Zinc Fortification and Supplementation to Reduce Diarrhea in Children: A Literature Review
Abstract
1. Introduction
2. Zinc: Biochemistry and Nutritional Role
2.1. Biological Role of Zinc in Child Growth and Immunity
2.2. Zinc Mechanism of Action
2.3. Zinc Absorption and Metabolism
2.4. Zinc Recommendations (Doses and Side Effects)
2.5. Causes and Prevalence of Zinc Deficiency in Different Regions
3. Pathophysiology of Diarrhea
3.1. Causes and Types of Diarrheas in Children
3.2. Impact of Diarrhea on Child Development and Mortality
3.3. Role of Zinc in Gastrointestinal Health and Diarrhea
4. Zinc Deficiency and Risk of Diarrhea
5. Zinc Dosage and Administration During Diarrhea
5.1. WHO Guidelines: Age-Specific Dosages
5.2. Duration and Formulation Types
5.3. Strategies to Improve Adherence
6. Long-Term Benefits of Zinc Supplementation for Diarrhea
6.1. Reduced Incidence of Future Diarrheal Episodes
6.2. Improved Linear Growth and Nutritional Recovery Post-Diarrhea
6.3. Broader Impact on Child Development and School Readiness
7. Intervention Strategies
7.1. Zinc Supplementation
7.2. Zinc Fortification
7.3. Combined Interventions
7.4. Public and Community Zinc Awareness for Diarrhea in Children
8. Risk Factors and Barriers to Zinc Intervention
8.1. Cultural and Behavioral Practices
8.2. Food Accessibility and Insecurity
8.3. Supplementation Acceptance and Compliance Issues
8.4. Supply Chain and Pragmatic Limitations
8.5. Knowledge Gaps Among Healthcare Providers and Caregivers
9. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Abd El-Ghaffar, Y.S.; Shouman, A.E.; Hakim, S.A.; El Gendy, Y.G.A.; Wahdan, M.M.M. Effect of Zinc Supplementation in Children Less Than 5 Years on Diarrhea Attacks: A Randomized Controlled Trial. Glob. Pediatr. Health 2022, 9, 2333794X221099266. [Google Scholar] [CrossRef]
- Ahmadipour, S.; Mohsenzadeh, A.; Alimadadi, H.; Salehnia, M.; Fallahi, A. Treating viral diarrhea in children by probiotic and zinc supplements. Pediatr. Gastroenterol. Hepatol. Nutr. 2019, 22, 162–170. [Google Scholar] [CrossRef]
- Ali, A.A.; Naqvi, S.K.; Hasnain, Z.; Zubairi, M.B.A.; Sharif, A.; Salam, R.A.; Soofi, S.; Ariff, S.; Nisar, Y.B.; Das, J.K. Zinc supplementation for acute and persistent watery diarrhoea in children: A systematic review and meta-analysis. J. Glob. Health 2024, 14, 04212. [Google Scholar] [CrossRef]
- Jahan, A.; Mir, H.; Mohammad, J.; Jahan, F. The Effect of Zinc Supplementation on the Duration of Acute Watery Diarrhea in Children Age 6 Months to 5 Years Old. Indus J. Biosci. Res. 2025, 3, 128–132. [Google Scholar] [CrossRef]
- Baltaci, A.K.; Yuce, K.; Mogulkoc, R. Zinc Metabolism and Metallothioneins. Biol. Trace Elem. Res. 2018, 183, 22–31. [Google Scholar] [CrossRef]
- Barffour, M.A.; Hinnouho, G.-M.; Kounnavong, S.; Wessells, R.; Ratsavong, K.; Bounheuang, B.; Chanhthavong, B.; Sitthideth, D.; Sengnam, K.; Arnold, C.D.; et al. Effects of Daily Zinc, Daily Multiple Micronutrient Powder, or Therapeutic Zinc Supplementation for Diarrhea Prevention on Physical Growth, Anemia, and Micronutrient Status in Rural Laotian Children: A Randomized Controlled Trial. J. Pediatr. 2018, 207, 80–89.e2. [Google Scholar] [CrossRef]
