMed]
- Singh, P.; Bauernfreund, Y.; Arya, P.; Singh, E.; Shute, J. Primary hyperparathyroidism presenting as acute psychosis secondary to hypercalcaemia requiring curative parathyroidectomy. J. Surg. Case Rep. 2018, 2018, rjy023. [Google Scholar] [CrossRef] [PubMed]
- Nagy, L.; Mangini, P.; Schroen, C.; Aziz, R.; Tobia, A. Prolonged Hypercalcemia-Induced Psychosis. Case Rep. Psychiatry 2020, 2020, 6954036. [Google Scholar] [CrossRef]
- Babar, G.; Alemzadeh, R. A case of acute psychosis in an adolescent male. Case Rep. Endocrinol. 2014, 2014, 937631. [Google Scholar] [CrossRef] [PubMed]
- Otsuki, K.; Izuhara, M.; Miura, S.; Yamashita, S.; Nagahama, M.; Hayashida, M.; Hashioka, S.; Miyaoka, T.; Hotta, Y.; Shimizu, Y.; et al. Psychosis in a primary hyperparathyroidism patient with mild hypercalcemia: A case report. Medicine 2021, 100, e25248. [Google Scholar] [CrossRef] [PubMed]
- Corredor-Orlandelli, D.; Valenzuela-Vallejo, L.; Aguirre-Ruiz, J.F.; Valenzuela Rincon, A. Ectopic parathyroid adenoma causing hyperparathyroidism-induced psychosis: A case report. SAGE Open Med Case Rep. 2023, 11, 2050313X231180752. [Google Scholar] [CrossRef]
First Author/Year of Publication/ Reference | Study Design/Studied Population | Diagnostic Method (Tool) for Depression | Diagnostic Method (Tool) for Anxiety |
---|---|---|---|
Bunch 2024 [27] | Retrospective study N = 17,491 with hypercalcemia F:M = 10,924:6567 (62.5% females) Mean age = 59 ± 17.3 y N1 = 6096 who underwent screening for PHPT F:M = 4171:1925 (68.4% females) Mean age = 62.8 ± 14.6 y N2 = 11,395 without screening for PHPT F:M = 6753:4642 (59.3% females) Mean age = 56.9 ± 18.2 y | ICD-10 codes | NA |
Chan 2024 [28] | Longitudinal prospective study N = 36 with PHPT who underwent PTX F:M = 33:3 (92% females) Mean age = 59 ± 12.8 y | Depression Anxiety Stress Scales | Depression Anxiety Stress Scales |
Febrero 2024 [29] | Prospective case-control N1 = 49 with PHPT (hypercalcemic and normocalcemic) who underwent PTX F:M = 39:10 (80% females) Mean age = 63.78 ± 10.09 y N2 = sex- and age-matched-controls | Beck Depression Inventory-II | NA |
Song 2024 [30] | Retrospective cohort study N = 3728 with PHPT After propensity score match: N1 = 959 non-operative patients F:M = 766:193 (79.9% females) Mean age = 62 ± 14 y N2 = 959 operative patients F:M = 763:196 (79.6% females) Mean age = 62 ± 13 y | ICD-10 codes | ICD-10 code |
Febrero 2023 [31] | Prospective cohort N1 = 65 with PHPT (hypercalcemic and normocalcemic) F:M = 50:15 (77% females) Mean age: <40 y: 11 (17%) 40–60 y: 25 (38%) >60 y: 29 (45%) N2 = 65 sex and age matched-controls | Beck Depression Inventory-II | NA |
Jovanovic 2023 [32] | Prospective study N = 101 with asymptomatic PHPT who underwent PTX F:M = 88:13 (87.1% females) Average age = 60.7 (range 27–80) y | Beck Depression Inventory Depression Anxiety Stress Scales Symptom Check List 90-revised | Depression Anxiety Stress Scales Symptom Check List 90-revised |
Lorenz 2022 [33] | Retrospective cohort study N = 135,034 with hypercalcemia F:M = 96,554:38,466 (72% females) Mean age = 63 ± 10 y N1 = 13,136 with PHPT diagnosis N2 = 20,176 with high risk of PHPT diagnosis with PTH data N3 = 24,905 with high risk of PHPT diagnosis without PTH data | patient records | patient records |