- Cao, Y.; Su, X.; Wang, J.; Shao, Q.; Long, Z.; Wu, Y.; Wang, F. Global burden of zinc deficiency among children under 5 years old from 1990 to 2020. Int. J. Food Sci. Nutr. 2025, 76, 456–3465. [Google Scholar] [CrossRef]
- Ceballos-Rasgado, M.; Lowe, N.M.; Mallard, S.; Clegg, A.; Moran, V.H.; Harris, C.; Montez, J.; Xipsiti, M. Adverse Effects of Excessive Zinc Intake in Infants and Children Aged 0–3 Years: A Systematic Review and Meta-Analysis. Adv. Nutr. 2022, 13, 2488–2519. [Google Scholar] [CrossRef] [PubMed]
- Chavda, V.P.; Vuppu, S.; Mishra, T.; Kamaraj, S.; Sharma, N.; Punetha, S.; Sairam, A.; Vaghela, D.; Dargahi, N.; Apostolopoulos, V. Combatting infectious diarrhea: Innovations in treatment and vaccination strategies. Expert Rev. Vaccines 2024, 23, 246–265. [Google Scholar] [CrossRef] [PubMed]
- Colomar-Carando, N.; Meseguer, A.; Company-Garrido, I.; Jutz, S.; Herrera-Fernández, V.; Olvera, A.; Kiefer, K.; Brander, C.; Steinberger, P.; Vicente, R. Zip6 Transporter Is an Essential Component of the Lymphocyte Activation Machinery. J. Immunol. 2019, 202, 441–450. [Google Scholar] [CrossRef]
- Das, J.K.; Kumar, R.; Salam, R.A.; Bhutta, Z.A. Systematic Review of Zinc Fortification Trials. Ann. Nutr. Metab. 2013, 62 (Suppl. S1), 44–56. [Google Scholar] [CrossRef]
- Dembedza, M.P.; Chopera, P.; Matsungo, T.M. Risk of zinc deficiency among children aged 0–59 months in sub-Saharan Africa: A narrative review. S. Afr. J. Clin. Nutr. 2024, 37, 69–76. [Google Scholar] [CrossRef]
- Devarshi, P.P.; Mao, Q.; Grant, R.W.; Hazels Mitmesser, S. Comparative Absorption and Bioavailability of Various Chemical Forms of Zinc in Humans: A Narrative Review. Nutrients 2024, 16, 4269. [Google Scholar] [CrossRef]
- Dhawan, M.; Emran, T.B.; Priyanaka; Choudhary, O.P. Immunomodulatory effects of zinc and its impact on COVID-19 severity. Ann. Med. Surg. 2022, 77, 103638. [Google Scholar] [CrossRef] [PubMed]
- Dhingra, U.; Kisenge, R.; Sudfeld, C.R.; Dhingra, P.; Somji, S.; Dutta, A.; Bakari, M.; Deb, S.; Devi, P.; Liu, E.; et al. Lower-Dose Zinc for Childhood Diarrhea—A Randomized, Multicenter Trial. N. Engl. J. Med. 2020, 383, 1231–1241. [Google Scholar] [CrossRef] [PubMed]
- Duan, M.; Li, T.; Liu, B.; Yin, S.; Zang, J.; Lv, C.; Zhao, G.; Zhang, T. Zinc nutrition and dietary zinc supplements. Crit. Rev. Food Sci. Nutr. 2023, 63, 1277–1292. [Google Scholar] [CrossRef] [PubMed]
- Duguma, N.A.; Bala, E.T.; Abdisa, B.; Adula, T.; Adeba, E.; Egata, G. Caregivers’ knowledge, practice, and associated factors toward oral rehydration salt with zinc to treat diarrhea among under 5 children in Burayu town, Oromia, Ethiopia, 2022: Cross-sectional study: An implication for action. Health Sci. Rep. 2024, 7, e1817. [Google Scholar] [CrossRef]
- Gibson, R.S.; Raboy, V.; King, J.C. Implications of phytate in plant-based foods for iron and zinc bioavailability, setting dietary requirements, and formulating programs and policies. Nutr. Rev. 2018, 76, 793–804. [Google Scholar] [CrossRef]
- Global Fortification Data Exchange. Cumulative Number of Countries with Mandatory Fortification by Year. 2024. Available online: http://www.fortificationdata.org (accessed on 10 October 2025).
- Gupta, S.; Zaman, M.; Fatima, S.; Shahzad, B.; Brazier, A.K.M.; Moran, V.H.; Broadley, M.R.; Zia, M.H.; Bailey, E.H.; Wilson, L.; et al. The Impact of Consuming Zinc-Biofortified Wheat Flour on Haematological Indices of Zinc and Iron Status in Adolescent Girls in Rural Pakistan: A Cluster-Randomised, Double-Blind, Controlled Effectiveness Trial. Nutrients 2022, 14, 1657. [Google Scholar] [CrossRef]
- Hall, A.G.; King, J.C. The Molecular Basis for Zinc Bioavailability. Int. J. Mol. Sci. 2023, 24, 6561. [Google Scholar] [CrossRef]
- Imdad, A.; Rogner, J.; Sherwani, R.N.; Sidhu, J.; Regan, A.; Haykal, M.R.; Tsistinas, O.; Smith, A.; Chan, X.H.S.; Mayo-Wilson, E.; et al. Zinc supplementation for preventing mortality, morbidity, and growth failure in children aged 6 months to 12 years. Cochrane Database Syst. Rev. 2023, 2023, CD009384. [Google Scholar] [CrossRef]
- Iqbal, S.; Abid, J.; Akram, S.; Shah, H.B.U.; Farooq, U.; Ahmad, A.M.R. Zinc status or supplementation and its relation to soil-transmitted helminthiasis in children: A systematic review. Parasite Immunol. 2024, 46, e13015. [Google Scholar] [CrossRef] [PubMed]
- Iqbal, S.; Ali, I. Effect of maternal zinc supplementation or zinc status on pregnancy complications and perinatal outcomes: An umbrella review of meta-analyses. Heliyon 2021, 7, e07540. [Google Scholar] [CrossRef] [PubMed]
- Iqbal, S.; Ali, I.; Rust, P.; Kundi, M.; Ekmekcioglu, C. Selenium, zinc, and manganese status in pregnant women and its relation to maternal and child complications. Nutrients 2020, 12, 725. [Google Scholar] [CrossRef]
- Islam, M.M.; Black, R.E.; Krebs, N.F.; Westcott, J.; Long, J.; Islam, K.M.; Peerson, J.M.; Sthity, R.A.; Khandaker, A.M.; Hasan, M.; et al. Different Doses, Forms, and Frequencies of Zinc Supplementation for the Prevention of Diarrhea and Promotion of Linear Growth among Young Bangladeshi Children: A Six-Arm, Randomized, Community-Based Efficacy Trial. J. Nutr. 2022, 152, 1306–1315. [Google Scholar] [CrossRef]
- Hunt, J.R.; Beiseigel, J.M.; Johnson, L.K. Adaptation in human zinc absorption as influenced by dietary zincand bioavailability. Am. J. Clin. Nutr. 2008, 87, 1336–1345. [Google Scholar] [CrossRef] [PubMed]
- Katimba, H.A.; Wang, R.; Cheng, C.; Zhang, Y.; Lu, W.; Ma, Y. Zinc Absorption & Homeostasis in the Human Body: A General Overview. Food Rev. Int. 2023, 40, 715–739. [Google Scholar] [CrossRef]
- Keely, S.J.; Barrett, K.E. Intestinal secretory mechanisms and diarrhea. Am. J. Physiol. Gastrointest. Liver Physiol. 2022, 322, G405–G420. [Google Scholar] [CrossRef]
- Kido, T.; Yanagisawa, H.; Suka, M. Zinc Deficiency Reduces Intestinal Secretory Immunoglobulin A and Induces Inflammatory Responses via the Gut-Liver Axis. Immunology 2025, 174, 363–373. [Google Scholar] [CrossRef]