Koman 2022 [34] | Retrospective case-control and prospective cohort analyses N1 = 8279 who underwent PTX F:M = 6374:1905 (77% females) N2 = 82,790 matched controls F:M = 63,740:19,050 (77% females) Age: <30 y = 2.2%, 30–39 y = 4.1%, 40–49 y = 11.4%, 50–59 y = 22%, 60–69 y = 29.6%, 70–79 y = 23.5%, 80+ y = 7.2% | ICD-10 (F06–F99) | ICD-10 (F06–F99) |
Scerrino 2022 [35] | Retrospective study N1 = 43 with PHPT who underwent PTX F:M = 33:10 (76.7% females) Mean age = 52.4 y N2 = 233 who underwent thyroidectomy F:M = 185:48 (79.4% females) Mean age = 54.6 y N3 = 43 who underwent cholecystectomy F:M = 34:9 (79% females) Mean age = 52.4 y | Hamilton Depression Rating Scale | Generalized Anxiety Disorder-7 |
Szalat 2022 [36] | Prospective case-control N = 18 with PHPT who underwent PTX F:M = 14:4 (79% females) Mean age = 67.9 ± 7.6 y | Beck Depression Inventory | NA |
Koman 2021 [37] | Prospective observational N = 35, with age ≥ 50 y (out of which N1 = 19 with age ≥ 70 y) with PHPT and mild cognitive impairment who underwent cinacalcet treatment 4 weeks before PTX F:M = 31:4 (88.6% females) Median (IQR) age = 71 (62–79) y N1: F:M = 17:2 (89.5% females) Median (IQR) age = 77 (72–82) y | Hospital Depression and Anxiety Scale | Hospital Depression and Anxiety Scale |
Liu 2021 [38] | Prospective multi-centric observational study N = 405 candidates to endocrine surgery F:M= (76.6% females) Mean age = 59 ± 13.9 y N1 = 244 who underwent PTX F:M = 192:52 (78.7% females) Mean age = 63 ± 12.2 y N2 = 161 who underwent thyroidectomy F:M = 120:41 (74.5% females) Mean age = 52.4 ± 14.2 y | Patient Health Questionnaire-9 | Generalized Anxiety Disorder-7 |
Vadhwana 2021 [39] | Prospective study N = 78 with PHPT who underwent PTX F:M = 56:22 (72% females) Median (IQR) age = 62 (52–70) y N1 = 28 asymptomatic PHPT F:M = 20:8 (71% females) Median (IQR) age = 69 (58–73) y N2 = 50 symptomatic PHPT F:M = 36:14 (72% females) Median (IQR) age = 58 (50–70) y | EuroQOL-5D-3L | EuroQOL-5D-3L |
Wang 2021 [40] | Retrospective study N = 192 with PHPT F:M = 147:45 (76.6% females) Mean age = 52.7 ± 13.8 y | Beck Depression Inventory | State-Trait Anxiety Inventory |
Kunert 2020 [41] | Observational retrospective cohort study N1 = 101 with PHPT who underwent PTX F:M = 85:16 (84.15% females) Median (range) age: 60 (20–86) N2 = 50 controls F:M = 42:8 (84% females) y Median (range) age: 58 (25–75) y | Hamilton Depression Rating Scale Beck Depression Inventory—II Hospital Anxiety and Depression Scale | Hospital Anxiety and Depression Scale |
Weber 2020 [42] | Retrospective N = 125 with PHPT who underwent surgery F:M = 95:30 (76% females) Median age = 60.4 (23–83) y | Patients’ records | NA |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gheorghe, A.-M.; Nistor, C.; Ranetti, A.-E.; Carsote, M. An Analysis of Primary Hyperparathyroidism in Association with Depression or Anxiety. Diseases 2025, 13, 54. https://doi.org/10.3390/diseases13020054
Gheorghe A-M, Nistor C, Ranetti A-E, Carsote M. An Analysis of Primary Hyperparathyroidism in Association with Depression or Anxiety. Diseases. 2025; 13(2):54. https://doi.org/10.3390/diseases13020054
Chicago/Turabian StyleGheorghe, Ana-Maria, Claudiu Nistor, Aurelian-Emil Ranetti, and Mara Carsote. 2025. "An Analysis of Primary Hyperparathyroidism in Association with Depression or Anxiety" Diseases 13, no. 2: 54. https://doi.org/10.3390/diseases13020054
APA StyleGheorghe, A.-M., Nistor, C., Ranetti, A.-E., & Carsote, M. (2025). An Analysis of Primary Hyperparathyroidism in Association with Depression or Anxiety. Diseases, 13(2), 54. https://doi.org/10.3390/diseases13020054