- Lee, K.S.; Kang, D.S.; Yu, J.; Chang, Y.P.; Park, W.S. How to do in persistent diarrhea of children?: Concepts and treatments of chronic diarrhea. Pediatr. Gastroenterol. Hepatol. Nutr. 2012, 15, 229–236. [Google Scholar] [CrossRef]
- Li, D.; Bai, M.; Guo, Z.; Cui, Y.; Mei, X.; Tian, H.; Shen, Z. Zinc regulates microglial polarization and inflammation through IKBα after spinal cord injury and promotes neuronal repair and motor function recovery in mice. Front. Pharmacol. 2025, 16, 1510372. [Google Scholar] [CrossRef]
- Liberato, S.C.; Singh, G.; Mulholland, K. Zinc supplementation in young children: A review of the literature focusing on diarrhoea prevention and treatment. Clin. Nutr. 2015, 34, 181–188. [Google Scholar] [CrossRef]
- Livingstone, C. Zinc: Physiology, deficiency, and parenteral nutrition. Nutr. Clin. Pract. 2015, 30, 371–382. [Google Scholar] [CrossRef]
- Lowe, N.M.; Hall, A.G.; Broadley, M.R.; Foley, J.; Boy, E.; Bhutta, Z.A. Preventing and Controlling Zinc Deficiency Across the Life Course: A Call to Action. Adv. Nutr. 2024, 15, 100181. [Google Scholar] [CrossRef]
- Maares, M.; Haase, H. A guide to human zinc absorption: General overview and recent advances of in vitro intestinal models. Nutrients 2020, 12, 762. [Google Scholar] [CrossRef]
- Malik, Z.I.; Ghafoor, M.U.; Shah, S.H.B.U.; Abid, J.; Farooq, U.; Ahmad, A.M.R. Unlocking iron: Nutritional origins, metabolic pathways, and systemic significance. Front. Nutr. 2025, 12, 1637316. [Google Scholar] [CrossRef] [PubMed]
- Martinez-Estevez, N.S.; Alvarez-Guevara, A.N.; Rodriguez-Martinez, C.E. Effects of zinc supplementation in the prevention of respiratory tract infections and diarrheal disease in Colombian children: A 12-month randomised controlled trial. Allergol. Immunopathol. 2016, 44, 368–375. [Google Scholar] [CrossRef]
- Mayo-Wilson, E.; Imdad, A.; Junior, J.; Dean, S.; Bhutta, Z.A. Preventive zinc supplementation for children, and the effect of additional iron: A systematic review and meta-analysis. BMJ Open 2014, 4, e004647. [Google Scholar] [CrossRef]
- Mohd Yusof, H.; Abdul Rahman, N.; Mohamad, R.; Zaidan, U.H.; Samsudin, A.A. Influence of Dietary Biosynthesized Zinc Oxide Nanoparticles on Broiler Zinc Uptake, Bone Quality, and Antioxidative Status. Animals 2023, 13, 115. [Google Scholar] [CrossRef] [PubMed]
- Mokomane, M.; Kasvosve, I.; de Melo, E.; Pernica, J.M.; Goldfarb, D.M. The global problem of childhood diarrhoeal diseases: Emerging strategies in prevention and management. Ther. Adv. Infect. Dis. 2018, 5, 29–43. [Google Scholar] [CrossRef] [PubMed]
- MSD Manual. Diarrhea in Children—Pediatrics. 2025. Available online: https://www.msdmanuals.com/professional/pediatrics/symptoms-in-infants-and-children/diarrhea-in-children (accessed on 10 October 2025).
- National Institute for Health. Zinc: Fact Sheet for Health Professionals. 2024. Available online: https://ods.od.nih.gov/factsheets/Zinc-HealthProfessional/ (accessed on 12 October 2025).
- National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK). Chronic Diarrhea in Children. 2025. Available online: https://www.niddk.nih.gov/health-information/digestive-diseases/chronic-diarrhea-children/treatment (accessed on 10 October 2025).
- Nishida, K.; Bansho, S.; Ikukawa, A.; Kubota, T.; Ohishi, A.; Nagasawa, K. Expression profile of the zinc transporter ZnT3 in taste cells of rat circumvallate papillae and its role in zinc release, a potential mechanism for taste stimulation. Eur. J. Histochem. 2022, 66, 3534. [Google Scholar] [CrossRef]
- Ohashi, W.; Fukada, T. Contribution of zinc and zinc transporters in the pathogenesis of inflammatory bowel diseases. J. Immunol. Res. 2019, 2019, 8396878. [Google Scholar] [CrossRef]
- Omuemu, V.O.; Ofuani, I.J.; Kubeyinje, I.C. Knowledge and use of zinc supplementation in the management of childhood diarrhoea among health care workers in public primary health facilities in Benin-City, Nigeria. Glob. J. Health Sci. 2012, 4, 68–76. [Google Scholar] [CrossRef] [PubMed]
- Park, J.S. Zinc as a treatment modality for acute infectious diarrhea in children. Clin. Exp. Pediatr. 2025, 68, 223–224. [Google Scholar] [CrossRef] [PubMed]
- Prasad, A.S. Zinc: Mechanisms of host defense. J. Nutr. 2007, 137, 1345–1349. [Google Scholar] [CrossRef] [PubMed]
- Prasad, A.S. Zinc is an Antioxidant and Anti-Inflammatory Agent: Its Role in Human Health. Front. Nutr. 2014, 1, 14. [Google Scholar] [CrossRef]
- Prashanth, G.P.; Hegde, D.G. Zinc Prophylaxis to Reduce Mortality and Morbidity in Under-5 Children: Clinical and Global Health Points of View. Glob. Pediatr. Health 2023, 10, 2333794X231156043. [Google Scholar] [CrossRef]
- Fang, Y.H.; Wan, C.M.; Gong, S.T.; Fang, F.; Sun, M.; Qian, Y.; Huang, Y.; Wang, B.X.; Xu, C.D.; Jin, Y.; et al. Clinical Practice Guidelines for Acute Infectious Diarrhea in Children. World J. Pediatr. 2025, 21, 708–719. [Google Scholar] [CrossRef]
- Rampedi, P.N.; Ogunrombi, M.O.; Adeleke, O.A. Leading Paediatric Infectious Diseases—Current Trends, Gaps, and Future Prospects in Oral Pharmacotherapeutic Interventions. Pharmaceutics 2024, 16, 712. [Google Scholar] [CrossRef]
- Rouhani, P.; Rezaei Kelishadi, M.; Saneei, P. Effect of zinc supplementation on mortality in under 5-year children: A systematic review and meta-analysis of randomized clinical trials. Eur. J. Nutr. 2022, 61, 37–54. [Google Scholar] [CrossRef]
- Salgueiro, M.J.; Zubillaga, M.B.; Lysionek, A.E.; Caro, R.A.; Weill, R.; Boccio, J.R. The Role of Zinc in the Growth and Development of Children. Nutrition 2002, 18, 510–519. [Google Scholar] [CrossRef]
- Scarpellini, E.; Balsiger, L.M.; Maurizi, V.; Rinninella, E.; Gasbarrini, A.; Giostra, N.; Santori, P.; Abenavoli, L.; Rasetti, C. Zinc and gut microbiota in health and gastrointestinal disease under the COVID-19 suggestion. BioFactors 2022, 48, 294–306. [Google Scholar] [CrossRef]
- Shah, B.B.; Inam, K.U.; Shakoor, S. Role of Oral Zinc Supplementation in treatment of Acute Dehydrating Diarrhea in age 6 months to 5 years. Pak. J. Med. Health Sci. 2021, 15, 3002–3003. [Google Scholar] [CrossRef]
- Shao, Y.; Wolf, P.G.; Guo, S.; Guo, Y.; Gaskins, H.R.; Zhang, B. Zinc enhances intestinal epithelial barrier function through the PI3K/AKT/mTOR signaling pathway in Caco-2 cells. J. Nutr. Biochem. 2017, 43, 18–26. [Google Scholar] [CrossRef] [PubMed]
- Shinwari, I.; Raut, M. Strengthening Zinc Supplementation and ORS Distribution in the Treatment of Childhood Diarrhoea in Select Rural and Urban Areas of Afghanistan through Capacity Building of Public and Private Sector Health Personnel and Strengthening Supply Chain Management. Eur. J. Nutr. Food Saf. 2015, 5, 485–486. [Google Scholar] [CrossRef]
- Sinha, B.; Dudeja, N.; Chowdhury, R.; Choudhary, T.S.; Upadhyay, R.P.; Rongsen-Chandola, T.; Mazumder, S.; Taneja, S.; Bhandari, N. Enteral Zinc Supplementation in Preterm or Low Birth Weight Infants: A Systematic Review and Meta-analysis. Pediatrics 2022, 150, e2022057092J. [Google Scholar] [CrossRef] [PubMed]
- Somji, S.S.; Dhingra, P.; Dhingra, U.; Dutta, A.; Devi, P.; Kumar, J.; Deb, S.; Semwal, O.P.; Sazawal, S.; Manji, K.; et al. Effect of dose reduction of supplemental zinc for childhood diarrhoea: Study protocol for a double-masked, randomised controlled trial in India and Tanzania. BMJ Paediatr. Open 2019, 3, e000460. [Google Scholar] [CrossRef]
- Stiles, L.I.; Ferrao, K.; Mehta, K.J. Role of zinc in health and disease. Clin. Exp. Med. 2024, 24, 38. [Google Scholar] [CrossRef]
- Strand, T.A.; Mathisen, M. Zinc—A scoping review for Nordic Nutrition Recommendations 2023. Food Nutr. Res. 2023, 67, 10368. [Google Scholar] [CrossRef]
- Sun, S.; Xie, E.; Xu, S.; Ji, S.; Wang, S.; Shen, J.; Wang, R.; Shen, X.; Su, Y.; Song, Z.; et al. The Intestinal Transporter SLC30A1 Plays a Critical Role in Regulating Systemic Zinc Homeostasis. Adv. Sci. 2024, 11, 2406421. [Google Scholar] [CrossRef]
- Tsang, B.L.; Holsted, E.; Mcdonald, C.M.; Brown, K.H.; Black, R.; Mbuya, M.N.N.; Grant, F.; Rowe, L.A.; Manger, M.S. Effects of Foods Fortified with Zinc, Alone or Cofortified with Multiple Micronutrients, on Health and Functional Outcomes: A Systematic Review and Meta-Analysis. Adv. Nutr. 2021, 12, 1821–1837. [Google Scholar] [CrossRef] [PubMed]
- Varghese, T.; Mills, J.A.P.; Revathi, R.; Antoni, S.; Soeters, H.M.; Emmanuel Njambe, T.O.; Houpt, E.R.; Tate, J.E.; Parashar, U.D.; Kang, G. Etiology of diarrheal hospitalizations following rotavirus vaccine implementation and association of enteric pathogens with malnutrition among under-five children in India. Gut Pathog. 2024, 16, 22. [Google Scholar] [CrossRef] [PubMed]
- Wan, Y.; Zhang, B. The Impact of Zinc and Zinc Homeostasis on the Intestinal Mucosal Barrier and Intestinal Diseases. Biomolecules 2022, 12, 900. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Gao, Y.; Liu, Q.; Zhan, X.; Li, Z.; Hu, H.; Li, T.; Chen, J. Effect of vitamin A and Zn supplementation on indices of vitamin A status, haemoglobin level and defecation of children with persistent diarrhea. J. Clin. Biochem. Nutr. 2016, 59, 58–64. [Google Scholar] [CrossRef]
- Wessells, K.R.; Brown, K.H.; Kounnavong, S.; Barffour, M.A.; Hinnouho, G.M.; Sayasone, S.; Stephensen, C.B.; Ratsavong, K.; Larson, C.P.; Arnold, C.D.; et al. Comparison of two forms of daily preventive zinc supplementation versus therapeutic zinc supplementation for diarrhea on young children’s physical growth and risk of infection: Study design and rationale for a randomized controlled trial. BMC Nutr. 2018, 4, 39. [Google Scholar] [CrossRef]
- Wessells, K.R.; Manger, M.S.; Tsang, B.L.; Brown, K.H.; McDonald, C.M. Mandatory large-scale food fortification programmes can reduce the estimated prevalence of inadequate zinc intake by up to 50% globally. Nat. Food 2024, 5, 625–637. [Google Scholar] [CrossRef]
- World Health Organization. Diarrhoeal Disease: Prevention and Treatment; World Health Organization: Geneva, Switzerland, 2024; Available online: https://www.who.int/news-room/fact-sheets/detail/diarrhoeal-disease (accessed on 12 October 2025).
- Zhang, Y.Y.; Stockmann, R.; Ng, K.; Ajlouni, S. Revisiting phytate-element interactions: Implications for iron, zinc and calcium bioavailability, with emphasis on legumes. Crit. Rev. Food Sci. Nutr. 2022, 62, 1696–1712. [Google Scholar] [CrossRef]
| Biological Function of Zinc | Mechanism of Action | Outcomes in Children |
|---|---|---|
| Anti-inflammatory |
|
|
| Antioxidant defense |
|
|
| Growth and development |
|
|
| Innate immunity |
|
|
| Adaptive immunity |
|
|
| Thymulin function |
|
|
| Pathway | Mechanism of Action | Therapeutic Effect in Diarrhea |
|---|---|---|
| mucosal/epithelial repair |
|
|
| Ion Transport and Fluid Balance |
|
|
| Immune Modulation |
|
|
| Gut Microbiota Interaction |
|
|
| Age Group | Condition | Recommended Dose and Duration |
|---|---|---|
| Infants < 6 months | RDA (healthy) | 3 mg/day |
| Acute diarrhea | 10 mg/day for 10–14 days (with ORS) | |
| Children 6–59 months | RDA (healthy) | 5 mg/day |
| Acute diarrhea (WHO recommendation) | 20 mg/day for 10–14 days (with ORS) | |
| Acute diarrhea (lower limit) | 5–10 mg/day |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Iqbal, S.; Malik, Z.I.; Al Dabbas, M.; Akhtar, I.; Hussein, A. Zinc Fortification and Supplementation to Reduce Diarrhea in Children: A Literature Review. Diseases 2025, 13, 380. https://doi.org/10.3390/diseases13110380
Iqbal S, Malik ZI, Al Dabbas M, Akhtar I, Hussein A. Zinc Fortification and Supplementation to Reduce Diarrhea in Children: A Literature Review. Diseases. 2025; 13(11):380. https://doi.org/10.3390/diseases13110380
Chicago/Turabian StyleIqbal, Sehar, Zoha Imtiaz Malik, Maher Al Dabbas, Ishmal Akhtar, and Aya Hussein. 2025. "Zinc Fortification and Supplementation to Reduce Diarrhea in Children: A Literature Review" Diseases 13, no. 11: 380. https://doi.org/10.3390/diseases13110380
APA StyleIqbal, S., Malik, Z. I., Al Dabbas, M., Akhtar, I., & Hussein, A. (2025). Zinc Fortification and Supplementation to Reduce Diarrhea in Children: A Literature Review. Diseases, 13(11), 380. https://doi.org/10.3390/diseases13110380

